File size: 2,841 Bytes
1117547 f701437 1117547 9df1736 1117547 9d6c5f3 1117547 f9805ff 1117547 9df1736 6781439 9d6c5f3 9df1736 6781439 1117547 9d6c5f3 1117547 9d6c5f3 1117547 9d6c5f3 1117547 9d6c5f3 1117547 f701437 9d6c5f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
license: mit
pipeline_tag: image-to-image
---
# CodeFormer
This version of CoderFormer has been converted to run on the Axera NPU using **w8a16** quantization.
This model has been optimized with the following LoRA:
Compatible with Pulsar2 version: 5.0-patch1
## Convert tools links:
For those who are interested in model conversion, you can try to export axmodel through
- [The repo of AXera Platform](https://github.com/AXERA-TECH/CodeFormer.axera), which you can get the detail of guide
- [Pulsar2 Link, How to Convert ONNX to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/pulsar2/introduction.html)
## Support Platform
- AX650
- [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html)
- [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html)
|Chips|model|cost|
|--|--|--|
|AX650|coderformer|408 ms|
## How to use
Download all files from this repository to the device
```
root@ax650:~/coderformer# tree
.
|-- model
| `-- coderformer.axmodel
| `-- yolov5l-face.axmodel
| `-- realesrgan-x2.axmodel
|-- python
| `-- run_axmodel.py
| `-- run_whole_image.py
| `-- requirements.txt
```
### Inference
Input Data:
```
|-- images
| -- face
| `-- 00_00.png
| -- image
| `-- 02.png
```
#### Inference with AX650 Host, such as M4N-Dock(爱芯派Pro)
运行人脸修复demo(需输入人脸图片)
```
root@ax650 ~/codeformer #python3 run_axmodel.py --inputs_path ./images/face --model_path ./coderformer.axmodel
[INFO] Available providers: ['AxEngineExecutionProvider']
[INFO] Using provider: AxEngineExecutionProvider
[INFO] Chip type: ChipType.MC50
[INFO] VNPU type: VNPUType.DISABLED
[INFO] Engine version: 2.12.0s
[INFO] Model type: 2 (triple core)
[INFO] Compiler version: 5.0-patch1 681a0b38
SR image save to `00_00.png`
```
Output:

运行整图修复demo(输入正常图片即可)
```
root@ax650 ~/codeformer #python3 run_whole_image.py --input_path ./images/image --detect_model ./yolov5l-face.axmodel --restore_model codeformer.axmodel --bg_model realesrgan-x2.axmodel
[INFO] Available providers: ['AxEngineExecutionProvider']
[INFO] Using provider: AxEngineExecutionProvider
[INFO] Chip type: ChipType.MC50
[INFO] VNPU type: VNPUType.DISABLED
[INFO] Engine version: 2.12.0s
[INFO] Model type: 2 (triple core)
[INFO] Compiler version: 5.0-patch1 6d9cc640
[INFO] Using provider: AxEngineExecutionProvider
[INFO] Model type: 2 (triple core)
[INFO] Compiler version: 5.0-patch1 681a0b38
[INFO] Using provider: AxEngineExecutionProvider
[INFO] Model type: 2 (triple core)
[INFO] Compiler version: 4.2-dirty 5e72cf06-dirty
[1/1] Processing: 02.png
detect 4 faces
SR image save to `02.png`
```
Output:
 |