|
|
import argparse |
|
|
import os |
|
|
import cv2 |
|
|
import numpy as np |
|
|
import axengine as axe |
|
|
|
|
|
def from_numpy(x): |
|
|
return x if isinstance(x, np.ndarray) else np.array(x) |
|
|
|
|
|
def main(args): |
|
|
|
|
|
session = axe.InferenceSession(args.model_path) |
|
|
output_names = [x.name for x in session.get_outputs()] |
|
|
input_name = session.get_inputs()[0].name |
|
|
|
|
|
|
|
|
os.makedirs(args.output_path, exist_ok=True) |
|
|
|
|
|
files =[f for f in os.listdir(args.inputs_path) if f.lower().endswith(('.jpg', '.png', 'jpeg'))] |
|
|
|
|
|
for file in files: |
|
|
ori_image = cv2.imread(os.path.join(args.inputs_path, file)) |
|
|
h, w = ori_image.shape[:2] |
|
|
image = cv2.resize(ori_image, (512, 512)) |
|
|
image = (image[..., ::-1] /255.0).astype(np.float32) |
|
|
|
|
|
mean = [0.5, 0.5, 0.5] |
|
|
std = [0.5, 0.5, 0.5] |
|
|
image = ((image - mean) / std).astype(np.float32) |
|
|
|
|
|
|
|
|
img = np.transpose(np.expand_dims(np.ascontiguousarray(image), axis=0), (0,3,1,2)) |
|
|
|
|
|
|
|
|
sr = session.run(output_names, {input_name: img}) |
|
|
|
|
|
|
|
|
sr = np.transpose(sr[0].squeeze(0), (1,2,0)) |
|
|
sr = (sr*std + mean).astype(np.float32) |
|
|
|
|
|
|
|
|
ndarr = np.clip((sr*255.0), 0, 255.0).astype(np.uint8) |
|
|
out_image = cv2.resize(ndarr[..., ::-1], (w, h)) |
|
|
|
|
|
cv2.imwrite(f'{arg.output_path}/{file}', out_image) |
|
|
print(f"SR image save to `{file}`") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
parser = argparse.ArgumentParser(description="Using the model generator super-resolution images.") |
|
|
parser.add_argument("--inputs_path", |
|
|
type=str, |
|
|
default="images", |
|
|
help="origin image path.") |
|
|
parser.add_argument("--output_path", |
|
|
type=str, |
|
|
default="results", |
|
|
help="colorized image path.") |
|
|
parser.add_argument("--model_path", |
|
|
type=str, |
|
|
default="./codeformer.axmoel", |
|
|
help="model path.") |
|
|
args = parser.parse_args() |
|
|
|
|
|
main(args) |
|
|
|