|
|
import os
|
|
|
import cv2
|
|
|
import math
|
|
|
import torch
|
|
|
import numpy as np
|
|
|
import axengine as ort
|
|
|
|
|
|
from utils.general import img2tensor, imwrite, is_gray, bgr2gray, adain_npy
|
|
|
from utils.face_detector import YoloDetector
|
|
|
|
|
|
def get_largest_face(det_faces, h, w):
|
|
|
def get_location(val, length):
|
|
|
if val < 0:
|
|
|
return 0
|
|
|
elif val > length:
|
|
|
return length
|
|
|
else:
|
|
|
return val
|
|
|
|
|
|
face_areas = []
|
|
|
for det_face in det_faces:
|
|
|
left = get_location(det_face[0], w)
|
|
|
right = get_location(det_face[2], w)
|
|
|
top = get_location(det_face[1], h)
|
|
|
bottom = get_location(det_face[3], h)
|
|
|
face_area = (right - left) * (bottom - top)
|
|
|
face_areas.append(face_area)
|
|
|
largest_idx = face_areas.index(max(face_areas))
|
|
|
return det_faces[largest_idx], largest_idx
|
|
|
|
|
|
|
|
|
def get_center_face(det_faces, h=0, w=0, center=None):
|
|
|
if center is not None:
|
|
|
center = np.array(center)
|
|
|
else:
|
|
|
center = np.array([w / 2, h / 2])
|
|
|
center_dist = []
|
|
|
for det_face in det_faces:
|
|
|
face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
|
|
|
dist = np.linalg.norm(face_center - center)
|
|
|
center_dist.append(dist)
|
|
|
center_idx = center_dist.index(min(center_dist))
|
|
|
return det_faces[center_idx], center_idx
|
|
|
|
|
|
|
|
|
class RestoreHelper(object):
|
|
|
"""Helper for the restoration pipeline (base class)."""
|
|
|
def __init__(self,
|
|
|
upscale_factor,
|
|
|
face_size=512,
|
|
|
crop_ratio=(1, 1),
|
|
|
det_model='yolov5l-face.onnx',
|
|
|
res_model='codeformer.onnx',
|
|
|
bg_model='realesrgan_x2.onnx' ,
|
|
|
save_ext='png',
|
|
|
template_3points=False,
|
|
|
pad_blur=False,
|
|
|
use_parse=False,
|
|
|
):
|
|
|
|
|
|
|
|
|
self.template_3points = template_3points
|
|
|
self.upscale_factor = int(upscale_factor)
|
|
|
|
|
|
self.crop_ratio = crop_ratio
|
|
|
assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
|
|
|
self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
|
|
|
|
|
|
|
|
|
|
|
|
self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
|
|
|
[201.26117, 371.41043], [313.08905, 371.15118]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.face_template = self.face_template * (face_size / 512.0)
|
|
|
if self.crop_ratio[0] > 1:
|
|
|
self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
|
|
|
if self.crop_ratio[1] > 1:
|
|
|
self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
|
|
|
self.save_ext = save_ext
|
|
|
self.pad_blur = pad_blur
|
|
|
if self.pad_blur is True:
|
|
|
self.template_3points = False
|
|
|
|
|
|
self.all_landmarks_5 = []
|
|
|
self.det_faces = []
|
|
|
self.affine_matrices = []
|
|
|
self.inverse_affine_matrices = []
|
|
|
self.cropped_faces = []
|
|
|
self.restored_faces = []
|
|
|
self.pad_input_imgs = []
|
|
|
|
|
|
|
|
|
self.face_detector = YoloDetector(model_path=det_model)
|
|
|
|
|
|
|
|
|
self.use_parse = use_parse
|
|
|
|
|
|
|
|
|
|
|
|
self.res_model = res_model
|
|
|
self.rs_sessison, self.rs_input, self.rs_output = self.init_face_restoration()
|
|
|
|
|
|
|
|
|
self.tile = 108
|
|
|
self.tile_pad = 10
|
|
|
self.scale = 2
|
|
|
self.bg_model = bg_model
|
|
|
self.bg_sessison, self.bg_input, self.bg_output = self.init_background_upsampling()
|
|
|
|
|
|
def set_upscale_factor(self, upscale_factor):
|
|
|
self.upscale_factor = upscale_factor
|
|
|
|
|
|
def read_image(self, img):
|
|
|
"""img can be image path or cv2 loaded image."""
|
|
|
|
|
|
if isinstance(img, str):
|
|
|
img = cv2.imread(img)
|
|
|
|
|
|
if np.max(img) > 256:
|
|
|
img = img / 65535 * 255
|
|
|
if len(img.shape) == 2:
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
|
|
elif img.shape[2] == 4:
|
|
|
img = img[:, :, 0:3]
|
|
|
|
|
|
self.input_img = img
|
|
|
self.is_gray = is_gray(img, threshold=10)
|
|
|
if self.is_gray:
|
|
|
print('Grayscale input: True')
|
|
|
|
|
|
if min(self.input_img.shape[:2])<512:
|
|
|
f = 512.0/min(self.input_img.shape[:2])
|
|
|
self.input_img = cv2.resize(self.input_img, (0,0), fx=f, fy=f, interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
|
def get_face_landmarks_5(self,
|
|
|
only_keep_largest=False,
|
|
|
only_center_face=False,
|
|
|
resize=None,
|
|
|
blur_ratio=0.01,
|
|
|
eye_dist_threshold=None):
|
|
|
|
|
|
if resize is None:
|
|
|
scale = 1
|
|
|
input_img = self.input_img
|
|
|
else:
|
|
|
h, w = self.input_img.shape[0:2]
|
|
|
scale = resize / min(h, w)
|
|
|
|
|
|
h, w = int(h * scale), int(w * scale)
|
|
|
interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR
|
|
|
input_img = cv2.resize(self.input_img, (w, h), interpolation=interp)
|
|
|
|
|
|
|
|
|
bboxes = self.face_detector.detect_faces(input_img)
|
|
|
|
|
|
if bboxes is None or bboxes.shape[0] == 0:
|
|
|
return 0
|
|
|
else:
|
|
|
bboxes = bboxes / scale
|
|
|
|
|
|
for bbox in bboxes:
|
|
|
|
|
|
eye_dist = np.linalg.norm([bbox[6] - bbox[8], bbox[7] - bbox[9]])
|
|
|
if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
|
|
|
continue
|
|
|
|
|
|
if self.template_3points:
|
|
|
landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
|
|
|
else:
|
|
|
landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
|
|
|
self.all_landmarks_5.append(landmark)
|
|
|
self.det_faces.append(bbox[0:5])
|
|
|
|
|
|
if len(self.det_faces) == 0:
|
|
|
return 0
|
|
|
if only_keep_largest:
|
|
|
h, w, _ = self.input_img.shape
|
|
|
self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
|
|
|
self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
|
|
|
elif only_center_face:
|
|
|
h, w, _ = self.input_img.shape
|
|
|
self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
|
|
|
self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
|
|
|
|
|
|
|
|
|
if self.pad_blur:
|
|
|
self.pad_input_imgs = []
|
|
|
for landmarks in self.all_landmarks_5:
|
|
|
|
|
|
eye_left = landmarks[0, :]
|
|
|
eye_right = landmarks[1, :]
|
|
|
eye_avg = (eye_left + eye_right) * 0.5
|
|
|
mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
|
|
|
eye_to_eye = eye_right - eye_left
|
|
|
eye_to_mouth = mouth_avg - eye_avg
|
|
|
|
|
|
|
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
|
|
|
|
|
|
|
|
x /= np.hypot(*x)
|
|
|
rect_scale = 1.5
|
|
|
x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
|
|
|
|
|
|
y = np.flipud(x) * [-1, 1]
|
|
|
|
|
|
|
|
|
c = eye_avg + eye_to_mouth * 0.1
|
|
|
|
|
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
|
|
|
|
|
qsize = np.hypot(*x) * 2
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3)
|
|
|
|
|
|
|
|
|
|
|
|
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
|
|
int(np.ceil(max(quad[:, 1]))))
|
|
|
pad = [
|
|
|
max(-pad[0] + border, 1),
|
|
|
max(-pad[1] + border, 1),
|
|
|
max(pad[2] - self.input_img.shape[0] + border, 1),
|
|
|
max(pad[3] - self.input_img.shape[1] + border, 1)
|
|
|
]
|
|
|
|
|
|
if max(pad) > 1:
|
|
|
|
|
|
pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
|
|
|
|
|
landmarks[:, 0] += pad[0]
|
|
|
landmarks[:, 1] += pad[1]
|
|
|
|
|
|
h, w, _ = pad_img.shape
|
|
|
y, x, _ = np.ogrid[:h, :w, :1]
|
|
|
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
|
|
|
np.float32(w - 1 - x) / pad[2]),
|
|
|
1.0 - np.minimum(np.float32(y) / pad[1],
|
|
|
np.float32(h - 1 - y) / pad[3]))
|
|
|
blur = int(qsize * blur_ratio)
|
|
|
if blur % 2 == 0:
|
|
|
blur += 1
|
|
|
blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
|
|
|
|
|
|
|
|
|
pad_img = pad_img.astype('float32')
|
|
|
pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
|
|
pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
|
|
|
pad_img = np.clip(pad_img, 0, 255)
|
|
|
self.pad_input_imgs.append(pad_img)
|
|
|
else:
|
|
|
self.pad_input_imgs.append(np.copy(self.input_img))
|
|
|
|
|
|
return len(self.all_landmarks_5)
|
|
|
|
|
|
def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
|
|
|
"""Align and warp faces with face template.
|
|
|
"""
|
|
|
if self.pad_blur:
|
|
|
assert len(self.pad_input_imgs) == len(
|
|
|
self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}'
|
|
|
for idx, landmark in enumerate(self.all_landmarks_5):
|
|
|
|
|
|
|
|
|
|
|
|
affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
|
|
|
self.affine_matrices.append(affine_matrix)
|
|
|
|
|
|
if border_mode == 'constant':
|
|
|
border_mode = cv2.BORDER_CONSTANT
|
|
|
elif border_mode == 'reflect101':
|
|
|
border_mode = cv2.BORDER_REFLECT101
|
|
|
elif border_mode == 'reflect':
|
|
|
border_mode = cv2.BORDER_REFLECT
|
|
|
if self.pad_blur:
|
|
|
input_img = self.pad_input_imgs[idx]
|
|
|
else:
|
|
|
input_img = self.input_img
|
|
|
cropped_face = cv2.warpAffine(
|
|
|
input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132))
|
|
|
self.cropped_faces.append(cropped_face)
|
|
|
|
|
|
if save_cropped_path is not None:
|
|
|
path = os.path.splitext(save_cropped_path)[0]
|
|
|
save_path = f'{path}_{idx:02d}.{self.save_ext}'
|
|
|
imwrite(cropped_face, save_path)
|
|
|
|
|
|
def get_inverse_affine(self, save_inverse_affine_path=None):
|
|
|
"""Get inverse affine matrix."""
|
|
|
for idx, affine_matrix in enumerate(self.affine_matrices):
|
|
|
inverse_affine = cv2.invertAffineTransform(affine_matrix)
|
|
|
inverse_affine *= self.upscale_factor
|
|
|
self.inverse_affine_matrices.append(inverse_affine)
|
|
|
|
|
|
if save_inverse_affine_path is not None:
|
|
|
path, _ = os.path.splitext(save_inverse_affine_path)
|
|
|
save_path = f'{path}_{idx:02d}.pth'
|
|
|
torch.save(inverse_affine, save_path)
|
|
|
|
|
|
|
|
|
def add_restored_face(self, restored_face, input_face=None):
|
|
|
if self.is_gray:
|
|
|
restored_face = bgr2gray(restored_face)
|
|
|
if input_face is not None:
|
|
|
restored_face = adain_npy(restored_face, input_face)
|
|
|
self.restored_faces.append(restored_face)
|
|
|
|
|
|
|
|
|
def paste_faces_to_input_image(self, save_path=None, upsample_img=None, draw_box=False, face_upsampler=None):
|
|
|
h, w, _ = self.input_img.shape
|
|
|
h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
|
|
|
|
|
|
if upsample_img is None:
|
|
|
|
|
|
|
|
|
upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LINEAR)
|
|
|
else:
|
|
|
upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
|
|
|
|
|
|
assert len(self.restored_faces) == len(
|
|
|
self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
|
|
|
|
|
|
inv_mask_borders = []
|
|
|
for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
|
|
|
if face_upsampler is not None:
|
|
|
restored_face = face_upsampler.enhance(restored_face, outscale=self.upscale_factor)[0]
|
|
|
inverse_affine /= self.upscale_factor
|
|
|
inverse_affine[:, 2] *= self.upscale_factor
|
|
|
face_size = (self.face_size[0]*self.upscale_factor, self.face_size[1]*self.upscale_factor)
|
|
|
else:
|
|
|
|
|
|
if self.upscale_factor > 1:
|
|
|
extra_offset = 0.5 * self.upscale_factor
|
|
|
else:
|
|
|
extra_offset = 0
|
|
|
inverse_affine[:, 2] += extra_offset
|
|
|
face_size = self.face_size
|
|
|
inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
|
|
|
|
|
|
|
|
|
mask = np.ones(face_size, dtype=np.float32)
|
|
|
inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
|
|
|
|
|
|
inv_mask_erosion = cv2.erode(
|
|
|
inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
|
|
|
pasted_face = inv_mask_erosion[:, :, None] * inv_restored
|
|
|
total_face_area = np.sum(inv_mask_erosion)
|
|
|
|
|
|
if draw_box:
|
|
|
h, w = face_size
|
|
|
mask_border = np.ones((h, w, 3), dtype=np.float32)
|
|
|
border = int(1400/np.sqrt(total_face_area))
|
|
|
mask_border[border:h-border, border:w-border,:] = 0
|
|
|
inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
|
|
|
inv_mask_borders.append(inv_mask_border)
|
|
|
|
|
|
w_edge = int(total_face_area**0.5) // 20
|
|
|
erosion_radius = w_edge * 2
|
|
|
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
|
|
|
blur_size = w_edge * 2
|
|
|
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
|
|
|
if len(upsample_img.shape) == 2:
|
|
|
upsample_img = upsample_img[:, :, None]
|
|
|
inv_soft_mask = inv_soft_mask[:, :, None]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4:
|
|
|
alpha = upsample_img[:, :, 3:]
|
|
|
upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3]
|
|
|
upsample_img = np.concatenate((upsample_img, alpha), axis=2)
|
|
|
else:
|
|
|
upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
|
|
|
|
|
|
if np.max(upsample_img) > 256:
|
|
|
upsample_img = upsample_img.astype(np.uint16)
|
|
|
else:
|
|
|
upsample_img = upsample_img.astype(np.uint8)
|
|
|
|
|
|
|
|
|
if draw_box:
|
|
|
|
|
|
img_color = np.ones([*upsample_img.shape], dtype=np.float32)
|
|
|
img_color[:,:,0] = 0
|
|
|
img_color[:,:,1] = 255
|
|
|
img_color[:,:,2] = 0
|
|
|
for inv_mask_border in inv_mask_borders:
|
|
|
upsample_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_img
|
|
|
|
|
|
|
|
|
if save_path is not None:
|
|
|
path = os.path.splitext(save_path)[0]
|
|
|
save_path = f'{path}.{self.save_ext}'
|
|
|
imwrite(upsample_img, save_path)
|
|
|
return upsample_img
|
|
|
|
|
|
def init_face_restoration(self):
|
|
|
session = ort.InferenceSession(self.res_model)
|
|
|
input_name = session.get_inputs()[0].name
|
|
|
output_names = [x.name for x in session.get_outputs()]
|
|
|
return session, input_name, output_names
|
|
|
|
|
|
def pre_process(self, img):
|
|
|
|
|
|
tile_pad_h, tile_pad_w = 0, 0
|
|
|
h, w = img.shape[0:2]
|
|
|
|
|
|
if h % self.tile != 0:
|
|
|
tile_pad_h = (self.tile - h % self.tile)
|
|
|
if w % self.tile != 0:
|
|
|
tile_pad_w = (self.tile - w % self.tile)
|
|
|
img = np.pad(img, ((0, tile_pad_h), (0, tile_pad_w), (0, 0)), 'constant')
|
|
|
|
|
|
|
|
|
img = np.pad(img, ((self.tile_pad, self.tile_pad), (self.tile_pad, self.tile_pad), (0, 0)), 'constant')
|
|
|
|
|
|
|
|
|
img = (img[..., ::-1] / 255).astype(np.float32)
|
|
|
img = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0)
|
|
|
|
|
|
return img
|
|
|
|
|
|
def init_background_upsampling(self):
|
|
|
session = ort.InferenceSession(self.bg_model)
|
|
|
input_name = session.get_inputs()[0].name
|
|
|
output_names = [x.name for x in session.get_outputs()]
|
|
|
return session, input_name, output_names
|
|
|
|
|
|
def tile_process(self, img, origin_shape):
|
|
|
"""It will first crop input images to tiles, and then process each tile.
|
|
|
Finally, all the processed tiles are merged into one images.
|
|
|
"""
|
|
|
|
|
|
batch, channel, height, width = img.shape
|
|
|
output_height = int(round(height * self.scale))
|
|
|
output_width = int(round(width * self.scale))
|
|
|
output_shape = (batch, channel, output_height, output_width)
|
|
|
origin_h, origin_w = origin_shape[0:2]
|
|
|
|
|
|
|
|
|
output = np.zeros(output_shape)
|
|
|
tiles_x = math.floor(width / self.tile)
|
|
|
tiles_y = math.floor(height / self.tile)
|
|
|
|
|
|
|
|
|
start_tile = int(round(self.tile_pad * self.scale))
|
|
|
end_tile = int(round(self.tile * self.scale)) + start_tile
|
|
|
|
|
|
|
|
|
for y in range(tiles_y):
|
|
|
for x in range(tiles_x):
|
|
|
|
|
|
ofs_x = x * self.tile
|
|
|
ofs_y = y * self.tile
|
|
|
|
|
|
input_start_x = ofs_x
|
|
|
input_end_x = min(ofs_x + self.tile, width)
|
|
|
input_start_y = ofs_y
|
|
|
input_end_y = min(ofs_y + self.tile, height)
|
|
|
|
|
|
|
|
|
input_tile = img[:, :, input_start_y:(input_end_y+2*self.tile_pad),
|
|
|
input_start_x:(input_end_x+2*self.tile_pad)]
|
|
|
|
|
|
|
|
|
try:
|
|
|
output_tile = self.bg_sessison.run(self.bg_output, {self.bg_input: input_tile})
|
|
|
except RuntimeError as error:
|
|
|
print('Error', error)
|
|
|
|
|
|
|
|
|
output_start_x = int(round(input_start_x * self.scale))
|
|
|
output_end_x = int(round(input_end_x * self.scale))
|
|
|
output_start_y = int(round(input_start_y * self.scale))
|
|
|
output_end_y = int(round(input_end_y * self.scale))
|
|
|
|
|
|
output[:, :, output_start_y:output_end_y,
|
|
|
output_start_x:output_end_x] = output_tile[0][:, :, start_tile:end_tile, start_tile:end_tile]
|
|
|
|
|
|
|
|
|
output = output[:, :, :int(round(origin_h * self.scale)), :int(round(origin_w * self.scale))].squeeze(0)
|
|
|
output = np.transpose(output[::-1, ...], (1, 2, 0)).astype(np.float32)
|
|
|
output = np.clip(output*255.0, 0, 255).astype(np.uint8)
|
|
|
|
|
|
|
|
|
output = cv2.resize(output, (origin_w, origin_h), interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
|
return output
|
|
|
|
|
|
def background_upsampling(self, img):
|
|
|
"""Background upsampling with Real-ESRGAN.
|
|
|
"""
|
|
|
|
|
|
img_input = self.pre_process(img)
|
|
|
|
|
|
|
|
|
output = self.tile_process(img_input, img.shape)
|
|
|
|
|
|
return output
|
|
|
|
|
|
def clean_all(self):
|
|
|
self.all_landmarks_5 = []
|
|
|
self.restored_faces = []
|
|
|
self.affine_matrices = []
|
|
|
self.cropped_faces = []
|
|
|
self.inverse_affine_matrices = []
|
|
|
self.det_faces = []
|
|
|
self.pad_input_imgs = []
|
|
|
|