import argparse import os import cv2 import numpy as np import axengine as axe def from_numpy(x): return x if isinstance(x, np.ndarray) else np.array(x) def main(args): # Initialize the model session = axe.InferenceSession(args.model_path) output_names = [x.name for x in session.get_outputs()] input_name = session.get_inputs()[0].name # results os.makedirs(args.output_path, exist_ok=True) files =[f for f in os.listdir(args.inputs_path) if f.lower().endswith(('.jpg', '.png', 'jpeg'))] for file in files: ori_image = cv2.imread(os.path.join(args.inputs_path, file)) h, w = ori_image.shape[:2] image = cv2.resize(ori_image, (512, 512)) image = (image[..., ::-1] /255.0).astype(np.float32) mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] image = ((image - mean) / std).astype(np.float32) #image = (image /1.0).astype(np.float32) img = np.transpose(np.expand_dims(np.ascontiguousarray(image), axis=0), (0,3,1,2)) # Use the model to generate super-resolved images sr = session.run(output_names, {input_name: img}) #sr_y_image = imgproc.array_to_image(sr) sr = np.transpose(sr[0].squeeze(0), (1,2,0)) sr = (sr*std + mean).astype(np.float32) # Save image ndarr = np.clip((sr*255.0), 0, 255.0).astype(np.uint8) out_image = cv2.resize(ndarr[..., ::-1], (w, h)) cv2.imwrite(f'{arg.output_path}/{file}', out_image) print(f"SR image save to `{file}`") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Using the model generator super-resolution images.") parser.add_argument("--inputs_path", type=str, default="images", help="origin image path.") parser.add_argument("--output_path", type=str, default="results", help="colorized image path.") parser.add_argument("--model_path", type=str, default="./codeformer.axmoel", help="model path.") args = parser.parse_args() main(args)