| from preprocess import Model, SquadDataset | |
| from transformers import DistilBertForQuestionAnswering | |
| from torch.utils.data import DataLoader | |
| from transformers import AdamW | |
| import torch | |
| import subprocess | |
| data = Model() | |
| train_contexts, train_questions, train_answers = data.ArrangeData("livecheckcontainer") | |
| val_contexts, val_questions, val_answers = data.ArrangeData("livecheckcontainer") | |
| print(train_answers) | |
| train_answers, train_contexts = data.add_end_idx(train_answers, train_contexts) | |
| val_answers, val_contexts = data.add_end_idx(val_answers, val_contexts) | |
| train_encodings, val_encodings = data.Tokenizer(train_contexts, train_questions, val_contexts, val_questions) | |
| train_encodings = data.add_token_positions(train_encodings, train_answers) | |
| val_encodings = data.add_token_positions(val_encodings, val_answers) | |
| train_dataset = SquadDataset(train_encodings) | |
| val_dataset = SquadDataset(val_encodings) | |
| model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased") | |
| device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
| model.to(device) | |
| model.train() | |
| train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True) | |
| optim = AdamW(model.parameters(), lr=5e-5) | |
| for epoch in range(2): | |
| print(epoch) | |
| for batch in train_loader: | |
| optim.zero_grad() | |
| input_ids = batch['input_ids'].to(device) | |
| attention_mask = batch['attention_mask'].to(device) | |
| start_positions = batch['start_positions'].to(device) | |
| end_positions = batch['end_positions'].to(device) | |
| outputs = model(input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions) | |
| loss = outputs[0] | |
| loss.backward() | |
| optim.step() | |
| print("Done") | |
| model.eval() | |
| model.save_pretrained("./") | |
| data.tokenizer.save_pretrained("./") | |
| subprocess.call(["git", "add","--all"]) | |
| subprocess.call(["git", "status"]) | |
| subprocess.call(["git", "commit", "-m", "First version of the your-model-name model and tokenizer."]) | |
| subprocess.call(["git", "push"]) | |