update
Browse files
README.md
CHANGED
|
@@ -4,6 +4,8 @@ language:
|
|
| 4 |
- zh
|
| 5 |
pipeline_tag: sentence-similarity
|
| 6 |
---
|
|
|
|
|
|
|
| 7 |
<h1 align="center">FlagEmbedding</h1>
|
| 8 |
|
| 9 |
|
|
@@ -18,81 +20,172 @@ pipeline_tag: sentence-similarity
|
|
| 18 |
<p>
|
| 19 |
</h4>
|
| 20 |
|
| 21 |
-
More details please refer to our
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
[English](README.md) | [中文](README_zh.md)
|
| 24 |
|
| 25 |
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
| 26 |
-
And it also can be used in vector
|
| 27 |
|
| 28 |
************* 🌟**Updates**🌟 *************
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
| 30 |
-
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!**
|
| 31 |
-
- 08/01/2023: We release the Chinese Massive Text Embedding Benchmark (**C-MTEB**), consisting of 31 test dataset.
|
| 32 |
|
| 33 |
|
| 34 |
## Model List
|
| 35 |
|
| 36 |
`bge` is short for `BAAI general embedding`.
|
| 37 |
|
| 38 |
-
| Model | Language | Description | query instruction for retrieval |
|
| 39 |
-
|:-------------------------------|:--------:| :--------:|
|
| 40 |
-
| [BAAI/bge-large
|
| 41 |
-
| [BAAI/bge-base
|
| 42 |
-
| [BAAI/bge-
|
| 43 |
-
| [BAAI/bge-
|
| 44 |
-
| [BAAI/bge-
|
| 45 |
-
| [BAAI/bge-
|
| 46 |
-
| [BAAI/bge-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
## Usage
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
```
|
| 54 |
-
pip install
|
| 55 |
```
|
|
|
|
|
|
|
| 56 |
```python
|
| 57 |
-
from
|
| 58 |
-
|
|
|
|
| 59 |
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
# for retrieval task,
|
| 64 |
-
# corpus in retrieval task can still use encode() or encode_corpus()
|
| 65 |
queries = ['query_1', 'query_2']
|
| 66 |
-
passages = ["
|
| 67 |
q_embeddings = model.encode_queries(queries)
|
| 68 |
p_embeddings = model.encode(passages)
|
| 69 |
scores = q_embeddings @ p_embeddings.T
|
| 70 |
```
|
| 71 |
-
|
| 72 |
|
| 73 |
-
FlagModel will use all available GPUs when encoding
|
|
|
|
| 74 |
|
| 75 |
|
| 76 |
-
|
| 77 |
|
| 78 |
-
|
| 79 |
|
| 80 |
```
|
| 81 |
pip install -U sentence-transformers
|
| 82 |
```
|
| 83 |
```python
|
| 84 |
from sentence_transformers import SentenceTransformer
|
| 85 |
-
|
|
|
|
| 86 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
| 89 |
```
|
| 90 |
-
For retrieval task,
|
| 91 |
-
each query should start with
|
|
|
|
| 92 |
```python
|
| 93 |
from sentence_transformers import SentenceTransformer
|
| 94 |
-
queries = [
|
| 95 |
-
passages = ["
|
| 96 |
instruction = "为这个句子生成表示以用于检索相关文章:"
|
| 97 |
|
| 98 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
|
@@ -101,9 +194,27 @@ p_embeddings = model.encode(passages, normalize_embeddings=True)
|
|
| 101 |
scores = q_embeddings @ p_embeddings.T
|
| 102 |
```
|
| 103 |
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
|
|
|
|
|
|
|
| 107 |
|
| 108 |
```python
|
| 109 |
from transformers import AutoTokenizer, AutoModel
|
|
@@ -114,10 +225,11 @@ sentences = ["样例数据-1", "样例数据-2"]
|
|
| 114 |
# Load model from HuggingFace Hub
|
| 115 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
| 116 |
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
|
|
|
| 117 |
|
| 118 |
# Tokenize sentences
|
| 119 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 120 |
-
# for retrieval task, add
|
| 121 |
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
| 122 |
|
| 123 |
# Compute token embeddings
|
|
@@ -130,21 +242,65 @@ sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, di
|
|
| 130 |
print("Sentence embeddings:", sentence_embeddings)
|
| 131 |
```
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
## Evaluation
|
|
|
|
| 135 |
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
| 136 |
-
|
| 137 |
|
| 138 |
- **MTEB**:
|
| 139 |
|
| 140 |
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
| 141 |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
| 142 |
-
| [
|
| 143 |
-
| [
|
|
|
|
|
|
|
|
|
|
| 144 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
| 145 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
| 146 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
| 147 |
-
| [
|
| 148 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
| 149 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
| 150 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
|
@@ -153,87 +309,80 @@ More details and evaluation scripts see [benchemark](benchmark/README.md).
|
|
| 153 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
| 154 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
| 155 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
| 156 |
-
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 384 | 512 | 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 |
|
| 157 |
-
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 384 | 512 | 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 |
|
| 158 |
-
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 768 | 512 | 56.00 | 41.88 | 41.1 | 82.54 | 53.14 | 76.51 | 30.36 | 66.68 |
|
| 159 |
-
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 768 | 512 | 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 |
|
| 160 |
|
| 161 |
|
| 162 |
|
| 163 |
- **C-MTEB**:
|
| 164 |
-
We create
|
| 165 |
-
Please refer to [
|
| 166 |
|
| 167 |
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
| 168 |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
| 169 |
-
| [**bge-large-zh**](https://huggingface.co/BAAI/bge-large-zh) | 1024 |
|
| 170 |
-
| [
|
| 171 |
-
| [
|
| 172 |
-
| [
|
| 173 |
-
| [
|
| 174 |
-
| [
|
| 175 |
-
| [
|
| 176 |
-
| [
|
| 177 |
-
| [
|
| 178 |
-
| [
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
## Train
|
| 184 |
-
This section will introduce the way we used to train the general embedding.
|
| 185 |
-
The training scripts are in [flag_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/flag_embedding/baai_general_embedding/),
|
| 186 |
-
and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain/) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).
|
| 187 |
-
|
| 188 |
|
| 189 |
-
|
| 190 |
-
We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
|
| 191 |
-
which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
|
| 192 |
-
The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
|
| 193 |
-
In retromae, the mask ratio of the encoder and decoder are 0.3, and 0.5 respectively.
|
| 194 |
-
We used the AdamW optimizer and the learning rate is 2e-5.
|
| 195 |
|
| 196 |
-
|
| 197 |
-
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
- Chinese:
|
| 202 |
-
- Subset of [wudao](https://github.com/BAAI-WuDao/Data)
|
| 203 |
-
- [baidu-baike](https://baike.baidu.com/)
|
| 204 |
|
| 205 |
|
| 206 |
-
**2. Finetune**
|
| 207 |
-
We fine-tune the model using a contrastive objective.
|
| 208 |
-
The format of input data is a triple`(query, positive, negative)`.
|
| 209 |
-
Besides the negative in the triple, we also adopt in-batch negatives strategy.
|
| 210 |
-
We employ the cross-device negatives sharing method to share negatives among different GPUs,
|
| 211 |
-
which can dramatically **increase the number of negatives**.
|
| 212 |
|
| 213 |
-
|
| 214 |
-
We used the AdamW optimizer and the learning rate is 1e-5.
|
| 215 |
-
The temperature for contrastive loss is 0.01.
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
|
|
|
|
|
|
| 221 |
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
|
|
|
| 225 |
|
| 226 |
-
**Training data**:
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
- For Chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE) and so on.
|
| 231 |
-
|
| 232 |
-
**The data collection is to be released in the future.**
|
| 233 |
|
| 234 |
-
We will continually update the embedding models and training codes,
|
| 235 |
-
hoping to promote the development of the embedding model community.
|
| 236 |
|
| 237 |
|
| 238 |
-
## License
|
| 239 |
-
FlagEmbedding is licensed under [MIT License](). The released models can be used for commercial purposes free of charge.
|
|
|
|
| 4 |
- zh
|
| 5 |
pipeline_tag: sentence-similarity
|
| 6 |
---
|
| 7 |
+
|
| 8 |
+
|
| 9 |
<h1 align="center">FlagEmbedding</h1>
|
| 10 |
|
| 11 |
|
|
|
|
| 20 |
<p>
|
| 21 |
</h4>
|
| 22 |
|
| 23 |
+
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
<h4 align="center">
|
| 27 |
+
<p>
|
| 28 |
+
<a href=#model-list>Model List</a> |
|
| 29 |
+
<a href=#frequently-asked-questions>FAQ</a> |
|
| 30 |
+
<a href=#usage>Usage</a> |
|
| 31 |
+
<a href="#evaluation">Evaluation</a> |
|
| 32 |
+
<a href="#train">Train</a> |
|
| 33 |
+
<a href="#contact">Contact</a> |
|
| 34 |
+
<a href="#license">License</a>
|
| 35 |
+
<p>
|
| 36 |
+
</h4>
|
| 37 |
+
|
| 38 |
|
| 39 |
+
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
| 40 |
|
| 41 |
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
| 42 |
+
And it also can be used in vector databases for LLMs.
|
| 43 |
|
| 44 |
************* 🌟**Updates**🌟 *************
|
| 45 |
+
- 09/12/2023: New Release:
|
| 46 |
+
- **New reranker model**: release a cross-encoder model bge-reranker-base, which is more powerful than embedding model. We recommend to use/fine-tune it to re-rank top-k documents returned by embedding models.
|
| 47 |
+
- **update embedding model**: release bge-*-v1.5 embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
|
| 48 |
+
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
|
| 49 |
+
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
|
| 50 |
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
| 51 |
+
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
| 52 |
+
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
| 53 |
|
| 54 |
|
| 55 |
## Model List
|
| 56 |
|
| 57 |
`bge` is short for `BAAI general embedding`.
|
| 58 |
|
| 59 |
+
| Model | Language | | Description | query instruction for retrieval\* |
|
| 60 |
+
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
|
| 61 |
+
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
|
| 62 |
+
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
|
| 63 |
+
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
| 64 |
+
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
| 65 |
+
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
| 66 |
+
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
| 67 |
+
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
| 68 |
+
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
| 69 |
+
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
| 70 |
+
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
|
| 71 |
+
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
| 72 |
+
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
| 73 |
+
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
| 74 |
+
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
\*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
|
| 78 |
+
|
| 79 |
+
\**: To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
|
| 80 |
+
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
|
| 81 |
|
| 82 |
|
| 83 |
+
## Frequently asked questions
|
| 84 |
+
|
| 85 |
+
<details>
|
| 86 |
+
<summary>1. How to fine-tune bge embedding model?</summary>
|
| 87 |
+
|
| 88 |
+
<!-- ### How to fine-tune bge embedding model? -->
|
| 89 |
+
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
|
| 90 |
+
Some suggestions:
|
| 91 |
+
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#data-format), which can improve the retrieval performance.
|
| 92 |
+
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
|
| 93 |
+
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
</details>
|
| 97 |
+
|
| 98 |
+
<details>
|
| 99 |
+
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
|
| 100 |
+
|
| 101 |
+
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
|
| 102 |
+
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
|
| 103 |
+
|
| 104 |
+
Since we finetune the models by contrastive learning with a temperature of 0.01,
|
| 105 |
+
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
|
| 106 |
+
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
|
| 107 |
+
|
| 108 |
+
For downstream tasks, such as passage retrieval or semantic similarity,
|
| 109 |
+
**what matters is the relative order of the scores, not the absolute value.**
|
| 110 |
+
If you need to filter similar sentences based on a similarity threshold,
|
| 111 |
+
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
|
| 112 |
+
|
| 113 |
+
</details>
|
| 114 |
+
|
| 115 |
+
<details>
|
| 116 |
+
<summary>3. When does the query instruction need to be used</summary>
|
| 117 |
+
|
| 118 |
+
<!-- ### When does the query instruction need to be used -->
|
| 119 |
+
|
| 120 |
+
For a retrieval task that uses short queries to find long related documents,
|
| 121 |
+
it is recommended to add instructions for these short queries.
|
| 122 |
+
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
|
| 123 |
+
In all cases, the documents/passages do not need to add the instruction.
|
| 124 |
+
|
| 125 |
+
</details>
|
| 126 |
+
|
| 127 |
|
| 128 |
## Usage
|
| 129 |
|
| 130 |
+
### Usage for Embedding Model
|
| 131 |
+
|
| 132 |
+
Here are some examples for using `bge` models with
|
| 133 |
+
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
| 134 |
+
|
| 135 |
+
#### Using FlagEmbedding
|
| 136 |
```
|
| 137 |
+
pip install -U FlagEmbedding
|
| 138 |
```
|
| 139 |
+
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
|
| 140 |
+
|
| 141 |
```python
|
| 142 |
+
from FlagEmbedding import FlagModel
|
| 143 |
+
sentences_1 = ["样例数据-1", "样例数据-2"]
|
| 144 |
+
sentences_2 = ["样例数据-3", "样例数据-4"]
|
| 145 |
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
| 146 |
+
embeddings_1 = model.encode(sentences_1)
|
| 147 |
+
embeddings_2 = model.encode(sentences_2)
|
| 148 |
+
similarity = embeddings_1 @ embeddings_2.T
|
| 149 |
+
print(similarity)
|
| 150 |
|
| 151 |
+
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
|
| 152 |
+
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
| 153 |
queries = ['query_1', 'query_2']
|
| 154 |
+
passages = ["样例文档-1", "样例文档-2"]
|
| 155 |
q_embeddings = model.encode_queries(queries)
|
| 156 |
p_embeddings = model.encode(passages)
|
| 157 |
scores = q_embeddings @ p_embeddings.T
|
| 158 |
```
|
| 159 |
+
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
|
| 160 |
|
| 161 |
+
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
|
| 162 |
+
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
|
| 163 |
|
| 164 |
|
| 165 |
+
#### Using Sentence-Transformers
|
| 166 |
|
| 167 |
+
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
|
| 168 |
|
| 169 |
```
|
| 170 |
pip install -U sentence-transformers
|
| 171 |
```
|
| 172 |
```python
|
| 173 |
from sentence_transformers import SentenceTransformer
|
| 174 |
+
sentences_1 = ["样例���据-1", "样例数据-2"]
|
| 175 |
+
sentences_2 = ["样例数据-3", "样例数据-4"]
|
| 176 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
| 177 |
+
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
| 178 |
+
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
| 179 |
+
similarity = embeddings_1 @ embeddings_2.T
|
| 180 |
+
print(similarity)
|
| 181 |
```
|
| 182 |
+
For s2p(short query to long passage) retrieval task,
|
| 183 |
+
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
| 184 |
+
But the instruction is not needed for passages.
|
| 185 |
```python
|
| 186 |
from sentence_transformers import SentenceTransformer
|
| 187 |
+
queries = ['query_1', 'query_2']
|
| 188 |
+
passages = ["样例文档-1", "样例文档-2"]
|
| 189 |
instruction = "为这个句子生成表示以用于检索相关文章:"
|
| 190 |
|
| 191 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
|
|
|
| 194 |
scores = q_embeddings @ p_embeddings.T
|
| 195 |
```
|
| 196 |
|
| 197 |
+
#### Using Langchain
|
| 198 |
+
|
| 199 |
+
You can use `bge` in langchain like this:
|
| 200 |
+
```python
|
| 201 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
| 202 |
+
model_name = "BAAI/bge-small-en"
|
| 203 |
+
model_kwargs = {'device': 'cuda'}
|
| 204 |
+
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
| 205 |
+
model = HuggingFaceBgeEmbeddings(
|
| 206 |
+
model_name=model_name,
|
| 207 |
+
model_kwargs=model_kwargs,
|
| 208 |
+
encode_kwargs=encode_kwargs,
|
| 209 |
+
query_instruction="为这个句子生成表示以用于检索相关文章:"
|
| 210 |
+
)
|
| 211 |
+
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
|
| 212 |
+
```
|
| 213 |
+
|
| 214 |
|
| 215 |
+
#### Using HuggingFace Transformers
|
| 216 |
+
|
| 217 |
+
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
|
| 218 |
|
| 219 |
```python
|
| 220 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
| 225 |
# Load model from HuggingFace Hub
|
| 226 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
| 227 |
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
| 228 |
+
model.eval()
|
| 229 |
|
| 230 |
# Tokenize sentences
|
| 231 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 232 |
+
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
|
| 233 |
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
| 234 |
|
| 235 |
# Compute token embeddings
|
|
|
|
| 242 |
print("Sentence embeddings:", sentence_embeddings)
|
| 243 |
```
|
| 244 |
|
| 245 |
+
### Usage for Reranker
|
| 246 |
+
|
| 247 |
+
You can get a relevance score by inputting query and passage to the reranker.
|
| 248 |
+
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
#### Using FlagEmbedding
|
| 252 |
+
```
|
| 253 |
+
pip install -U FlagEmbedding
|
| 254 |
+
```
|
| 255 |
+
|
| 256 |
+
Get relevance score:
|
| 257 |
+
```python
|
| 258 |
+
from FlagEmbedding import FlagReranker
|
| 259 |
+
reranker = FlagReranker('BAAI/bge-reranker-base', use_fp16=True) #use fp16 can speed up computing
|
| 260 |
+
|
| 261 |
+
score = reranker.compute_score(['query', 'passage'])
|
| 262 |
+
print(score)
|
| 263 |
+
|
| 264 |
+
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
| 265 |
+
print(scores)
|
| 266 |
+
```
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
#### Using Huggingface transformers
|
| 270 |
+
|
| 271 |
+
```python
|
| 272 |
+
import torch
|
| 273 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast
|
| 274 |
+
|
| 275 |
+
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-base')
|
| 276 |
+
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
|
| 277 |
+
model.eval()
|
| 278 |
+
|
| 279 |
+
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
| 280 |
+
with torch.no_grad():
|
| 281 |
+
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
| 282 |
+
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
| 283 |
+
print(scores)
|
| 284 |
+
```
|
| 285 |
|
| 286 |
## Evaluation
|
| 287 |
+
|
| 288 |
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
| 289 |
+
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
|
| 290 |
|
| 291 |
- **MTEB**:
|
| 292 |
|
| 293 |
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
| 294 |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
| 295 |
+
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
|
| 296 |
+
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
|
| 297 |
+
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
|
| 298 |
+
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
|
| 299 |
+
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
|
| 300 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
| 301 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
| 302 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
| 303 |
+
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
|
| 304 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
| 305 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
| 306 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
|
|
|
| 309 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
| 310 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
| 311 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
|
| 313 |
|
| 314 |
|
| 315 |
- **C-MTEB**:
|
| 316 |
+
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
| 317 |
+
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
| 318 |
|
| 319 |
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
| 320 |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
| 321 |
+
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
|
| 322 |
+
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
|
| 323 |
+
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
|
| 324 |
+
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
|
| 325 |
+
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
|
| 326 |
+
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
|
| 327 |
+
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
|
| 328 |
+
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
|
| 329 |
+
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
|
| 330 |
+
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
|
| 331 |
+
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
|
| 332 |
+
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
|
| 333 |
+
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
|
| 334 |
+
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
|
| 335 |
+
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
|
| 336 |
+
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
- **Reranking**:
|
| 340 |
+
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
|
| 341 |
+
|
| 342 |
+
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MmarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|
| 343 |
+
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
| 344 |
+
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
|
| 345 |
+
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
|
| 346 |
+
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
|
| 347 |
+
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
|
| 348 |
+
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
|
| 349 |
+
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
|
| 350 |
+
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
|
| 351 |
+
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
|
| 352 |
+
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
|
| 353 |
+
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
|
| 354 |
+
|
| 355 |
+
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval task
|
| 356 |
|
| 357 |
## Train
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
+
### BAAI Embedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
+
We pre-train the models using retromae and train them on large-scale pairs data using contrastive learning.
|
| 362 |
+
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
|
| 363 |
+
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
|
| 364 |
+
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
|
| 365 |
+
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
|
|
|
|
|
|
|
|
|
| 366 |
|
| 367 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
+
### BGE Reranker
|
|
|
|
|
|
|
| 370 |
|
| 371 |
+
Cross-encoder will perform full-attention over the input pair,
|
| 372 |
+
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
|
| 373 |
+
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
|
| 374 |
+
We train the cross-encoder on a multilingual pair data,
|
| 375 |
+
The data format is the same as embedding model, so you can fine-tune it easily following our example.
|
| 376 |
+
More details pelease refer to [./FlagEmbedding/reranker/README.md](./FlagEmbedding/reranker/README.md)
|
| 377 |
|
| 378 |
|
| 379 |
+
## Contact
|
| 380 |
+
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
|
| 381 |
+
You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac.cn).
|
| 382 |
|
|
|
|
| 383 |
|
| 384 |
+
## License
|
| 385 |
+
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
|
|
|
|
|
|
|
|
|
| 386 |
|
|
|
|
|
|
|
| 387 |
|
| 388 |
|
|
|
|
|
|