Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,87 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- zh
|
| 4 |
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- cryptocurrency
|
| 7 |
+
- blockchain
|
| 8 |
+
- forensic-analysis
|
| 9 |
+
- money-trail
|
| 10 |
+
- chain-of-thought
|
| 11 |
+
- domain-qa
|
| 12 |
+
model_name: CryptoFlow-Investigator-LLM
|
| 13 |
+
base_model: meta-llama/Llama-3.3-FFM-70B
|
| 14 |
+
datasets:
|
| 15 |
+
- BlockChainSecurityAI/CryptoFlowTrackerDataset
|
| 16 |
+
pipeline_tag: text-generation
|
| 17 |
---
|
| 18 |
+
|
| 19 |
+
# 🧠 CryptoFlow-Investigator-LLM
|
| 20 |
+
*AI 加密貨幣金流調查員(基於 Llama-3.3-FFM-70B 微調版本)*
|
| 21 |
+
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
## 📘 模型簡介
|
| 25 |
+
**CryptoFlow-Investigator-LLM** 是一個針對「加密貨幣金流分析與追蹤」領域微調的大語言模型,
|
| 26 |
+
可用於輔助區塊鏈金流推理、可疑地址追蹤、以及金流報告生成。
|
| 27 |
+
|
| 28 |
+
模型採用結構化 **Chain-of-Thought(CoT)** 設計,
|
| 29 |
+
能生成具邏輯層次的思考步驟、分析摘要與最終結論,
|
| 30 |
+
適用於司法調查、合規監理與數位資產風險分析等情境。
|
| 31 |
+
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
## 📊 訓練資料
|
| 35 |
+
本模型以以下資料為基礎進行微調:
|
| 36 |
+
|
| 37 |
+
| 類別 | 說明 |
|
| 38 |
+
|------|------|
|
| 39 |
+
| 白皮書問答集 | 從比特幣、以太坊白皮書生成結構化 Q&A |
|
| 40 |
+
| 金流圖推論合成資料 | 含 Path Existence、Output Funnel、Intermediate Node、Loop Detection 任務 |
|
| 41 |
+
| 金流追蹤方法論問答集 | 涵蓋 UTXO、混幣、橋接、地址聚類、交易所特徵等 |
|
| 42 |
+
| 中文語料 | 專注於司法與金融語境之中文描述與報告用語 |
|
| 43 |
+
|
| 44 |
+
🔗 **Dataset:** [CryptoFlowTrackerDataset](https://huggingface.co/datasets/BlockChainSecurityAI/CryptoFlowTrackerDataset)
|
| 45 |
+
資料量:約 60 M tokens(中文)
|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
## ⚙️ 訓練設定
|
| 50 |
+
- **Base Model:** `Llama-3.3-FFM-70B`
|
| 51 |
+
- **Epochs:** 2
|
| 52 |
+
- **Batch Size:** 依 GPU 資源調整
|
| 53 |
+
- **微調方法:** Instruction Tuning + Rationale-Augmented SFT (CoT)
|
| 54 |
+
- **Knowledge Distillation:** 以 ChatGPT 生成樣本作為教師資料
|
| 55 |
+
- **標註格式:** `<think>...</think> <explanation>...</explanation> <answer>...</answer>`
|
| 56 |
+
|
| 57 |
+
---
|
| 58 |
+
|
| 59 |
+
## 🧩 使用範例
|
| 60 |
+
|
| 61 |
+
```python
|
| 62 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 63 |
+
|
| 64 |
+
model_name = "BlockChainSecurityAI/CryptoFlow-Investigator-LLM"
|
| 65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 66 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 67 |
+
|
| 68 |
+
prompt = "是否存在從地址 D 到地址 A 的交易路徑?已知交易:ADDR_98→A, ADDR_56→ADDR_53, D→ADDR_56, ADDR_53→J, J→ADDR_98"
|
| 69 |
+
|
| 70 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 71 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
| 72 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
## 💡 模型特色
|
| 76 |
+
- 🧩 **Chain-of-Thought 推理**:具逐步思考與摘要輸出結構
|
| 77 |
+
- 🕵️ **金流分析導向**:能針對交易關聯、節點、橋接等進行推論
|
| 78 |
+
- 📚 **專業領域語料**:針對司法與金融用語優化
|
| 79 |
+
- ⚖️ **可作為 FinCrime AI 應用基礎**:支援法遵、調查、報告生成
|
| 80 |
+
|
| 81 |
+
---
|
| 82 |
+
|
| 83 |
+
## ⚠️ 限制與注意事項
|
| 84 |
+
- 模型生成之推論結果僅供輔助分析,不能作為法律或金融判定依據。
|
| 85 |
+
- 由於資料集包含合成樣本,真實區塊鏈資料應再行驗證。
|
| 86 |
+
- 推理過程(`<think>` 區塊)可選擇在產品端隱藏,以符合資訊安全要求。
|
| 87 |
+
|