|  | import os | 
					
						
						|  | from collections import OrderedDict | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  | import torch.distributed | 
					
						
						|  |  | 
					
						
						|  | from torch.nn.init import trunc_normal_ | 
					
						
						|  |  | 
					
						
						|  | import copy | 
					
						
						|  |  | 
					
						
						|  | from typing import List, Any, Optional, Tuple, Type, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | import warnings | 
					
						
						|  | from functools import partial | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from torch import nn, Tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | NO_OBJ_SCORE = -1024.0 | 
					
						
						|  |  | 
					
						
						|  | warnings.simplefilter(action="ignore", category=FutureWarning) | 
					
						
						|  |  | 
					
						
						|  | OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = True, True, True | 
					
						
						|  |  | 
					
						
						|  | def load_checkpoint_with_prefix(filename, prefix=None, map_location='cpu', logger='current'): | 
					
						
						|  | """Load partial pretrained model with specific prefix. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prefix (str): The prefix of sub-module. | 
					
						
						|  | filename (str): Accept local filepath, URL, ``torchvision://xxx``, | 
					
						
						|  | ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for | 
					
						
						|  | details. | 
					
						
						|  | map_location (str | None): Same as :func:`torch.load`. | 
					
						
						|  | Defaults to None. | 
					
						
						|  | logger: logger | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | dict or OrderedDict: The loaded checkpoint. | 
					
						
						|  | """ | 
					
						
						|  | checkpoint = torch.load(filename, map_location=map_location) | 
					
						
						|  |  | 
					
						
						|  | if 'state_dict' in checkpoint: | 
					
						
						|  | state_dict = checkpoint['state_dict'] | 
					
						
						|  | elif 'model' in checkpoint: | 
					
						
						|  | state_dict = checkpoint['model'] | 
					
						
						|  | else: | 
					
						
						|  | state_dict = checkpoint | 
					
						
						|  | if not prefix: | 
					
						
						|  | return state_dict | 
					
						
						|  | if not prefix.endswith('.'): | 
					
						
						|  | prefix += '.' | 
					
						
						|  | prefix_len = len(prefix) | 
					
						
						|  |  | 
					
						
						|  | state_dict = { | 
					
						
						|  | k[prefix_len:]: v | 
					
						
						|  | for k, v in state_dict.items() if k.startswith(prefix) | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | assert state_dict, f'{prefix} is not in the pretrained model' | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  | def load_state_dict_to_model(model, state_dict,  logger='current'): | 
					
						
						|  | missing_keys, unexpected_keys = model.load_state_dict(state_dict) | 
					
						
						|  | if missing_keys: | 
					
						
						|  | print(missing_keys) | 
					
						
						|  | raise RuntimeError() | 
					
						
						|  | if unexpected_keys: | 
					
						
						|  | print(unexpected_keys) | 
					
						
						|  | raise RuntimeError() | 
					
						
						|  | print("Loaded checkpoint successfully") | 
					
						
						|  |  | 
					
						
						|  | class SAM2(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | ckpt_path: str = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | image_encoder = self.build_image_encoder() | 
					
						
						|  | memory_attention = self.build_memory_attention() | 
					
						
						|  | memory_encoder = self.build_memory_encoder() | 
					
						
						|  | sam2_model = SAM2VideoPredictor( | 
					
						
						|  | image_encoder=image_encoder, | 
					
						
						|  | memory_attention=memory_attention, | 
					
						
						|  | memory_encoder=memory_encoder, | 
					
						
						|  | num_maskmem = 7, | 
					
						
						|  | image_size = 1024, | 
					
						
						|  |  | 
					
						
						|  | sigmoid_scale_for_mem_enc = 20.0, | 
					
						
						|  | sigmoid_bias_for_mem_enc = -10.0, | 
					
						
						|  | use_mask_input_as_output_without_sam = True, | 
					
						
						|  |  | 
					
						
						|  | directly_add_no_mem_embed = True, | 
					
						
						|  |  | 
					
						
						|  | use_high_res_features_in_sam = True, | 
					
						
						|  |  | 
					
						
						|  | multimask_output_in_sam = True, | 
					
						
						|  |  | 
					
						
						|  | iou_prediction_use_sigmoid = True, | 
					
						
						|  |  | 
					
						
						|  | use_obj_ptrs_in_encoder = True, | 
					
						
						|  | add_tpos_enc_to_obj_ptrs = False, | 
					
						
						|  | only_obj_ptrs_in_the_past_for_eval = True, | 
					
						
						|  |  | 
					
						
						|  | pred_obj_scores = True, | 
					
						
						|  | pred_obj_scores_mlp = True, | 
					
						
						|  | fixed_no_obj_ptr = True, | 
					
						
						|  |  | 
					
						
						|  | multimask_output_for_tracking = True, | 
					
						
						|  | use_multimask_token_for_obj_ptr = True, | 
					
						
						|  | multimask_min_pt_num = 0, | 
					
						
						|  | multimask_max_pt_num = 1, | 
					
						
						|  | use_mlp_for_obj_ptr_proj = True, | 
					
						
						|  |  | 
					
						
						|  | compile_image_encoder = False, | 
					
						
						|  | sam_mask_decoder_extra_args={ | 
					
						
						|  | 'dynamic_multimask_via_stability':True, | 
					
						
						|  | 'dynamic_multimask_stability_delta': 0.05, | 
					
						
						|  | 'dynamic_multimask_stability_thresh': 0.98, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | if ckpt_path is not None: | 
					
						
						|  | state_dict = load_checkpoint_with_prefix(ckpt_path) | 
					
						
						|  | load_state_dict_to_model(sam2_model, state_dict) | 
					
						
						|  |  | 
					
						
						|  | self.sam2_model = sam2_model | 
					
						
						|  |  | 
					
						
						|  | self.hidden_dim = self.sam2_model.hidden_dim | 
					
						
						|  |  | 
					
						
						|  | self.img_mean = (0.485, 0.456, 0.406) | 
					
						
						|  | self.img_std = (0.229, 0.224, 0.225) | 
					
						
						|  |  | 
					
						
						|  | def build_image_encoder(self): | 
					
						
						|  | def build_trunk(): | 
					
						
						|  | embed_dim = 144 | 
					
						
						|  | num_heads = 2 | 
					
						
						|  | stages = [2, 6, 36, 4] | 
					
						
						|  | global_att_blocks = [23, 33, 43] | 
					
						
						|  | window_pos_embed_bkg_spatial_size = [7, 7] | 
					
						
						|  | window_spec = [8, 4, 16, 8] | 
					
						
						|  | ret = Hiera( | 
					
						
						|  | embed_dim=embed_dim, | 
					
						
						|  | num_heads=num_heads, | 
					
						
						|  | stages=stages, | 
					
						
						|  | global_att_blocks=global_att_blocks, | 
					
						
						|  | window_pos_embed_bkg_spatial_size=window_pos_embed_bkg_spatial_size, | 
					
						
						|  | window_spec=window_spec, | 
					
						
						|  | ) | 
					
						
						|  | return ret | 
					
						
						|  | def build_neck(): | 
					
						
						|  | def build_position_encoding(): | 
					
						
						|  | num_pos_feats = 256 | 
					
						
						|  | normalize = True | 
					
						
						|  | scale = None | 
					
						
						|  | temperature = 10000 | 
					
						
						|  | ret = PositionEmbeddingSine( | 
					
						
						|  | num_pos_feats=num_pos_feats, | 
					
						
						|  | normalize=normalize, | 
					
						
						|  | scale=scale, | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | ) | 
					
						
						|  | return ret | 
					
						
						|  | d_model = 256 | 
					
						
						|  | backbone_channel_list = [1152, 576, 288, 144] | 
					
						
						|  | fpn_top_down_levels = [2, 3] | 
					
						
						|  | fpn_interp_model = 'nearest' | 
					
						
						|  | position_encoding = build_position_encoding() | 
					
						
						|  | ret = FpnNeck( | 
					
						
						|  | d_model=d_model, | 
					
						
						|  | position_encoding=position_encoding, | 
					
						
						|  | backbone_channel_list=backbone_channel_list, | 
					
						
						|  | fpn_top_down_levels=fpn_top_down_levels, | 
					
						
						|  | fpn_interp_model=fpn_interp_model, | 
					
						
						|  | ) | 
					
						
						|  | return ret | 
					
						
						|  | scalp = 1 | 
					
						
						|  | trunk = build_trunk() | 
					
						
						|  | neck = build_neck() | 
					
						
						|  | ret = ImageEncoder(scalp=scalp, trunk=trunk, neck=neck) | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  | def build_memory_attention(self): | 
					
						
						|  | def build_layer(): | 
					
						
						|  | def build_self_attention(): | 
					
						
						|  | rope_theta = 10000.0 | 
					
						
						|  | feat_sizes = [32, 32] | 
					
						
						|  | embedding_dim = 256 | 
					
						
						|  | num_heads = 1 | 
					
						
						|  | downsample_rate = 1 | 
					
						
						|  | dropout = 0.1 | 
					
						
						|  | ret = RoPEAttention( | 
					
						
						|  | rope_theta=rope_theta, | 
					
						
						|  | feat_sizes=feat_sizes, | 
					
						
						|  | embedding_dim=embedding_dim, | 
					
						
						|  | num_heads=num_heads, | 
					
						
						|  | downsample_rate=downsample_rate, | 
					
						
						|  | dropout=dropout | 
					
						
						|  | ) | 
					
						
						|  | return ret | 
					
						
						|  | def build_cross_attention(): | 
					
						
						|  | rope_theta = 10000.0 | 
					
						
						|  | feat_sizes = [32, 32] | 
					
						
						|  | rope_k_repeat = True | 
					
						
						|  | embedding_dim = 256 | 
					
						
						|  | num_heads = 1 | 
					
						
						|  | downsample_rate = 1 | 
					
						
						|  | dropout = 0.1 | 
					
						
						|  | kv_in_dim = 64 | 
					
						
						|  | ret = RoPEAttention( | 
					
						
						|  | rope_theta=rope_theta, | 
					
						
						|  | feat_sizes=feat_sizes, | 
					
						
						|  | rope_k_repeat=rope_k_repeat, | 
					
						
						|  | embedding_dim=embedding_dim, | 
					
						
						|  | num_heads=num_heads, | 
					
						
						|  | downsample_rate=downsample_rate, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | kv_in_dim=kv_in_dim | 
					
						
						|  | ) | 
					
						
						|  | return ret | 
					
						
						|  | activation = 'relu' | 
					
						
						|  | dim_feedforward = 2048 | 
					
						
						|  | dropout = 0.1 | 
					
						
						|  | pos_enc_at_attn = False | 
					
						
						|  | d_model = 256 | 
					
						
						|  | pos_enc_at_cross_attn_keys = True | 
					
						
						|  | pos_enc_at_cross_attn_queries = False | 
					
						
						|  | self_attention = build_self_attention() | 
					
						
						|  | cross_attention = build_cross_attention() | 
					
						
						|  | ret = MemoryAttentionLayer( | 
					
						
						|  | activation=activation, | 
					
						
						|  | dim_feedforward=dim_feedforward, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | pos_enc_at_attn=pos_enc_at_attn, | 
					
						
						|  | d_model=d_model, | 
					
						
						|  | pos_enc_at_cross_attn_queries=pos_enc_at_cross_attn_queries, | 
					
						
						|  | pos_enc_at_cross_attn_keys=pos_enc_at_cross_attn_keys, | 
					
						
						|  | self_attention=self_attention, | 
					
						
						|  | cross_attention=cross_attention, | 
					
						
						|  | ) | 
					
						
						|  | return ret | 
					
						
						|  | d_model = 256 | 
					
						
						|  | pos_enc_at_input = True | 
					
						
						|  | num_layers = 4 | 
					
						
						|  | layer = build_layer() | 
					
						
						|  | ret = MemoryAttention( | 
					
						
						|  | d_model=d_model, | 
					
						
						|  | pos_enc_at_input=pos_enc_at_input, | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | layer=layer, | 
					
						
						|  | ) | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  | def build_memory_encoder(self): | 
					
						
						|  | def build_position_encoding(): | 
					
						
						|  | num_pos_feats = 64 | 
					
						
						|  | normalize = True | 
					
						
						|  | scale = None | 
					
						
						|  | temperature = 10000 | 
					
						
						|  | ret = PositionEmbeddingSine( | 
					
						
						|  | num_pos_feats=num_pos_feats, | 
					
						
						|  | normalize=normalize, | 
					
						
						|  | scale=scale, | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | ) | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  | def build_mask_downsampler(): | 
					
						
						|  | kernel_size = 3 | 
					
						
						|  | stride = 2 | 
					
						
						|  | padding = 1 | 
					
						
						|  | ret = MaskDownSampler( | 
					
						
						|  | kernel_size=kernel_size, | 
					
						
						|  | stride=stride, | 
					
						
						|  | padding=padding, | 
					
						
						|  | ) | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  | def build_fuser(): | 
					
						
						|  | def build_layer(): | 
					
						
						|  | dim = 256 | 
					
						
						|  | kernel_size = 7 | 
					
						
						|  | padding = 3 | 
					
						
						|  | layer_scale_init_value = 1e-6 | 
					
						
						|  | use_dwconv = True | 
					
						
						|  | ret = CXBlock( | 
					
						
						|  | dim=dim, kernel_size=kernel_size, | 
					
						
						|  | padding=padding, layer_scale_init_value=layer_scale_init_value, | 
					
						
						|  | use_dwconv=use_dwconv, | 
					
						
						|  | ) | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  | num_layers = 2 | 
					
						
						|  | layer = build_layer() | 
					
						
						|  | ret = Fuser( | 
					
						
						|  | layer=layer, | 
					
						
						|  | num_layers=num_layers | 
					
						
						|  | ) | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  | out_dim = 64 | 
					
						
						|  | position_encoding = build_position_encoding() | 
					
						
						|  | mask_downsampler = build_mask_downsampler() | 
					
						
						|  | fuser = build_fuser() | 
					
						
						|  | ret = MemoryEncoder( | 
					
						
						|  | out_dim=out_dim, | 
					
						
						|  | position_encoding=position_encoding, | 
					
						
						|  | mask_downsampler=mask_downsampler, | 
					
						
						|  | fuser=fuser, | 
					
						
						|  | ) | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  | def inject_language_embd(self, inference_state, language_embd): | 
					
						
						|  | num_frame = len(language_embd) | 
					
						
						|  | num_obj = len(language_embd[0]) | 
					
						
						|  | mask_out = [] | 
					
						
						|  | for frame_idx in range(num_frame): | 
					
						
						|  | frame_mask_out = [] | 
					
						
						|  | for obj_idx in range(num_obj): | 
					
						
						|  | _language_embd = language_embd[frame_idx][obj_idx][None][None] | 
					
						
						|  | _, _, out_mask_logits = self.sam2_model.add_language_embd(inference_state, frame_idx, obj_idx + 100, _language_embd) | 
					
						
						|  | frame_mask_out.append(out_mask_logits) | 
					
						
						|  | frame_mask_out = torch.cat(frame_mask_out, dim=1) | 
					
						
						|  | mask_out.append(frame_mask_out) | 
					
						
						|  | mask_out = torch.cat(mask_out, dim=0) | 
					
						
						|  | return mask_out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def language_embd_inference(self, inference_state, language_embd): | 
					
						
						|  | num_frame = len(language_embd) | 
					
						
						|  | num_obj = len(language_embd[0]) | 
					
						
						|  | mask_out = [] | 
					
						
						|  | with torch.autocast(device_type="cuda", dtype=torch.bfloat16): | 
					
						
						|  | for frame_idx in range(num_frame): | 
					
						
						|  | frame_mask_out = [] | 
					
						
						|  |  | 
					
						
						|  | for obj_idx in range(num_obj): | 
					
						
						|  | _language_embd = language_embd[frame_idx][obj_idx][None][None] | 
					
						
						|  | _, _, out_mask_logits = self.sam2_model.add_language_embd( | 
					
						
						|  | inference_state, | 
					
						
						|  | frame_idx, | 
					
						
						|  | obj_idx + 100, | 
					
						
						|  | _language_embd, | 
					
						
						|  | inference=True, | 
					
						
						|  | ) | 
					
						
						|  | frame_mask_out.append(out_mask_logits) | 
					
						
						|  | frame_mask_out = torch.cat(frame_mask_out, dim=1) | 
					
						
						|  | mask_out.append(frame_mask_out) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask_out = [] | 
					
						
						|  | for out_frame_idx, out_obj_ids, out_mask_logits in self.sam2_model.propagate_in_video(inference_state): | 
					
						
						|  | mask_out.append(out_mask_logits) | 
					
						
						|  | mask_out = torch.cat(mask_out, dim=0) | 
					
						
						|  | return mask_out | 
					
						
						|  |  | 
					
						
						|  | def get_sam2_embeddings(self, images): | 
					
						
						|  | return self.sam2_model.init_state(images) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, batch): | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | def preprocess_image(self, image: torch.Tensor, dtype=torch.bfloat16) -> torch.Tensor: | 
					
						
						|  | image = image / 255. | 
					
						
						|  |  | 
					
						
						|  | img_mean = torch.tensor(self.img_mean, dtype=dtype, device=image.device)[:, None, None] | 
					
						
						|  | img_std = torch.tensor(self.img_std, dtype=dtype, device=image.device)[:, None, None] | 
					
						
						|  | image -= img_mean | 
					
						
						|  | image /= img_std | 
					
						
						|  |  | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  | class MemoryAttentionLayer(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | activation: str, | 
					
						
						|  | cross_attention: nn.Module, | 
					
						
						|  | d_model: int, | 
					
						
						|  | dim_feedforward: int, | 
					
						
						|  | dropout: float, | 
					
						
						|  | pos_enc_at_attn: bool, | 
					
						
						|  | pos_enc_at_cross_attn_keys: bool, | 
					
						
						|  | pos_enc_at_cross_attn_queries: bool, | 
					
						
						|  | self_attention: nn.Module, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.d_model = d_model | 
					
						
						|  | self.dim_feedforward = dim_feedforward | 
					
						
						|  | self.dropout_value = dropout | 
					
						
						|  | self.self_attn = self_attention | 
					
						
						|  | self.cross_attn_image = cross_attention | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.linear1 = nn.Linear(d_model, dim_feedforward) | 
					
						
						|  | self.dropout = nn.Dropout(dropout) | 
					
						
						|  | self.linear2 = nn.Linear(dim_feedforward, d_model) | 
					
						
						|  |  | 
					
						
						|  | self.norm1 = nn.LayerNorm(d_model) | 
					
						
						|  | self.norm2 = nn.LayerNorm(d_model) | 
					
						
						|  | self.norm3 = nn.LayerNorm(d_model) | 
					
						
						|  | self.dropout1 = nn.Dropout(dropout) | 
					
						
						|  | self.dropout2 = nn.Dropout(dropout) | 
					
						
						|  | self.dropout3 = nn.Dropout(dropout) | 
					
						
						|  |  | 
					
						
						|  | self.activation_str = activation | 
					
						
						|  | self.activation = get_activation_fn(activation) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.pos_enc_at_attn = pos_enc_at_attn | 
					
						
						|  | self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries | 
					
						
						|  | self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys | 
					
						
						|  |  | 
					
						
						|  | def _forward_sa(self, tgt, query_pos): | 
					
						
						|  |  | 
					
						
						|  | tgt2 = self.norm1(tgt) | 
					
						
						|  | q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2 | 
					
						
						|  | tgt2 = self.self_attn(q, k, v=tgt2) | 
					
						
						|  | tgt = tgt + self.dropout1(tgt2) | 
					
						
						|  | return tgt | 
					
						
						|  |  | 
					
						
						|  | def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0): | 
					
						
						|  | kwds = {} | 
					
						
						|  | if num_k_exclude_rope > 0: | 
					
						
						|  | assert isinstance(self.cross_attn_image, RoPEAttention) | 
					
						
						|  | kwds = {"num_k_exclude_rope": num_k_exclude_rope} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tgt2 = self.norm2(tgt) | 
					
						
						|  | tgt2 = self.cross_attn_image( | 
					
						
						|  | q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2, | 
					
						
						|  | k=memory + pos if self.pos_enc_at_cross_attn_keys else memory, | 
					
						
						|  | v=memory, | 
					
						
						|  | **kwds, | 
					
						
						|  | ) | 
					
						
						|  | tgt = tgt + self.dropout2(tgt2) | 
					
						
						|  | return tgt | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | tgt, | 
					
						
						|  | memory, | 
					
						
						|  | pos: Optional[Tensor] = None, | 
					
						
						|  | query_pos: Optional[Tensor] = None, | 
					
						
						|  | num_k_exclude_rope: int = 0, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tgt = self._forward_sa(tgt, query_pos) | 
					
						
						|  | tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope) | 
					
						
						|  |  | 
					
						
						|  | tgt2 = self.norm3(tgt) | 
					
						
						|  | tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | 
					
						
						|  | tgt = tgt + self.dropout3(tgt2) | 
					
						
						|  | return tgt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MemoryAttention(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | d_model: int, | 
					
						
						|  | pos_enc_at_input: bool, | 
					
						
						|  | layer: nn.Module, | 
					
						
						|  | num_layers: int, | 
					
						
						|  | batch_first: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.d_model = d_model | 
					
						
						|  | self.layers = get_clones(layer, num_layers) | 
					
						
						|  | self.num_layers = num_layers | 
					
						
						|  | self.norm = nn.LayerNorm(d_model) | 
					
						
						|  | self.pos_enc_at_input = pos_enc_at_input | 
					
						
						|  | self.batch_first = batch_first | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | curr: torch.Tensor, | 
					
						
						|  | memory: torch.Tensor, | 
					
						
						|  | curr_pos: Optional[Tensor] = None, | 
					
						
						|  | memory_pos: Optional[Tensor] = None, | 
					
						
						|  | num_obj_ptr_tokens: int = 0, | 
					
						
						|  | ): | 
					
						
						|  | if isinstance(curr, list): | 
					
						
						|  | assert isinstance(curr_pos, list) | 
					
						
						|  | assert len(curr) == len(curr_pos) == 1 | 
					
						
						|  | curr, curr_pos = ( | 
					
						
						|  | curr[0], | 
					
						
						|  | curr_pos[0], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | curr.shape[1] == memory.shape[1] | 
					
						
						|  | ), "Batch size must be the same for curr and memory" | 
					
						
						|  |  | 
					
						
						|  | output = curr | 
					
						
						|  | if self.pos_enc_at_input and curr_pos is not None: | 
					
						
						|  | output = output + 0.1 * curr_pos | 
					
						
						|  |  | 
					
						
						|  | if self.batch_first: | 
					
						
						|  |  | 
					
						
						|  | output = output.transpose(0, 1) | 
					
						
						|  | curr_pos = curr_pos.transpose(0, 1) | 
					
						
						|  | memory = memory.transpose(0, 1) | 
					
						
						|  | memory_pos = memory_pos.transpose(0, 1) | 
					
						
						|  |  | 
					
						
						|  | for layer in self.layers: | 
					
						
						|  | kwds = {} | 
					
						
						|  | if isinstance(layer.cross_attn_image, RoPEAttention): | 
					
						
						|  | kwds = {"num_k_exclude_rope": num_obj_ptr_tokens} | 
					
						
						|  |  | 
					
						
						|  | output = layer( | 
					
						
						|  | tgt=output, | 
					
						
						|  | memory=memory, | 
					
						
						|  | pos=memory_pos, | 
					
						
						|  | query_pos=curr_pos, | 
					
						
						|  | **kwds, | 
					
						
						|  | ) | 
					
						
						|  | normed_output = self.norm(output) | 
					
						
						|  |  | 
					
						
						|  | if self.batch_first: | 
					
						
						|  |  | 
					
						
						|  | normed_output = normed_output.transpose(0, 1) | 
					
						
						|  | curr_pos = curr_pos.transpose(0, 1) | 
					
						
						|  |  | 
					
						
						|  | return normed_output | 
					
						
						|  |  | 
					
						
						|  | class MaskDownSampler(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Progressively downsample a mask by total_stride, each time by stride. | 
					
						
						|  | Note that LayerNorm is applied per *token*, like in ViT. | 
					
						
						|  |  | 
					
						
						|  | With each downsample (by a factor stride**2), channel capacity increases by the same factor. | 
					
						
						|  | In the end, we linearly project to embed_dim channels. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | embed_dim=256, | 
					
						
						|  | kernel_size=4, | 
					
						
						|  | stride=4, | 
					
						
						|  | padding=0, | 
					
						
						|  | total_stride=16, | 
					
						
						|  | activation=nn.GELU, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | num_layers = int(math.log2(total_stride) // math.log2(stride)) | 
					
						
						|  | assert stride**num_layers == total_stride | 
					
						
						|  | self.encoder = nn.Sequential() | 
					
						
						|  | mask_in_chans, mask_out_chans = 1, 1 | 
					
						
						|  | for _ in range(num_layers): | 
					
						
						|  | mask_out_chans = mask_in_chans * (stride**2) | 
					
						
						|  | self.encoder.append( | 
					
						
						|  | nn.Conv2d( | 
					
						
						|  | mask_in_chans, | 
					
						
						|  | mask_out_chans, | 
					
						
						|  | kernel_size=kernel_size, | 
					
						
						|  | stride=stride, | 
					
						
						|  | padding=padding, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.encoder.append(LayerNorm2d(mask_out_chans)) | 
					
						
						|  | self.encoder.append(activation()) | 
					
						
						|  | mask_in_chans = mask_out_chans | 
					
						
						|  |  | 
					
						
						|  | self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return self.encoder(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CXBlock(nn.Module): | 
					
						
						|  | r"""ConvNeXt Block. There are two equivalent implementations: | 
					
						
						|  | (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | 
					
						
						|  | (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | 
					
						
						|  | We use (2) as we find it slightly faster in PyTorch | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | dim (int): Number of input channels. | 
					
						
						|  | drop_path (float): Stochastic depth rate. Default: 0.0 | 
					
						
						|  | layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | kernel_size=7, | 
					
						
						|  | padding=3, | 
					
						
						|  | drop_path=0.0, | 
					
						
						|  | layer_scale_init_value=1e-6, | 
					
						
						|  | use_dwconv=True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dwconv = nn.Conv2d( | 
					
						
						|  | dim, | 
					
						
						|  | dim, | 
					
						
						|  | kernel_size=kernel_size, | 
					
						
						|  | padding=padding, | 
					
						
						|  | groups=dim if use_dwconv else 1, | 
					
						
						|  | ) | 
					
						
						|  | self.norm = LayerNorm2d(dim, eps=1e-6) | 
					
						
						|  | self.pwconv1 = nn.Linear( | 
					
						
						|  | dim, 4 * dim | 
					
						
						|  | ) | 
					
						
						|  | self.act = nn.GELU() | 
					
						
						|  | self.pwconv2 = nn.Linear(4 * dim, dim) | 
					
						
						|  |  | 
					
						
						|  | self.g_weight = ( | 
					
						
						|  | nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) | 
					
						
						|  | if layer_scale_init_value > 0 | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  | self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | input = x | 
					
						
						|  | x = self.dwconv(x) | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  | x = x.permute(0, 2, 3, 1) | 
					
						
						|  | x = self.pwconv1(x) | 
					
						
						|  | x = self.act(x) | 
					
						
						|  | x = self.pwconv2(x) | 
					
						
						|  | if self.g_weight is not None: | 
					
						
						|  | x = self.g_weight * x | 
					
						
						|  | x = x.permute(0, 3, 1, 2) | 
					
						
						|  |  | 
					
						
						|  | x = input + self.drop_path(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Fuser(nn.Module): | 
					
						
						|  | def __init__(self, layer, num_layers, dim=None, input_projection=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.proj = nn.Identity() | 
					
						
						|  | self.layers = get_clones(layer, num_layers) | 
					
						
						|  |  | 
					
						
						|  | if input_projection: | 
					
						
						|  | assert dim is not None | 
					
						
						|  | self.proj = nn.Conv2d(dim, dim, kernel_size=1) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  |  | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | for layer in self.layers: | 
					
						
						|  | x = layer(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MemoryEncoder(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | out_dim, | 
					
						
						|  | mask_downsampler, | 
					
						
						|  | fuser, | 
					
						
						|  | position_encoding, | 
					
						
						|  | in_dim=256, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.mask_downsampler = mask_downsampler | 
					
						
						|  |  | 
					
						
						|  | self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1) | 
					
						
						|  | self.fuser = fuser | 
					
						
						|  | self.position_encoding = position_encoding | 
					
						
						|  | self.out_proj = nn.Identity() | 
					
						
						|  | if out_dim != in_dim: | 
					
						
						|  | self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | pix_feat: torch.Tensor, | 
					
						
						|  | masks: torch.Tensor, | 
					
						
						|  | skip_mask_sigmoid: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not skip_mask_sigmoid: | 
					
						
						|  | masks = F.sigmoid(masks) | 
					
						
						|  | masks = self.mask_downsampler(masks) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pix_feat = pix_feat.to(masks.device) | 
					
						
						|  |  | 
					
						
						|  | x = self.pix_feat_proj(pix_feat) | 
					
						
						|  | x = x + masks | 
					
						
						|  | x = self.fuser(x) | 
					
						
						|  | x = self.out_proj(x) | 
					
						
						|  |  | 
					
						
						|  | pos = self.position_encoding(x).to(x.dtype) | 
					
						
						|  |  | 
					
						
						|  | return {"vision_features": x, "vision_pos_enc": [pos]} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ImageEncoder(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | trunk: nn.Module, | 
					
						
						|  | neck: nn.Module, | 
					
						
						|  | scalp: int = 0, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.trunk = trunk | 
					
						
						|  | self.neck = neck | 
					
						
						|  | self.scalp = scalp | 
					
						
						|  | assert ( | 
					
						
						|  | self.trunk.channel_list == self.neck.backbone_channel_list | 
					
						
						|  | ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}" | 
					
						
						|  |  | 
					
						
						|  | def forward(self, sample: torch.Tensor): | 
					
						
						|  |  | 
					
						
						|  | features, pos = self.neck(self.trunk(sample)) | 
					
						
						|  | if self.scalp > 0: | 
					
						
						|  |  | 
					
						
						|  | features, pos = features[: -self.scalp], pos[: -self.scalp] | 
					
						
						|  |  | 
					
						
						|  | src = features[-1] | 
					
						
						|  | output = { | 
					
						
						|  | "vision_features": src, | 
					
						
						|  | "vision_pos_enc": pos, | 
					
						
						|  | "backbone_fpn": features, | 
					
						
						|  | } | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FpnNeck(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | A modified variant of Feature Pyramid Network (FPN) neck | 
					
						
						|  | (we remove output conv and also do bicubic interpolation similar to ViT | 
					
						
						|  | pos embed interpolation) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | position_encoding: nn.Module, | 
					
						
						|  | d_model: int, | 
					
						
						|  | backbone_channel_list: List[int], | 
					
						
						|  | kernel_size: int = 1, | 
					
						
						|  | stride: int = 1, | 
					
						
						|  | padding: int = 0, | 
					
						
						|  | fpn_interp_model: str = "bilinear", | 
					
						
						|  | fuse_type: str = "sum", | 
					
						
						|  | fpn_top_down_levels: Optional[List[int]] = None, | 
					
						
						|  | ): | 
					
						
						|  | """Initialize the neck | 
					
						
						|  | :param trunk: the backbone | 
					
						
						|  | :param position_encoding: the positional encoding to use | 
					
						
						|  | :param d_model: the dimension of the model | 
					
						
						|  | :param neck_norm: the normalization to use | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.position_encoding = position_encoding | 
					
						
						|  | self.convs = nn.ModuleList() | 
					
						
						|  | self.backbone_channel_list = backbone_channel_list | 
					
						
						|  | for dim in backbone_channel_list: | 
					
						
						|  | current = nn.Sequential() | 
					
						
						|  | current.add_module( | 
					
						
						|  | "conv", | 
					
						
						|  | nn.Conv2d( | 
					
						
						|  | in_channels=dim, | 
					
						
						|  | out_channels=d_model, | 
					
						
						|  | kernel_size=kernel_size, | 
					
						
						|  | stride=stride, | 
					
						
						|  | padding=padding, | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.convs.append(current) | 
					
						
						|  | self.fpn_interp_model = fpn_interp_model | 
					
						
						|  | assert fuse_type in ["sum", "avg"] | 
					
						
						|  | self.fuse_type = fuse_type | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if fpn_top_down_levels is None: | 
					
						
						|  |  | 
					
						
						|  | fpn_top_down_levels = range(len(self.convs)) | 
					
						
						|  | self.fpn_top_down_levels = list(fpn_top_down_levels) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, xs: List[torch.Tensor]): | 
					
						
						|  |  | 
					
						
						|  | out = [None] * len(self.convs) | 
					
						
						|  | pos = [None] * len(self.convs) | 
					
						
						|  | assert len(xs) == len(self.convs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prev_features = None | 
					
						
						|  |  | 
					
						
						|  | n = len(self.convs) - 1 | 
					
						
						|  | for i in range(n, -1, -1): | 
					
						
						|  | x = xs[i] | 
					
						
						|  | lateral_features = self.convs[n - i](x) | 
					
						
						|  | if i in self.fpn_top_down_levels and prev_features is not None: | 
					
						
						|  | top_down_features = F.interpolate( | 
					
						
						|  | prev_features.to(dtype=torch.float32), | 
					
						
						|  | scale_factor=2.0, | 
					
						
						|  | mode=self.fpn_interp_model, | 
					
						
						|  | align_corners=( | 
					
						
						|  | None if self.fpn_interp_model == "nearest" else False | 
					
						
						|  | ), | 
					
						
						|  | antialias=False, | 
					
						
						|  | ) | 
					
						
						|  | prev_features = lateral_features + top_down_features | 
					
						
						|  | if self.fuse_type == "avg": | 
					
						
						|  | prev_features /= 2 | 
					
						
						|  | else: | 
					
						
						|  | prev_features = lateral_features | 
					
						
						|  | x_out = prev_features | 
					
						
						|  | out[i] = x_out | 
					
						
						|  | pos[i] = self.position_encoding(x_out).to(x_out.dtype) | 
					
						
						|  |  | 
					
						
						|  | return out, pos | 
					
						
						|  |  | 
					
						
						|  | def window_partition(x, window_size): | 
					
						
						|  | """ | 
					
						
						|  | Partition into non-overlapping windows with padding if needed. | 
					
						
						|  | Args: | 
					
						
						|  | x (tensor): input tokens with [B, H, W, C]. | 
					
						
						|  | window_size (int): window size. | 
					
						
						|  | Returns: | 
					
						
						|  | windows: windows after partition with [B * num_windows, window_size, window_size, C]. | 
					
						
						|  | (Hp, Wp): padded height and width before partition | 
					
						
						|  | """ | 
					
						
						|  | B, H, W, C = x.shape | 
					
						
						|  |  | 
					
						
						|  | pad_h = (window_size - H % window_size) % window_size | 
					
						
						|  | pad_w = (window_size - W % window_size) % window_size | 
					
						
						|  | if pad_h > 0 or pad_w > 0: | 
					
						
						|  | x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) | 
					
						
						|  | Hp, Wp = H + pad_h, W + pad_w | 
					
						
						|  |  | 
					
						
						|  | x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) | 
					
						
						|  | windows = ( | 
					
						
						|  | x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | 
					
						
						|  | ) | 
					
						
						|  | return windows, (Hp, Wp) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def window_unpartition(windows, window_size, pad_hw, hw): | 
					
						
						|  | """ | 
					
						
						|  | Window unpartition into original sequences and removing padding. | 
					
						
						|  | Args: | 
					
						
						|  | x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. | 
					
						
						|  | window_size (int): window size. | 
					
						
						|  | pad_hw (Tuple): padded height and width (Hp, Wp). | 
					
						
						|  | hw (Tuple): original height and width (H, W) before padding. | 
					
						
						|  | Returns: | 
					
						
						|  | x: unpartitioned sequences with [B, H, W, C]. | 
					
						
						|  | """ | 
					
						
						|  | Hp, Wp = pad_hw | 
					
						
						|  | H, W = hw | 
					
						
						|  | B = windows.shape[0] // (Hp * Wp // window_size // window_size) | 
					
						
						|  | x = windows.view( | 
					
						
						|  | B, Hp // window_size, Wp // window_size, window_size, window_size, -1 | 
					
						
						|  | ) | 
					
						
						|  | x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) | 
					
						
						|  |  | 
					
						
						|  | if Hp > H or Wp > W: | 
					
						
						|  | x = x[:, :H, :W, :].contiguous() | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PatchEmbed(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Image to Patch Embedding. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | kernel_size: Tuple[int, ...] = (7, 7), | 
					
						
						|  | stride: Tuple[int, ...] = (4, 4), | 
					
						
						|  | padding: Tuple[int, ...] = (3, 3), | 
					
						
						|  | in_chans: int = 3, | 
					
						
						|  | embed_dim: int = 768, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | kernel_size (Tuple): kernel size of the projection layer. | 
					
						
						|  | stride (Tuple): stride of the projection layer. | 
					
						
						|  | padding (Tuple): padding size of the projection layer. | 
					
						
						|  | in_chans (int): Number of input image channels. | 
					
						
						|  | embed_dim (int):  embed_dim (int): Patch embedding dimension. | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.proj = nn.Conv2d( | 
					
						
						|  | in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  |  | 
					
						
						|  | x = x.permute(0, 2, 3, 1) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor: | 
					
						
						|  | if pool is None: | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | x = x.permute(0, 3, 1, 2) | 
					
						
						|  | x = pool(x) | 
					
						
						|  |  | 
					
						
						|  | x = x.permute(0, 2, 3, 1) | 
					
						
						|  | if norm: | 
					
						
						|  | x = norm(x) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MultiScaleAttention(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim: int, | 
					
						
						|  | dim_out: int, | 
					
						
						|  | num_heads: int, | 
					
						
						|  | q_pool: nn.Module = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.dim_out = dim_out | 
					
						
						|  |  | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | head_dim = dim_out // num_heads | 
					
						
						|  | self.scale = head_dim**-0.5 | 
					
						
						|  |  | 
					
						
						|  | self.q_pool = q_pool | 
					
						
						|  | self.qkv = nn.Linear(dim, dim_out * 3) | 
					
						
						|  | self.proj = nn.Linear(dim_out, dim_out) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | B, H, W, _ = x.shape | 
					
						
						|  |  | 
					
						
						|  | qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) | 
					
						
						|  |  | 
					
						
						|  | q, k, v = torch.unbind(qkv, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.q_pool: | 
					
						
						|  | q = do_pool(q.reshape(B, H, W, -1), self.q_pool) | 
					
						
						|  | H, W = q.shape[1:3] | 
					
						
						|  | q = q.reshape(B, H * W, self.num_heads, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = F.scaled_dot_product_attention( | 
					
						
						|  | q.transpose(1, 2), | 
					
						
						|  | k.transpose(1, 2), | 
					
						
						|  | v.transpose(1, 2), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | x = x.transpose(1, 2) | 
					
						
						|  | x = x.reshape(B, H, W, -1) | 
					
						
						|  |  | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MultiScaleBlock(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim: int, | 
					
						
						|  | dim_out: int, | 
					
						
						|  | num_heads: int, | 
					
						
						|  | mlp_ratio: float = 4.0, | 
					
						
						|  | drop_path: float = 0.0, | 
					
						
						|  | norm_layer: Union[nn.Module, str] = "LayerNorm", | 
					
						
						|  | q_stride: Tuple[int, int] = None, | 
					
						
						|  | act_layer: nn.Module = nn.GELU, | 
					
						
						|  | window_size: int = 0, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if isinstance(norm_layer, str): | 
					
						
						|  | norm_layer = partial(getattr(nn, norm_layer), eps=1e-6) | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.dim_out = dim_out | 
					
						
						|  | self.norm1 = norm_layer(dim) | 
					
						
						|  |  | 
					
						
						|  | self.window_size = window_size | 
					
						
						|  |  | 
					
						
						|  | self.pool, self.q_stride = None, q_stride | 
					
						
						|  | if self.q_stride: | 
					
						
						|  | self.pool = nn.MaxPool2d( | 
					
						
						|  | kernel_size=q_stride, stride=q_stride, ceil_mode=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attn = MultiScaleAttention( | 
					
						
						|  | dim, | 
					
						
						|  | dim_out, | 
					
						
						|  | num_heads=num_heads, | 
					
						
						|  | q_pool=self.pool, | 
					
						
						|  | ) | 
					
						
						|  | self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.norm2 = norm_layer(dim_out) | 
					
						
						|  | self.mlp = MLP( | 
					
						
						|  | dim_out, | 
					
						
						|  | int(dim_out * mlp_ratio), | 
					
						
						|  | dim_out, | 
					
						
						|  | num_layers=2, | 
					
						
						|  | activation=act_layer, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if dim != dim_out: | 
					
						
						|  | self.proj = nn.Linear(dim, dim_out) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | shortcut = x | 
					
						
						|  | x = self.norm1(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.dim != self.dim_out: | 
					
						
						|  | shortcut = do_pool(self.proj(x), self.pool) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | window_size = self.window_size | 
					
						
						|  | if window_size > 0: | 
					
						
						|  | H, W = x.shape[1], x.shape[2] | 
					
						
						|  | x, pad_hw = window_partition(x, window_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = self.attn(x) | 
					
						
						|  | if self.q_stride: | 
					
						
						|  |  | 
					
						
						|  | window_size = self.window_size // self.q_stride[0] | 
					
						
						|  | H, W = shortcut.shape[1:3] | 
					
						
						|  |  | 
					
						
						|  | pad_h = (window_size - H % window_size) % window_size | 
					
						
						|  | pad_w = (window_size - W % window_size) % window_size | 
					
						
						|  | pad_hw = (H + pad_h, W + pad_w) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.window_size > 0: | 
					
						
						|  | x = window_unpartition(x, window_size, pad_hw, (H, W)) | 
					
						
						|  |  | 
					
						
						|  | x = shortcut + self.drop_path(x) | 
					
						
						|  |  | 
					
						
						|  | x = x + self.drop_path(self.mlp(self.norm2(x))) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Hiera(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Reference: https://arxiv.org/abs/2306.00989 | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | embed_dim: int = 96, | 
					
						
						|  | num_heads: int = 1, | 
					
						
						|  | drop_path_rate: float = 0.0, | 
					
						
						|  | q_pool: int = 3, | 
					
						
						|  | q_stride: Tuple[int, int] = (2, 2), | 
					
						
						|  | stages: Tuple[int, ...] = (2, 3, 16, 3), | 
					
						
						|  | dim_mul: float = 2.0, | 
					
						
						|  | head_mul: float = 2.0, | 
					
						
						|  | window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14), | 
					
						
						|  |  | 
					
						
						|  | window_spec: Tuple[int, ...] = ( | 
					
						
						|  | 8, | 
					
						
						|  | 4, | 
					
						
						|  | 14, | 
					
						
						|  | 7, | 
					
						
						|  | ), | 
					
						
						|  |  | 
					
						
						|  | global_att_blocks: Tuple[int, ...] = ( | 
					
						
						|  | 12, | 
					
						
						|  | 16, | 
					
						
						|  | 20, | 
					
						
						|  | ), | 
					
						
						|  | return_interm_layers=True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | assert len(stages) == len(window_spec) | 
					
						
						|  | self.window_spec = window_spec | 
					
						
						|  |  | 
					
						
						|  | depth = sum(stages) | 
					
						
						|  | self.q_stride = q_stride | 
					
						
						|  | self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] | 
					
						
						|  | assert 0 <= q_pool <= len(self.stage_ends[:-1]) | 
					
						
						|  | self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] | 
					
						
						|  | self.return_interm_layers = return_interm_layers | 
					
						
						|  |  | 
					
						
						|  | self.patch_embed = PatchEmbed( | 
					
						
						|  | embed_dim=embed_dim, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.global_att_blocks = global_att_blocks | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size | 
					
						
						|  | self.pos_embed = nn.Parameter( | 
					
						
						|  | torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size) | 
					
						
						|  | ) | 
					
						
						|  | self.pos_embed_window = nn.Parameter( | 
					
						
						|  | torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | dpr = [ | 
					
						
						|  | x.item() for x in torch.linspace(0, drop_path_rate, depth) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | cur_stage = 1 | 
					
						
						|  | self.blocks = nn.ModuleList() | 
					
						
						|  |  | 
					
						
						|  | for i in range(depth): | 
					
						
						|  | dim_out = embed_dim | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | window_size = self.window_spec[cur_stage - 1] | 
					
						
						|  |  | 
					
						
						|  | if self.global_att_blocks is not None: | 
					
						
						|  | window_size = 0 if i in self.global_att_blocks else window_size | 
					
						
						|  |  | 
					
						
						|  | if i - 1 in self.stage_ends: | 
					
						
						|  | dim_out = int(embed_dim * dim_mul) | 
					
						
						|  | num_heads = int(num_heads * head_mul) | 
					
						
						|  | cur_stage += 1 | 
					
						
						|  |  | 
					
						
						|  | block = MultiScaleBlock( | 
					
						
						|  | dim=embed_dim, | 
					
						
						|  | dim_out=dim_out, | 
					
						
						|  | num_heads=num_heads, | 
					
						
						|  | drop_path=dpr[i], | 
					
						
						|  | q_stride=self.q_stride if i in self.q_pool_blocks else None, | 
					
						
						|  | window_size=window_size, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | embed_dim = dim_out | 
					
						
						|  | self.blocks.append(block) | 
					
						
						|  |  | 
					
						
						|  | self.channel_list = ( | 
					
						
						|  | [self.blocks[i].dim_out for i in self.stage_ends[::-1]] | 
					
						
						|  | if return_interm_layers | 
					
						
						|  | else [self.blocks[-1].dim_out] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor: | 
					
						
						|  | h, w = hw | 
					
						
						|  | window_embed = self.pos_embed_window | 
					
						
						|  | pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") | 
					
						
						|  | pos_embed = pos_embed + window_embed.tile( | 
					
						
						|  | [x // y for x, y in zip(pos_embed.shape, window_embed.shape)] | 
					
						
						|  | ) | 
					
						
						|  | pos_embed = pos_embed.permute(0, 2, 3, 1) | 
					
						
						|  | return pos_embed | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> List[torch.Tensor]: | 
					
						
						|  | x = self.patch_embed(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = x + self._get_pos_embed(x.shape[1:3]) | 
					
						
						|  |  | 
					
						
						|  | outputs = [] | 
					
						
						|  | for i, blk in enumerate(self.blocks): | 
					
						
						|  | x = blk(x) | 
					
						
						|  | if (i == self.stage_ends[-1]) or ( | 
					
						
						|  | i in self.stage_ends and self.return_interm_layers | 
					
						
						|  | ): | 
					
						
						|  | feats = x.permute(0, 3, 1, 2) | 
					
						
						|  | outputs.append(feats) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  | class TwoWayTransformer(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | depth: int, | 
					
						
						|  | embedding_dim: int, | 
					
						
						|  | num_heads: int, | 
					
						
						|  | mlp_dim: int, | 
					
						
						|  | activation: Type[nn.Module] = nn.ReLU, | 
					
						
						|  | attention_downsample_rate: int = 2, | 
					
						
						|  | ) -> None: | 
					
						
						|  | """ | 
					
						
						|  | A transformer decoder that attends to an input image using | 
					
						
						|  | queries whose positional embedding is supplied. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | depth (int): number of layers in the transformer | 
					
						
						|  | embedding_dim (int): the channel dimension for the input embeddings | 
					
						
						|  | num_heads (int): the number of heads for multihead attention. Must | 
					
						
						|  | divide embedding_dim | 
					
						
						|  | mlp_dim (int): the channel dimension internal to the MLP block | 
					
						
						|  | activation (nn.Module): the activation to use in the MLP block | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.depth = depth | 
					
						
						|  | self.embedding_dim = embedding_dim | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.mlp_dim = mlp_dim | 
					
						
						|  | self.layers = nn.ModuleList() | 
					
						
						|  |  | 
					
						
						|  | for i in range(depth): | 
					
						
						|  | self.layers.append( | 
					
						
						|  | TwoWayAttentionBlock( | 
					
						
						|  | embedding_dim=embedding_dim, | 
					
						
						|  | num_heads=num_heads, | 
					
						
						|  | mlp_dim=mlp_dim, | 
					
						
						|  | activation=activation, | 
					
						
						|  | attention_downsample_rate=attention_downsample_rate, | 
					
						
						|  | skip_first_layer_pe=(i == 0), | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.final_attn_token_to_image = Attention( | 
					
						
						|  | embedding_dim, num_heads, downsample_rate=attention_downsample_rate | 
					
						
						|  | ) | 
					
						
						|  | self.norm_final_attn = nn.LayerNorm(embedding_dim) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | image_embedding: Tensor, | 
					
						
						|  | image_pe: Tensor, | 
					
						
						|  | point_embedding: Tensor, | 
					
						
						|  | ) -> Tuple[Tensor, Tensor]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | image_embedding (torch.Tensor): image to attend to. Should be shape | 
					
						
						|  | B x embedding_dim x h x w for any h and w. | 
					
						
						|  | image_pe (torch.Tensor): the positional encoding to add to the image. Must | 
					
						
						|  | have the same shape as image_embedding. | 
					
						
						|  | point_embedding (torch.Tensor): the embedding to add to the query points. | 
					
						
						|  | Must have shape B x N_points x embedding_dim for any N_points. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | torch.Tensor: the processed point_embedding | 
					
						
						|  | torch.Tensor: the processed image_embedding | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | bs, c, h, w = image_embedding.shape | 
					
						
						|  | image_embedding = image_embedding.flatten(2).permute(0, 2, 1) | 
					
						
						|  | image_pe = image_pe.flatten(2).permute(0, 2, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | queries = point_embedding | 
					
						
						|  | keys = image_embedding | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for layer in self.layers: | 
					
						
						|  | queries, keys = layer( | 
					
						
						|  | queries=queries, | 
					
						
						|  | keys=keys, | 
					
						
						|  | query_pe=point_embedding, | 
					
						
						|  | key_pe=image_pe, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | q = queries + point_embedding | 
					
						
						|  | k = keys + image_pe | 
					
						
						|  | attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) | 
					
						
						|  | queries = queries + attn_out | 
					
						
						|  | queries = self.norm_final_attn(queries) | 
					
						
						|  |  | 
					
						
						|  | return queries, keys | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TwoWayAttentionBlock(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | embedding_dim: int, | 
					
						
						|  | num_heads: int, | 
					
						
						|  | mlp_dim: int = 2048, | 
					
						
						|  | activation: Type[nn.Module] = nn.ReLU, | 
					
						
						|  | attention_downsample_rate: int = 2, | 
					
						
						|  | skip_first_layer_pe: bool = False, | 
					
						
						|  | ) -> None: | 
					
						
						|  | """ | 
					
						
						|  | A transformer block with four layers: (1) self-attention of sparse | 
					
						
						|  | inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp | 
					
						
						|  | block on sparse inputs, and (4) cross attention of dense inputs to sparse | 
					
						
						|  | inputs. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | embedding_dim (int): the channel dimension of the embeddings | 
					
						
						|  | num_heads (int): the number of heads in the attention layers | 
					
						
						|  | mlp_dim (int): the hidden dimension of the mlp block | 
					
						
						|  | activation (nn.Module): the activation of the mlp block | 
					
						
						|  | skip_first_layer_pe (bool): skip the PE on the first layer | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.self_attn = Attention(embedding_dim, num_heads) | 
					
						
						|  | self.norm1 = nn.LayerNorm(embedding_dim) | 
					
						
						|  |  | 
					
						
						|  | self.cross_attn_token_to_image = Attention( | 
					
						
						|  | embedding_dim, num_heads, downsample_rate=attention_downsample_rate | 
					
						
						|  | ) | 
					
						
						|  | self.norm2 = nn.LayerNorm(embedding_dim) | 
					
						
						|  |  | 
					
						
						|  | self.mlp = MLP( | 
					
						
						|  | embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation | 
					
						
						|  | ) | 
					
						
						|  | self.norm3 = nn.LayerNorm(embedding_dim) | 
					
						
						|  |  | 
					
						
						|  | self.norm4 = nn.LayerNorm(embedding_dim) | 
					
						
						|  | self.cross_attn_image_to_token = Attention( | 
					
						
						|  | embedding_dim, num_heads, downsample_rate=attention_downsample_rate | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.skip_first_layer_pe = skip_first_layer_pe | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor | 
					
						
						|  | ) -> Tuple[Tensor, Tensor]: | 
					
						
						|  |  | 
					
						
						|  | if self.skip_first_layer_pe: | 
					
						
						|  | queries = self.self_attn(q=queries, k=queries, v=queries) | 
					
						
						|  | else: | 
					
						
						|  | q = queries + query_pe | 
					
						
						|  | attn_out = self.self_attn(q=q, k=q, v=queries) | 
					
						
						|  | queries = queries + attn_out | 
					
						
						|  | queries = self.norm1(queries) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | q = queries + query_pe | 
					
						
						|  | k = keys + key_pe | 
					
						
						|  | attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) | 
					
						
						|  | queries = queries + attn_out | 
					
						
						|  | queries = self.norm2(queries) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mlp_out = self.mlp(queries) | 
					
						
						|  | queries = queries + mlp_out | 
					
						
						|  | queries = self.norm3(queries) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | q = queries + query_pe | 
					
						
						|  | k = keys + key_pe | 
					
						
						|  | attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) | 
					
						
						|  | keys = keys + attn_out | 
					
						
						|  | keys = self.norm4(keys) | 
					
						
						|  |  | 
					
						
						|  | return queries, keys | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Attention(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | An attention layer that allows for downscaling the size of the embedding | 
					
						
						|  | after projection to queries, keys, and values. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | embedding_dim: int, | 
					
						
						|  | num_heads: int, | 
					
						
						|  | downsample_rate: int = 1, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | kv_in_dim: int = None, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.embedding_dim = embedding_dim | 
					
						
						|  | self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim | 
					
						
						|  | self.internal_dim = embedding_dim // downsample_rate | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | assert ( | 
					
						
						|  | self.internal_dim % num_heads == 0 | 
					
						
						|  | ), "num_heads must divide embedding_dim." | 
					
						
						|  |  | 
					
						
						|  | self.q_proj = nn.Linear(embedding_dim, self.internal_dim) | 
					
						
						|  | self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim) | 
					
						
						|  | self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim) | 
					
						
						|  | self.out_proj = nn.Linear(self.internal_dim, embedding_dim) | 
					
						
						|  |  | 
					
						
						|  | self.dropout_p = dropout | 
					
						
						|  |  | 
					
						
						|  | def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: | 
					
						
						|  | b, n, c = x.shape | 
					
						
						|  | x = x.reshape(b, n, num_heads, c // num_heads) | 
					
						
						|  | return x.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | def _recombine_heads(self, x: Tensor) -> Tensor: | 
					
						
						|  | b, n_heads, n_tokens, c_per_head = x.shape | 
					
						
						|  | x = x.transpose(1, 2) | 
					
						
						|  | return x.reshape(b, n_tokens, n_heads * c_per_head) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: | 
					
						
						|  |  | 
					
						
						|  | q = self.q_proj(q) | 
					
						
						|  | k = self.k_proj(k) | 
					
						
						|  | v = self.v_proj(v) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | q = self._separate_heads(q, self.num_heads) | 
					
						
						|  | k = self._separate_heads(k, self.num_heads) | 
					
						
						|  | v = self._separate_heads(v, self.num_heads) | 
					
						
						|  |  | 
					
						
						|  | dropout_p = self.dropout_p if self.training else 0.0 | 
					
						
						|  |  | 
					
						
						|  | with torch.backends.cuda.sdp_kernel( | 
					
						
						|  | enable_flash=USE_FLASH_ATTN, | 
					
						
						|  |  | 
					
						
						|  | enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, | 
					
						
						|  | enable_mem_efficient=OLD_GPU, | 
					
						
						|  | ): | 
					
						
						|  | out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) | 
					
						
						|  |  | 
					
						
						|  | out = self._recombine_heads(out) | 
					
						
						|  | out = self.out_proj(out) | 
					
						
						|  |  | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RoPEAttention(Attention): | 
					
						
						|  | """Attention with rotary position encoding.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | *args, | 
					
						
						|  | rope_theta=10000.0, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rope_k_repeat=False, | 
					
						
						|  | feat_sizes=(32, 32), | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.compute_cis = partial( | 
					
						
						|  | compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta | 
					
						
						|  | ) | 
					
						
						|  | freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1]) | 
					
						
						|  | self.freqs_cis = freqs_cis | 
					
						
						|  | self.rope_k_repeat = rope_k_repeat | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0 | 
					
						
						|  | ) -> Tensor: | 
					
						
						|  |  | 
					
						
						|  | q = self.q_proj(q) | 
					
						
						|  | k = self.k_proj(k) | 
					
						
						|  | v = self.v_proj(v) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | q = self._separate_heads(q, self.num_heads) | 
					
						
						|  | k = self._separate_heads(k, self.num_heads) | 
					
						
						|  | v = self._separate_heads(v, self.num_heads) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | w = h = math.sqrt(q.shape[-2]) | 
					
						
						|  | self.freqs_cis = self.freqs_cis.to(q.device) | 
					
						
						|  | if self.freqs_cis.shape[0] != q.shape[-2]: | 
					
						
						|  | self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device) | 
					
						
						|  | if q.shape[-2] != k.shape[-2]: | 
					
						
						|  | assert self.rope_k_repeat | 
					
						
						|  |  | 
					
						
						|  | num_k_rope = k.size(-2) - num_k_exclude_rope | 
					
						
						|  | q, k[:, :, :num_k_rope] = apply_rotary_enc( | 
					
						
						|  | q, | 
					
						
						|  | k[:, :, :num_k_rope], | 
					
						
						|  | freqs_cis=self.freqs_cis, | 
					
						
						|  | repeat_freqs_k=self.rope_k_repeat, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | dropout_p = self.dropout_p if self.training else 0.0 | 
					
						
						|  |  | 
					
						
						|  | with torch.backends.cuda.sdp_kernel( | 
					
						
						|  | enable_flash=USE_FLASH_ATTN, | 
					
						
						|  |  | 
					
						
						|  | enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, | 
					
						
						|  | enable_mem_efficient=OLD_GPU, | 
					
						
						|  | ): | 
					
						
						|  | out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) | 
					
						
						|  |  | 
					
						
						|  | out = self._recombine_heads(out) | 
					
						
						|  | out = self.out_proj(out) | 
					
						
						|  |  | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PromptEncoder(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | embed_dim: int, | 
					
						
						|  | image_embedding_size: Tuple[int, int], | 
					
						
						|  | input_image_size: Tuple[int, int], | 
					
						
						|  | mask_in_chans: int, | 
					
						
						|  | activation: Type[nn.Module] = nn.GELU, | 
					
						
						|  | ) -> None: | 
					
						
						|  | """ | 
					
						
						|  | Encodes prompts for input to SAM's mask decoder. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | embed_dim (int): The prompts' embedding dimension | 
					
						
						|  | image_embedding_size (tuple(int, int)): The spatial size of the | 
					
						
						|  | image embedding, as (H, W). | 
					
						
						|  | input_image_size (int): The padded size of the image as input | 
					
						
						|  | to the image encoder, as (H, W). | 
					
						
						|  | mask_in_chans (int): The number of hidden channels used for | 
					
						
						|  | encoding input masks. | 
					
						
						|  | activation (nn.Module): The activation to use when encoding | 
					
						
						|  | input masks. | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.embed_dim = embed_dim | 
					
						
						|  | self.input_image_size = input_image_size | 
					
						
						|  | self.image_embedding_size = image_embedding_size | 
					
						
						|  | self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) | 
					
						
						|  |  | 
					
						
						|  | self.num_point_embeddings: int = 4 | 
					
						
						|  | point_embeddings = [ | 
					
						
						|  | nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings) | 
					
						
						|  | ] | 
					
						
						|  | self.point_embeddings = nn.ModuleList(point_embeddings) | 
					
						
						|  | self.not_a_point_embed = nn.Embedding(1, embed_dim) | 
					
						
						|  |  | 
					
						
						|  | self.mask_input_size = ( | 
					
						
						|  | 4 * image_embedding_size[0], | 
					
						
						|  | 4 * image_embedding_size[1], | 
					
						
						|  | ) | 
					
						
						|  | self.mask_downscaling = nn.Sequential( | 
					
						
						|  | nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), | 
					
						
						|  | LayerNorm2d(mask_in_chans // 4), | 
					
						
						|  | activation(), | 
					
						
						|  | nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), | 
					
						
						|  | LayerNorm2d(mask_in_chans), | 
					
						
						|  | activation(), | 
					
						
						|  | nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), | 
					
						
						|  | ) | 
					
						
						|  | self.no_mask_embed = nn.Embedding(1, embed_dim) | 
					
						
						|  |  | 
					
						
						|  | def get_dense_pe(self) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Returns the positional encoding used to encode point prompts, | 
					
						
						|  | applied to a dense set of points the shape of the image encoding. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | torch.Tensor: Positional encoding with shape | 
					
						
						|  | 1x(embed_dim)x(embedding_h)x(embedding_w) | 
					
						
						|  | """ | 
					
						
						|  | return self.pe_layer(self.image_embedding_size).unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | def _embed_points( | 
					
						
						|  | self, | 
					
						
						|  | points: torch.Tensor, | 
					
						
						|  | labels: torch.Tensor, | 
					
						
						|  | pad: bool, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | """Embeds point prompts.""" | 
					
						
						|  | points = points + 0.5 | 
					
						
						|  | if pad: | 
					
						
						|  | padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) | 
					
						
						|  | padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) | 
					
						
						|  | points = torch.cat([points, padding_point], dim=1) | 
					
						
						|  | labels = torch.cat([labels, padding_label], dim=1) | 
					
						
						|  | point_embedding = self.pe_layer.forward_with_coords( | 
					
						
						|  | points, self.input_image_size | 
					
						
						|  | ) | 
					
						
						|  | point_embedding[labels == -1] = 0.0 | 
					
						
						|  | point_embedding[labels == -1] += self.not_a_point_embed.weight | 
					
						
						|  | point_embedding[labels == 0] += self.point_embeddings[0].weight | 
					
						
						|  | point_embedding[labels == 1] += self.point_embeddings[1].weight | 
					
						
						|  | point_embedding[labels == 2] += self.point_embeddings[2].weight | 
					
						
						|  | point_embedding[labels == 3] += self.point_embeddings[3].weight | 
					
						
						|  | return point_embedding | 
					
						
						|  |  | 
					
						
						|  | def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | """Embeds box prompts.""" | 
					
						
						|  | boxes = boxes + 0.5 | 
					
						
						|  | coords = boxes.reshape(-1, 2, 2) | 
					
						
						|  | corner_embedding = self.pe_layer.forward_with_coords( | 
					
						
						|  | coords, self.input_image_size | 
					
						
						|  | ) | 
					
						
						|  | corner_embedding[:, 0, :] += self.point_embeddings[2].weight | 
					
						
						|  | corner_embedding[:, 1, :] += self.point_embeddings[3].weight | 
					
						
						|  | return corner_embedding | 
					
						
						|  |  | 
					
						
						|  | def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | """Embeds mask inputs.""" | 
					
						
						|  | mask_embedding = self.mask_downscaling(masks) | 
					
						
						|  | return mask_embedding | 
					
						
						|  |  | 
					
						
						|  | def _get_batch_size( | 
					
						
						|  | self, | 
					
						
						|  | points: Optional[Tuple[torch.Tensor, torch.Tensor]], | 
					
						
						|  | boxes: Optional[torch.Tensor], | 
					
						
						|  | masks: Optional[torch.Tensor], | 
					
						
						|  | ) -> int: | 
					
						
						|  | """ | 
					
						
						|  | Gets the batch size of the output given the batch size of the input prompts. | 
					
						
						|  | """ | 
					
						
						|  | if points is not None: | 
					
						
						|  | return points[0].shape[0] | 
					
						
						|  | elif boxes is not None: | 
					
						
						|  | return boxes.shape[0] | 
					
						
						|  | elif masks is not None: | 
					
						
						|  | return masks.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | return 1 | 
					
						
						|  |  | 
					
						
						|  | def _get_device(self) -> torch.device: | 
					
						
						|  | return self.point_embeddings[0].weight.device | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | points: Optional[Tuple[torch.Tensor, torch.Tensor]], | 
					
						
						|  | boxes: Optional[torch.Tensor], | 
					
						
						|  | masks: Optional[torch.Tensor], | 
					
						
						|  | ) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  | """ | 
					
						
						|  | Embeds different types of prompts, returning both sparse and dense | 
					
						
						|  | embeddings. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates | 
					
						
						|  | and labels to embed. | 
					
						
						|  | boxes (torch.Tensor or none): boxes to embed | 
					
						
						|  | masks (torch.Tensor or none): masks to embed | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | torch.Tensor: sparse embeddings for the points and boxes, with shape | 
					
						
						|  | BxNx(embed_dim), where N is determined by the number of input points | 
					
						
						|  | and boxes. | 
					
						
						|  | torch.Tensor: dense embeddings for the masks, in the shape | 
					
						
						|  | Bx(embed_dim)x(embed_H)x(embed_W) | 
					
						
						|  | """ | 
					
						
						|  | bs = self._get_batch_size(points, boxes, masks) | 
					
						
						|  | sparse_embeddings = torch.empty( | 
					
						
						|  | (bs, 0, self.embed_dim), device=self._get_device() | 
					
						
						|  | ) | 
					
						
						|  | if points is not None: | 
					
						
						|  | coords, labels = points | 
					
						
						|  | point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) | 
					
						
						|  | sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) | 
					
						
						|  | if boxes is not None: | 
					
						
						|  | box_embeddings = self._embed_boxes(boxes) | 
					
						
						|  | sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) | 
					
						
						|  |  | 
					
						
						|  | if masks is not None: | 
					
						
						|  | dense_embeddings = self._embed_masks(masks) | 
					
						
						|  | else: | 
					
						
						|  | dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( | 
					
						
						|  | bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return sparse_embeddings, dense_embeddings | 
					
						
						|  |  | 
					
						
						|  | class PositionEmbeddingSine(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | This is a more standard version of the position embedding, very similar to the one | 
					
						
						|  | used by the Attention is all you need paper, generalized to work on images. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | num_pos_feats, | 
					
						
						|  | temperature: int = 10000, | 
					
						
						|  | normalize: bool = True, | 
					
						
						|  | scale: Optional[float] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | assert num_pos_feats % 2 == 0, "Expecting even model width" | 
					
						
						|  | self.num_pos_feats = num_pos_feats // 2 | 
					
						
						|  | self.temperature = temperature | 
					
						
						|  | self.normalize = normalize | 
					
						
						|  | if scale is not None and normalize is False: | 
					
						
						|  | raise ValueError("normalize should be True if scale is passed") | 
					
						
						|  | if scale is None: | 
					
						
						|  | scale = 2 * math.pi | 
					
						
						|  | self.scale = scale | 
					
						
						|  |  | 
					
						
						|  | self.cache = {} | 
					
						
						|  |  | 
					
						
						|  | def _encode_xy(self, x, y): | 
					
						
						|  |  | 
					
						
						|  | assert len(x) == len(y) and x.ndim == y.ndim == 1 | 
					
						
						|  | x_embed = x * self.scale | 
					
						
						|  | y_embed = y * self.scale | 
					
						
						|  |  | 
					
						
						|  | dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) | 
					
						
						|  | dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) | 
					
						
						|  |  | 
					
						
						|  | pos_x = x_embed[:, None] / dim_t | 
					
						
						|  | pos_y = y_embed[:, None] / dim_t | 
					
						
						|  | pos_x = torch.stack( | 
					
						
						|  | (pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2 | 
					
						
						|  | ).flatten(1) | 
					
						
						|  | pos_y = torch.stack( | 
					
						
						|  | (pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2 | 
					
						
						|  | ).flatten(1) | 
					
						
						|  | return pos_x, pos_y | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def encode_boxes(self, x, y, w, h): | 
					
						
						|  | pos_x, pos_y = self._encode_xy(x, y) | 
					
						
						|  | pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1) | 
					
						
						|  | return pos | 
					
						
						|  |  | 
					
						
						|  | encode = encode_boxes | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def encode_points(self, x, y, labels): | 
					
						
						|  | (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape | 
					
						
						|  | assert bx == by and nx == ny and bx == bl and nx == nl | 
					
						
						|  | pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten()) | 
					
						
						|  | pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1) | 
					
						
						|  | pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2) | 
					
						
						|  | return pos | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def forward(self, x: torch.Tensor): | 
					
						
						|  | cache_key = (x.shape[-2], x.shape[-1]) | 
					
						
						|  | if cache_key in self.cache: | 
					
						
						|  | return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1) | 
					
						
						|  | y_embed = ( | 
					
						
						|  | torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device) | 
					
						
						|  | .view(1, -1, 1) | 
					
						
						|  | .repeat(x.shape[0], 1, x.shape[-1]) | 
					
						
						|  | ) | 
					
						
						|  | x_embed = ( | 
					
						
						|  | torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device) | 
					
						
						|  | .view(1, 1, -1) | 
					
						
						|  | .repeat(x.shape[0], x.shape[-2], 1) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.normalize: | 
					
						
						|  | eps = 1e-6 | 
					
						
						|  | y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale | 
					
						
						|  | x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale | 
					
						
						|  |  | 
					
						
						|  | dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) | 
					
						
						|  | dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) | 
					
						
						|  |  | 
					
						
						|  | pos_x = x_embed[:, :, :, None] / dim_t | 
					
						
						|  | pos_y = y_embed[:, :, :, None] / dim_t | 
					
						
						|  | pos_x = torch.stack( | 
					
						
						|  | (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 | 
					
						
						|  | ).flatten(3) | 
					
						
						|  | pos_y = torch.stack( | 
					
						
						|  | (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 | 
					
						
						|  | ).flatten(3) | 
					
						
						|  | pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | 
					
						
						|  | self.cache[cache_key] = pos[0] | 
					
						
						|  | return pos | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PositionEmbeddingRandom(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Positional encoding using random spatial frequencies. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | if scale is None or scale <= 0.0: | 
					
						
						|  | scale = 1.0 | 
					
						
						|  | self.register_buffer( | 
					
						
						|  | "positional_encoding_gaussian_matrix", | 
					
						
						|  | scale * torch.randn((2, num_pos_feats)), | 
					
						
						|  | ) | 
					
						
						|  | self.first = True | 
					
						
						|  |  | 
					
						
						|  | def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | """Positionally encode points that are normalized to [0,1].""" | 
					
						
						|  |  | 
					
						
						|  | coords = 2 * coords - 1 | 
					
						
						|  | coords = coords.to(self.positional_encoding_gaussian_matrix.dtype) | 
					
						
						|  | if self.first: | 
					
						
						|  | self.positional_encoding_gaussian_matrix = self.positional_encoding_gaussian_matrix.to(coords.device) | 
					
						
						|  | self.first = False | 
					
						
						|  | coords = coords @ self.positional_encoding_gaussian_matrix | 
					
						
						|  | coords = 2 * np.pi * coords | 
					
						
						|  |  | 
					
						
						|  | return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, size: Tuple[int, int]) -> torch.Tensor: | 
					
						
						|  | """Generate positional encoding for a grid of the specified size.""" | 
					
						
						|  | h, w = size | 
					
						
						|  | device: Any = self.positional_encoding_gaussian_matrix.device | 
					
						
						|  | grid = torch.ones((h, w), device=device, dtype=torch.float32) | 
					
						
						|  | y_embed = grid.cumsum(dim=0) - 0.5 | 
					
						
						|  | x_embed = grid.cumsum(dim=1) - 0.5 | 
					
						
						|  | y_embed = y_embed / h | 
					
						
						|  | x_embed = x_embed / w | 
					
						
						|  |  | 
					
						
						|  | pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) | 
					
						
						|  | return pe.permute(2, 0, 1) | 
					
						
						|  |  | 
					
						
						|  | def forward_with_coords( | 
					
						
						|  | self, coords_input: torch.Tensor, image_size: Tuple[int, int] | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | """Positionally encode points that are not normalized to [0,1].""" | 
					
						
						|  | coords = coords_input.clone() | 
					
						
						|  | coords[:, :, 0] = coords[:, :, 0] / image_size[1] | 
					
						
						|  | coords[:, :, 1] = coords[:, :, 1] / image_size[0] | 
					
						
						|  | return self._pe_encoding(coords.to(torch.float)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def init_t_xy(end_x: int, end_y: int): | 
					
						
						|  | t = torch.arange(end_x * end_y, dtype=torch.float32) | 
					
						
						|  | t_x = (t % end_x).float() | 
					
						
						|  | t_y = torch.div(t, end_x, rounding_mode="floor").float() | 
					
						
						|  | return t_x, t_y | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0): | 
					
						
						|  | freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) | 
					
						
						|  | freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) | 
					
						
						|  |  | 
					
						
						|  | t_x, t_y = init_t_xy(end_x, end_y) | 
					
						
						|  | freqs_x = torch.outer(t_x, freqs_x) | 
					
						
						|  | freqs_y = torch.outer(t_y, freqs_y) | 
					
						
						|  | freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) | 
					
						
						|  | freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) | 
					
						
						|  | return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | 
					
						
						|  | ndim = x.ndim | 
					
						
						|  | assert 0 <= 1 < ndim | 
					
						
						|  | assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) | 
					
						
						|  | shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)] | 
					
						
						|  | return freqs_cis.view(*shape) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_enc( | 
					
						
						|  | xq: torch.Tensor, | 
					
						
						|  | xk: torch.Tensor, | 
					
						
						|  | freqs_cis: torch.Tensor, | 
					
						
						|  | repeat_freqs_k: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) | 
					
						
						|  | xk_ = ( | 
					
						
						|  | torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) | 
					
						
						|  | if xk.shape[-2] != 0 | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  | freqs_cis = reshape_for_broadcast(freqs_cis, xq_) | 
					
						
						|  | xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) | 
					
						
						|  | if xk_ is None: | 
					
						
						|  |  | 
					
						
						|  | return xq_out.type_as(xq).to(xq.device), xk | 
					
						
						|  |  | 
					
						
						|  | if repeat_freqs_k: | 
					
						
						|  | r = xk_.shape[-2] // xq_.shape[-2] | 
					
						
						|  | freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1) | 
					
						
						|  | xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) | 
					
						
						|  | return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MaskDecoder(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | *, | 
					
						
						|  | transformer_dim: int, | 
					
						
						|  | transformer: nn.Module, | 
					
						
						|  | num_multimask_outputs: int = 3, | 
					
						
						|  | activation: Type[nn.Module] = nn.GELU, | 
					
						
						|  | iou_head_depth: int = 3, | 
					
						
						|  | iou_head_hidden_dim: int = 256, | 
					
						
						|  | use_high_res_features: bool = False, | 
					
						
						|  | iou_prediction_use_sigmoid=False, | 
					
						
						|  | dynamic_multimask_via_stability=False, | 
					
						
						|  | dynamic_multimask_stability_delta=0.05, | 
					
						
						|  | dynamic_multimask_stability_thresh=0.98, | 
					
						
						|  | pred_obj_scores: bool = False, | 
					
						
						|  | pred_obj_scores_mlp: bool = False, | 
					
						
						|  | use_multimask_token_for_obj_ptr: bool = False, | 
					
						
						|  | ) -> None: | 
					
						
						|  | """ | 
					
						
						|  | Predicts masks given an image and prompt embeddings, using a | 
					
						
						|  | transformer architecture. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | transformer_dim (int): the channel dimension of the transformer | 
					
						
						|  | transformer (nn.Module): the transformer used to predict masks | 
					
						
						|  | num_multimask_outputs (int): the number of masks to predict | 
					
						
						|  | when disambiguating masks | 
					
						
						|  | activation (nn.Module): the type of activation to use when | 
					
						
						|  | upscaling masks | 
					
						
						|  | iou_head_depth (int): the depth of the MLP used to predict | 
					
						
						|  | mask quality | 
					
						
						|  | iou_head_hidden_dim (int): the hidden dimension of the MLP | 
					
						
						|  | used to predict mask quality | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.transformer_dim = transformer_dim | 
					
						
						|  | self.transformer = transformer | 
					
						
						|  |  | 
					
						
						|  | self.num_multimask_outputs = num_multimask_outputs | 
					
						
						|  |  | 
					
						
						|  | self.iou_token = nn.Embedding(1, transformer_dim) | 
					
						
						|  | self.num_mask_tokens = num_multimask_outputs + 1 | 
					
						
						|  | self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) | 
					
						
						|  |  | 
					
						
						|  | self.pred_obj_scores = pred_obj_scores | 
					
						
						|  | if self.pred_obj_scores: | 
					
						
						|  | self.obj_score_token = nn.Embedding(1, transformer_dim) | 
					
						
						|  | self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr | 
					
						
						|  |  | 
					
						
						|  | self.output_upscaling = nn.Sequential( | 
					
						
						|  | nn.ConvTranspose2d( | 
					
						
						|  | transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 | 
					
						
						|  | ), | 
					
						
						|  | LayerNorm2d(transformer_dim // 4), | 
					
						
						|  | activation(), | 
					
						
						|  | nn.ConvTranspose2d( | 
					
						
						|  | transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 | 
					
						
						|  | ), | 
					
						
						|  | activation(), | 
					
						
						|  | ) | 
					
						
						|  | self.use_high_res_features = use_high_res_features | 
					
						
						|  | if use_high_res_features: | 
					
						
						|  | self.conv_s0 = nn.Conv2d( | 
					
						
						|  | transformer_dim, transformer_dim // 8, kernel_size=1, stride=1 | 
					
						
						|  | ) | 
					
						
						|  | self.conv_s1 = nn.Conv2d( | 
					
						
						|  | transformer_dim, transformer_dim // 4, kernel_size=1, stride=1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.output_hypernetworks_mlps = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) | 
					
						
						|  | for i in range(self.num_mask_tokens) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.iou_prediction_head = MLP( | 
					
						
						|  | transformer_dim, | 
					
						
						|  | iou_head_hidden_dim, | 
					
						
						|  | self.num_mask_tokens, | 
					
						
						|  | iou_head_depth, | 
					
						
						|  | sigmoid_output=iou_prediction_use_sigmoid, | 
					
						
						|  | ) | 
					
						
						|  | if self.pred_obj_scores: | 
					
						
						|  | self.pred_obj_score_head = nn.Linear(transformer_dim, 1) | 
					
						
						|  | if pred_obj_scores_mlp: | 
					
						
						|  | self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.dynamic_multimask_via_stability = dynamic_multimask_via_stability | 
					
						
						|  | self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta | 
					
						
						|  | self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | image_embeddings: torch.Tensor, | 
					
						
						|  | image_pe: torch.Tensor, | 
					
						
						|  | sparse_prompt_embeddings: torch.Tensor, | 
					
						
						|  | dense_prompt_embeddings: torch.Tensor, | 
					
						
						|  | multimask_output: bool, | 
					
						
						|  | repeat_image: bool, | 
					
						
						|  | high_res_features: Optional[List[torch.Tensor]] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  | """ | 
					
						
						|  | Predict masks given image and prompt embeddings. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | image_embeddings (torch.Tensor): the embeddings from the image encoder | 
					
						
						|  | image_pe (torch.Tensor): positional encoding with the shape of image_embeddings | 
					
						
						|  | sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes | 
					
						
						|  | dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs | 
					
						
						|  | multimask_output (bool): Whether to return multiple masks or a single | 
					
						
						|  | mask. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | torch.Tensor: batched predicted masks | 
					
						
						|  | torch.Tensor: batched predictions of mask quality | 
					
						
						|  | torch.Tensor: batched SAM token for mask output | 
					
						
						|  | """ | 
					
						
						|  | masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks( | 
					
						
						|  | image_embeddings=image_embeddings, | 
					
						
						|  | image_pe=image_pe, | 
					
						
						|  | sparse_prompt_embeddings=sparse_prompt_embeddings, | 
					
						
						|  | dense_prompt_embeddings=dense_prompt_embeddings, | 
					
						
						|  | repeat_image=repeat_image, | 
					
						
						|  | high_res_features=high_res_features, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if multimask_output: | 
					
						
						|  | masks = masks[:, 1:, :, :] | 
					
						
						|  | iou_pred = iou_pred[:, 1:] | 
					
						
						|  | elif self.dynamic_multimask_via_stability and not self.training: | 
					
						
						|  | masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred) | 
					
						
						|  | else: | 
					
						
						|  | masks = masks[:, 0:1, :, :] | 
					
						
						|  | iou_pred = iou_pred[:, 0:1] | 
					
						
						|  |  | 
					
						
						|  | if multimask_output and self.use_multimask_token_for_obj_ptr: | 
					
						
						|  | sam_tokens_out = mask_tokens_out[:, 1:] | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sam_tokens_out = mask_tokens_out[:, 0:1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return masks, iou_pred, sam_tokens_out, object_score_logits | 
					
						
						|  |  | 
					
						
						|  | def predict_masks( | 
					
						
						|  | self, | 
					
						
						|  | image_embeddings: torch.Tensor, | 
					
						
						|  | image_pe: torch.Tensor, | 
					
						
						|  | sparse_prompt_embeddings: torch.Tensor, | 
					
						
						|  | dense_prompt_embeddings: torch.Tensor, | 
					
						
						|  | repeat_image: bool, | 
					
						
						|  | high_res_features: Optional[List[torch.Tensor]] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  | """Predicts masks. See 'forward' for more details.""" | 
					
						
						|  |  | 
					
						
						|  | s = 0 | 
					
						
						|  | if self.pred_obj_scores: | 
					
						
						|  | output_tokens = torch.cat( | 
					
						
						|  | [ | 
					
						
						|  | self.obj_score_token.weight, | 
					
						
						|  | self.iou_token.weight, | 
					
						
						|  | self.mask_tokens.weight, | 
					
						
						|  | ], | 
					
						
						|  | dim=0, | 
					
						
						|  | ) | 
					
						
						|  | s = 1 | 
					
						
						|  | else: | 
					
						
						|  | output_tokens = torch.cat( | 
					
						
						|  | [self.iou_token.weight, self.mask_tokens.weight], dim=0 | 
					
						
						|  | ) | 
					
						
						|  | output_tokens = output_tokens.unsqueeze(0).expand( | 
					
						
						|  | sparse_prompt_embeddings.size(0), -1, -1 | 
					
						
						|  | ) | 
					
						
						|  | tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if repeat_image: | 
					
						
						|  | src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) | 
					
						
						|  | else: | 
					
						
						|  | assert image_embeddings.shape[0] == tokens.shape[0] | 
					
						
						|  | src = image_embeddings | 
					
						
						|  | src = src + dense_prompt_embeddings | 
					
						
						|  | assert ( | 
					
						
						|  | image_pe.size(0) == 1 | 
					
						
						|  | ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)" | 
					
						
						|  | pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) | 
					
						
						|  | b, c, h, w = src.shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _dtype = pos_src.dtype | 
					
						
						|  | src = src.to(_dtype) | 
					
						
						|  | tokens = tokens.to(_dtype) | 
					
						
						|  | hs, src = self.transformer(src, pos_src, tokens) | 
					
						
						|  | iou_token_out = hs[:, s, :] | 
					
						
						|  | mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | src = src.transpose(1, 2).view(b, c, h, w) | 
					
						
						|  | if not self.use_high_res_features: | 
					
						
						|  | upscaled_embedding = self.output_upscaling(src) | 
					
						
						|  | else: | 
					
						
						|  | dc1, ln1, act1, dc2, act2 = self.output_upscaling | 
					
						
						|  | feat_s0, feat_s1 = high_res_features | 
					
						
						|  | upscaled_embedding = act1(ln1(dc1(src) + feat_s1)) | 
					
						
						|  | upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0) | 
					
						
						|  |  | 
					
						
						|  | hyper_in_list: List[torch.Tensor] = [] | 
					
						
						|  | for i in range(self.num_mask_tokens): | 
					
						
						|  | hyper_in_list.append( | 
					
						
						|  | self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) | 
					
						
						|  | ) | 
					
						
						|  | hyper_in = torch.stack(hyper_in_list, dim=1) | 
					
						
						|  | b, c, h, w = upscaled_embedding.shape | 
					
						
						|  | masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | iou_pred = self.iou_prediction_head(iou_token_out) | 
					
						
						|  | if self.pred_obj_scores: | 
					
						
						|  | assert s == 1 | 
					
						
						|  | object_score_logits = self.pred_obj_score_head(hs[:, 0, :]) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1) | 
					
						
						|  |  | 
					
						
						|  | return masks, iou_pred, mask_tokens_out, object_score_logits | 
					
						
						|  |  | 
					
						
						|  | def _get_stability_scores(self, mask_logits): | 
					
						
						|  | """ | 
					
						
						|  | Compute stability scores of the mask logits based on the IoU between upper and | 
					
						
						|  | lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568. | 
					
						
						|  | """ | 
					
						
						|  | mask_logits = mask_logits.flatten(-2) | 
					
						
						|  | stability_delta = self.dynamic_multimask_stability_delta | 
					
						
						|  | area_i = torch.sum(mask_logits > stability_delta, dim=-1).float() | 
					
						
						|  | area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float() | 
					
						
						|  | stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0) | 
					
						
						|  | return stability_scores | 
					
						
						|  |  | 
					
						
						|  | def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores): | 
					
						
						|  | """ | 
					
						
						|  | When outputting a single mask, if the stability score from the current single-mask | 
					
						
						|  | output (based on output token 0) falls below a threshold, we instead select from | 
					
						
						|  | multi-mask outputs (based on output token 1~3) the mask with the highest predicted | 
					
						
						|  | IoU score. This is intended to ensure a valid mask for both clicking and tracking. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | multimask_logits = all_mask_logits[:, 1:, :, :] | 
					
						
						|  | multimask_iou_scores = all_iou_scores[:, 1:] | 
					
						
						|  | best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1) | 
					
						
						|  | batch_inds = torch.arange( | 
					
						
						|  | multimask_iou_scores.size(0), device=all_iou_scores.device | 
					
						
						|  | ) | 
					
						
						|  | best_multimask_logits = multimask_logits[batch_inds, best_scores_inds] | 
					
						
						|  | best_multimask_logits = best_multimask_logits.unsqueeze(1) | 
					
						
						|  | best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds] | 
					
						
						|  | best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | singlemask_logits = all_mask_logits[:, 0:1, :, :] | 
					
						
						|  | singlemask_iou_scores = all_iou_scores[:, 0:1] | 
					
						
						|  | stability_scores = self._get_stability_scores(singlemask_logits) | 
					
						
						|  | is_stable = stability_scores >= self.dynamic_multimask_stability_thresh | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask_logits_out = torch.where( | 
					
						
						|  | is_stable[..., None, None].expand_as(singlemask_logits), | 
					
						
						|  | singlemask_logits, | 
					
						
						|  | best_multimask_logits, | 
					
						
						|  | ) | 
					
						
						|  | iou_scores_out = torch.where( | 
					
						
						|  | is_stable.expand_as(singlemask_iou_scores), | 
					
						
						|  | singlemask_iou_scores, | 
					
						
						|  | best_multimask_iou_scores, | 
					
						
						|  | ) | 
					
						
						|  | return mask_logits_out, iou_scores_out | 
					
						
						|  |  | 
					
						
						|  | def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num): | 
					
						
						|  | """ | 
					
						
						|  | Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs` | 
					
						
						|  | that are temporally closest to the current frame at `frame_idx`. Here, we take | 
					
						
						|  | - a) the closest conditioning frame before `frame_idx` (if any); | 
					
						
						|  | - b) the closest conditioning frame after `frame_idx` (if any); | 
					
						
						|  | - c) any other temporally closest conditioning frames until reaching a total | 
					
						
						|  | of `max_cond_frame_num` conditioning frames. | 
					
						
						|  |  | 
					
						
						|  | Outputs: | 
					
						
						|  | - selected_outputs: selected items (keys & values) from `cond_frame_outputs`. | 
					
						
						|  | - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`. | 
					
						
						|  | """ | 
					
						
						|  | if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num: | 
					
						
						|  | selected_outputs = cond_frame_outputs | 
					
						
						|  | unselected_outputs = {} | 
					
						
						|  | else: | 
					
						
						|  | assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames" | 
					
						
						|  | selected_outputs = {} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None) | 
					
						
						|  | if idx_before is not None: | 
					
						
						|  | selected_outputs[idx_before] = cond_frame_outputs[idx_before] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None) | 
					
						
						|  | if idx_after is not None: | 
					
						
						|  | selected_outputs[idx_after] = cond_frame_outputs[idx_after] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_remain = max_cond_frame_num - len(selected_outputs) | 
					
						
						|  | inds_remain = sorted( | 
					
						
						|  | (t for t in cond_frame_outputs if t not in selected_outputs), | 
					
						
						|  | key=lambda x: abs(x - frame_idx), | 
					
						
						|  | )[:num_remain] | 
					
						
						|  | selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain) | 
					
						
						|  | unselected_outputs = { | 
					
						
						|  | t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | return selected_outputs, unselected_outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_1d_sine_pe(pos_inds, dim, temperature=10000): | 
					
						
						|  | """ | 
					
						
						|  | Get 1D sine positional embedding as in the original Transformer paper. | 
					
						
						|  | """ | 
					
						
						|  | pe_dim = dim // 2 | 
					
						
						|  | dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device) | 
					
						
						|  | dim_t = temperature ** (2 * (dim_t // 2) / pe_dim) | 
					
						
						|  |  | 
					
						
						|  | pos_embed = pos_inds.unsqueeze(-1) / dim_t | 
					
						
						|  | pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1) | 
					
						
						|  | return pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_activation_fn(activation): | 
					
						
						|  | """Return an activation function given a string""" | 
					
						
						|  | if activation == "relu": | 
					
						
						|  | return F.relu | 
					
						
						|  | if activation == "gelu": | 
					
						
						|  | return F.gelu | 
					
						
						|  | if activation == "glu": | 
					
						
						|  | return F.glu | 
					
						
						|  | raise RuntimeError(f"activation should be relu/gelu, not {activation}.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_clones(module, N): | 
					
						
						|  | return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DropPath(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, drop_prob=0.0, scale_by_keep=True): | 
					
						
						|  | super(DropPath, self).__init__() | 
					
						
						|  | self.drop_prob = drop_prob | 
					
						
						|  | self.scale_by_keep = scale_by_keep | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | if self.drop_prob == 0.0 or not self.training: | 
					
						
						|  | return x | 
					
						
						|  | keep_prob = 1 - self.drop_prob | 
					
						
						|  | shape = (x.shape[0],) + (1,) * (x.ndim - 1) | 
					
						
						|  | random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | 
					
						
						|  | if keep_prob > 0.0 and self.scale_by_keep: | 
					
						
						|  | random_tensor.div_(keep_prob) | 
					
						
						|  | return x * random_tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MLP(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | input_dim: int, | 
					
						
						|  | hidden_dim: int, | 
					
						
						|  | output_dim: int, | 
					
						
						|  | num_layers: int, | 
					
						
						|  | activation: nn.Module = nn.ReLU, | 
					
						
						|  | sigmoid_output: bool = False, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.num_layers = num_layers | 
					
						
						|  | h = [hidden_dim] * (num_layers - 1) | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) | 
					
						
						|  | ) | 
					
						
						|  | self.sigmoid_output = sigmoid_output | 
					
						
						|  | self.act = activation() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | for i, layer in enumerate(self.layers): | 
					
						
						|  | x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x) | 
					
						
						|  | if self.sigmoid_output: | 
					
						
						|  | x = F.sigmoid(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LayerNorm2d(nn.Module): | 
					
						
						|  | def __init__(self, num_channels: int, eps: float = 1e-6) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(num_channels)) | 
					
						
						|  | self.bias = nn.Parameter(torch.zeros(num_channels)) | 
					
						
						|  | self.eps = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | u = x.mean(1, keepdim=True) | 
					
						
						|  | s = (x - u).pow(2).mean(1, keepdim=True) | 
					
						
						|  | x = (x - u) / torch.sqrt(s + self.eps) | 
					
						
						|  | x = self.weight[:, None, None] * x + self.bias[:, None, None] | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | class SAM2Base_(torch.nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | image_encoder, | 
					
						
						|  | memory_attention, | 
					
						
						|  | memory_encoder, | 
					
						
						|  | num_maskmem=7, | 
					
						
						|  | image_size=512, | 
					
						
						|  | backbone_stride=16, | 
					
						
						|  | sigmoid_scale_for_mem_enc=1.0, | 
					
						
						|  | sigmoid_bias_for_mem_enc=0.0, | 
					
						
						|  |  | 
					
						
						|  | binarize_mask_from_pts_for_mem_enc=False, | 
					
						
						|  | use_mask_input_as_output_without_sam=False, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | max_cond_frames_in_attn=-1, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | directly_add_no_mem_embed=False, | 
					
						
						|  |  | 
					
						
						|  | use_high_res_features_in_sam=False, | 
					
						
						|  |  | 
					
						
						|  | multimask_output_in_sam=False, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | multimask_min_pt_num=1, | 
					
						
						|  | multimask_max_pt_num=1, | 
					
						
						|  |  | 
					
						
						|  | multimask_output_for_tracking=False, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | use_multimask_token_for_obj_ptr: bool = False, | 
					
						
						|  |  | 
					
						
						|  | iou_prediction_use_sigmoid=False, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | memory_temporal_stride_for_eval=1, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | add_all_frames_to_correct_as_cond=False, | 
					
						
						|  |  | 
					
						
						|  | non_overlap_masks_for_mem_enc=False, | 
					
						
						|  |  | 
					
						
						|  | use_obj_ptrs_in_encoder=False, | 
					
						
						|  |  | 
					
						
						|  | max_obj_ptrs_in_encoder=16, | 
					
						
						|  |  | 
					
						
						|  | add_tpos_enc_to_obj_ptrs=True, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | proj_tpos_enc_in_obj_ptrs=False, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | only_obj_ptrs_in_the_past_for_eval=False, | 
					
						
						|  |  | 
					
						
						|  | pred_obj_scores: bool = False, | 
					
						
						|  |  | 
					
						
						|  | pred_obj_scores_mlp: bool = False, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | fixed_no_obj_ptr: bool = False, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | soft_no_obj_ptr: bool = False, | 
					
						
						|  | use_mlp_for_obj_ptr_proj: bool = False, | 
					
						
						|  |  | 
					
						
						|  | sam_mask_decoder_extra_args=None, | 
					
						
						|  | compile_image_encoder: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.image_encoder = image_encoder | 
					
						
						|  |  | 
					
						
						|  | self.use_high_res_features_in_sam = use_high_res_features_in_sam | 
					
						
						|  | self.num_feature_levels = 3 if use_high_res_features_in_sam else 1 | 
					
						
						|  | self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder | 
					
						
						|  | self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder | 
					
						
						|  | if use_obj_ptrs_in_encoder: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4) | 
					
						
						|  | self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs | 
					
						
						|  | if proj_tpos_enc_in_obj_ptrs: | 
					
						
						|  | assert add_tpos_enc_to_obj_ptrs | 
					
						
						|  | self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs | 
					
						
						|  | self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.memory_attention = memory_attention | 
					
						
						|  | self.hidden_dim = memory_attention.d_model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.memory_encoder = memory_encoder | 
					
						
						|  | self.mem_dim = self.hidden_dim | 
					
						
						|  | if hasattr(self.memory_encoder, "out_proj") and hasattr( | 
					
						
						|  | self.memory_encoder.out_proj, "weight" | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | self.mem_dim = self.memory_encoder.out_proj.weight.shape[0] | 
					
						
						|  | self.num_maskmem = num_maskmem | 
					
						
						|  |  | 
					
						
						|  | self.maskmem_tpos_enc = torch.nn.Parameter( | 
					
						
						|  | torch.zeros(num_maskmem, 1, 1, self.mem_dim) | 
					
						
						|  | ) | 
					
						
						|  | trunc_normal_(self.maskmem_tpos_enc, std=0.02) | 
					
						
						|  |  | 
					
						
						|  | self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) | 
					
						
						|  | self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) | 
					
						
						|  | trunc_normal_(self.no_mem_embed, std=0.02) | 
					
						
						|  | trunc_normal_(self.no_mem_pos_enc, std=0.02) | 
					
						
						|  | self.directly_add_no_mem_embed = directly_add_no_mem_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc | 
					
						
						|  | self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc | 
					
						
						|  | self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc | 
					
						
						|  | self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc | 
					
						
						|  | self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam | 
					
						
						|  | self.multimask_output_in_sam = multimask_output_in_sam | 
					
						
						|  | self.multimask_min_pt_num = multimask_min_pt_num | 
					
						
						|  | self.multimask_max_pt_num = multimask_max_pt_num | 
					
						
						|  | self.multimask_output_for_tracking = multimask_output_for_tracking | 
					
						
						|  | self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr | 
					
						
						|  | self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.image_size = image_size | 
					
						
						|  | self.backbone_stride = backbone_stride | 
					
						
						|  | self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args | 
					
						
						|  | self.pred_obj_scores = pred_obj_scores | 
					
						
						|  | self.pred_obj_scores_mlp = pred_obj_scores_mlp | 
					
						
						|  | self.fixed_no_obj_ptr = fixed_no_obj_ptr | 
					
						
						|  | self.soft_no_obj_ptr = soft_no_obj_ptr | 
					
						
						|  | if self.fixed_no_obj_ptr: | 
					
						
						|  | assert self.pred_obj_scores | 
					
						
						|  | assert self.use_obj_ptrs_in_encoder | 
					
						
						|  | if self.pred_obj_scores and self.use_obj_ptrs_in_encoder: | 
					
						
						|  | self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim)) | 
					
						
						|  | trunc_normal_(self.no_obj_ptr, std=0.02) | 
					
						
						|  | self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj | 
					
						
						|  |  | 
					
						
						|  | self._build_sam_heads() | 
					
						
						|  | self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond | 
					
						
						|  | self.max_cond_frames_in_attn = max_cond_frames_in_attn | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if compile_image_encoder: | 
					
						
						|  |  | 
					
						
						|  | print( | 
					
						
						|  | "Image encoder compilation is enabled. First forward pass will be slow." | 
					
						
						|  | ) | 
					
						
						|  | self.image_encoder.forward = torch.compile( | 
					
						
						|  | self.image_encoder.forward, | 
					
						
						|  | mode="max-autotune", | 
					
						
						|  | fullgraph=True, | 
					
						
						|  | dynamic=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def device(self): | 
					
						
						|  | return next(self.parameters()).device | 
					
						
						|  |  | 
					
						
						|  | def forward(self, *args, **kwargs): | 
					
						
						|  | raise NotImplementedError( | 
					
						
						|  | "Please use the corresponding methods in SAM2VideoPredictor for inference." | 
					
						
						|  | "See notebooks/video_predictor_example.ipynb for an example." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _build_sam_heads(self): | 
					
						
						|  | """Build SAM-style prompt encoder and mask decoder.""" | 
					
						
						|  | self.sam_prompt_embed_dim = self.hidden_dim | 
					
						
						|  | self.sam_image_embedding_size = self.image_size // self.backbone_stride | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.sam_prompt_encoder = PromptEncoder( | 
					
						
						|  | embed_dim=self.sam_prompt_embed_dim, | 
					
						
						|  | image_embedding_size=( | 
					
						
						|  | self.sam_image_embedding_size, | 
					
						
						|  | self.sam_image_embedding_size, | 
					
						
						|  | ), | 
					
						
						|  | input_image_size=(self.image_size, self.image_size), | 
					
						
						|  | mask_in_chans=16, | 
					
						
						|  | ) | 
					
						
						|  | self.sam_mask_decoder = MaskDecoder( | 
					
						
						|  | num_multimask_outputs=3, | 
					
						
						|  | transformer=TwoWayTransformer( | 
					
						
						|  | depth=2, | 
					
						
						|  | embedding_dim=self.sam_prompt_embed_dim, | 
					
						
						|  | mlp_dim=2048, | 
					
						
						|  | num_heads=8, | 
					
						
						|  | ), | 
					
						
						|  | transformer_dim=self.sam_prompt_embed_dim, | 
					
						
						|  | iou_head_depth=3, | 
					
						
						|  | iou_head_hidden_dim=256, | 
					
						
						|  | use_high_res_features=self.use_high_res_features_in_sam, | 
					
						
						|  | iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid, | 
					
						
						|  | pred_obj_scores=self.pred_obj_scores, | 
					
						
						|  | pred_obj_scores_mlp=self.pred_obj_scores_mlp, | 
					
						
						|  | use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr, | 
					
						
						|  | **(self.sam_mask_decoder_extra_args or {}), | 
					
						
						|  | ) | 
					
						
						|  | if self.use_obj_ptrs_in_encoder: | 
					
						
						|  |  | 
					
						
						|  | self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim) | 
					
						
						|  | if self.use_mlp_for_obj_ptr_proj: | 
					
						
						|  | self.obj_ptr_proj = MLP( | 
					
						
						|  | self.hidden_dim, self.hidden_dim, self.hidden_dim, 3 | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.obj_ptr_proj = torch.nn.Identity() | 
					
						
						|  | if self.proj_tpos_enc_in_obj_ptrs: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim) | 
					
						
						|  | else: | 
					
						
						|  | self.obj_ptr_tpos_proj = torch.nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | def _forward_sam_heads( | 
					
						
						|  | self, | 
					
						
						|  | backbone_features, | 
					
						
						|  | point_inputs=None, | 
					
						
						|  | mask_inputs=None, | 
					
						
						|  | high_res_features=None, | 
					
						
						|  | multimask_output=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Forward SAM prompt encoders and mask heads. | 
					
						
						|  |  | 
					
						
						|  | Inputs: | 
					
						
						|  | - backbone_features: image features of [B, C, H, W] shape | 
					
						
						|  | - point_inputs: a dictionary with "point_coords" and "point_labels", where | 
					
						
						|  | 1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the | 
					
						
						|  | absolute pixel-unit coordinate in (x, y) format of the P input points | 
					
						
						|  | 2) "point_labels" has shape [B, P] and int32 dtype, where 1 means | 
					
						
						|  | positive clicks, 0 means negative clicks, and -1 means padding | 
					
						
						|  | - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the | 
					
						
						|  | same spatial size as the image. | 
					
						
						|  | - high_res_features: either 1) None or 2) or a list of length 2 containing | 
					
						
						|  | two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively, | 
					
						
						|  | which will be used as high-resolution feature maps for SAM decoder. | 
					
						
						|  | - multimask_output: if it's True, we output 3 candidate masks and their 3 | 
					
						
						|  | corresponding IoU estimates, and if it's False, we output only 1 mask and | 
					
						
						|  | its corresponding IoU estimate. | 
					
						
						|  |  | 
					
						
						|  | Outputs: | 
					
						
						|  | - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if | 
					
						
						|  | `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM | 
					
						
						|  | output mask logits (before sigmoid) for the low-resolution masks, with 4x | 
					
						
						|  | the resolution (1/4 stride) of the input backbone_features. | 
					
						
						|  | - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3 | 
					
						
						|  | if `multimask_output=True` and M = 1 if `multimask_output=False`), | 
					
						
						|  | upsampled from the low-resolution masks, with shape size as the image | 
					
						
						|  | (stride is 1 pixel). | 
					
						
						|  | - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1 | 
					
						
						|  | if `multimask_output=False`), the estimated IoU of each output mask. | 
					
						
						|  | - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`. | 
					
						
						|  | If `multimask_output=True`, it's the mask with the highest IoU estimate. | 
					
						
						|  | If `multimask_output=False`, it's the same as `low_res_multimasks`. | 
					
						
						|  | - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`. | 
					
						
						|  | If `multimask_output=True`, it's the mask with the highest IoU estimate. | 
					
						
						|  | If `multimask_output=False`, it's the same as `high_res_multimasks`. | 
					
						
						|  | - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted | 
					
						
						|  | based on the output token from the SAM mask decoder. | 
					
						
						|  | """ | 
					
						
						|  | B = backbone_features.size(0) | 
					
						
						|  | device = backbone_features.device | 
					
						
						|  | assert backbone_features.size(1) == self.sam_prompt_embed_dim | 
					
						
						|  | assert backbone_features.size(2) == self.sam_image_embedding_size | 
					
						
						|  | assert backbone_features.size(3) == self.sam_image_embedding_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if point_inputs is not None: | 
					
						
						|  | sam_point_coords = point_inputs["point_coords"] | 
					
						
						|  | sam_point_labels = point_inputs["point_labels"] | 
					
						
						|  | assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | sam_point_coords = torch.zeros(B, 1, 2, device=device) | 
					
						
						|  | sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if mask_inputs is not None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1) | 
					
						
						|  | if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size: | 
					
						
						|  | sam_mask_prompt = F.interpolate( | 
					
						
						|  | mask_inputs.float(), | 
					
						
						|  | size=self.sam_prompt_encoder.mask_input_size, | 
					
						
						|  | align_corners=False, | 
					
						
						|  | mode="bilinear", | 
					
						
						|  | antialias=True, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | sam_mask_prompt = mask_inputs | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sam_mask_prompt = None | 
					
						
						|  |  | 
					
						
						|  | sparse_embeddings, dense_embeddings = self.sam_prompt_encoder( | 
					
						
						|  | points=(sam_point_coords, sam_point_labels), | 
					
						
						|  | boxes=None, | 
					
						
						|  | masks=sam_mask_prompt, | 
					
						
						|  | ) | 
					
						
						|  | ( | 
					
						
						|  | low_res_multimasks, | 
					
						
						|  | ious, | 
					
						
						|  | sam_output_tokens, | 
					
						
						|  | object_score_logits, | 
					
						
						|  | ) = self.sam_mask_decoder( | 
					
						
						|  | image_embeddings=backbone_features, | 
					
						
						|  | image_pe=self.sam_prompt_encoder.get_dense_pe(), | 
					
						
						|  | sparse_prompt_embeddings=sparse_embeddings, | 
					
						
						|  | dense_prompt_embeddings=dense_embeddings, | 
					
						
						|  | multimask_output=multimask_output, | 
					
						
						|  | repeat_image=False, | 
					
						
						|  | high_res_features=high_res_features, | 
					
						
						|  | ) | 
					
						
						|  | if self.pred_obj_scores: | 
					
						
						|  | is_obj_appearing = object_score_logits > 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | low_res_multimasks = torch.where( | 
					
						
						|  | is_obj_appearing[:, None, None], | 
					
						
						|  | low_res_multimasks, | 
					
						
						|  | NO_OBJ_SCORE, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _dtype = low_res_multimasks.dtype | 
					
						
						|  |  | 
					
						
						|  | high_res_multimasks = F.interpolate( | 
					
						
						|  | low_res_multimasks.float(), | 
					
						
						|  | size=(self.image_size, self.image_size), | 
					
						
						|  | mode="bilinear", | 
					
						
						|  | align_corners=False, | 
					
						
						|  | ).to(_dtype) | 
					
						
						|  |  | 
					
						
						|  | sam_output_token = sam_output_tokens[:, 0] | 
					
						
						|  | if multimask_output: | 
					
						
						|  |  | 
					
						
						|  | best_iou_inds = torch.argmax(ious, dim=-1) | 
					
						
						|  | batch_inds = torch.arange(B, device=device) | 
					
						
						|  | low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) | 
					
						
						|  | high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) | 
					
						
						|  | if sam_output_tokens.size(1) > 1: | 
					
						
						|  | sam_output_token = sam_output_tokens[batch_inds, best_iou_inds] | 
					
						
						|  | else: | 
					
						
						|  | low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | obj_ptr = self.obj_ptr_proj(sam_output_token) | 
					
						
						|  | if self.pred_obj_scores: | 
					
						
						|  |  | 
					
						
						|  | if self.soft_no_obj_ptr: | 
					
						
						|  |  | 
					
						
						|  | assert not self.teacher_force_obj_scores_for_mem | 
					
						
						|  | lambda_is_obj_appearing = object_score_logits.sigmoid() | 
					
						
						|  | else: | 
					
						
						|  | lambda_is_obj_appearing = is_obj_appearing.float() | 
					
						
						|  |  | 
					
						
						|  | if self.fixed_no_obj_ptr: | 
					
						
						|  | obj_ptr = lambda_is_obj_appearing * obj_ptr | 
					
						
						|  | obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | low_res_multimasks, | 
					
						
						|  | high_res_multimasks, | 
					
						
						|  | ious, | 
					
						
						|  | low_res_masks, | 
					
						
						|  | high_res_masks, | 
					
						
						|  | obj_ptr, | 
					
						
						|  | object_score_logits, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs): | 
					
						
						|  | """ | 
					
						
						|  | Directly turn binary `mask_inputs` into a output mask logits without using SAM. | 
					
						
						|  | (same input and output shapes as in _forward_sam_heads above). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | out_scale, out_bias = 20.0, -10.0 | 
					
						
						|  | mask_inputs_float = mask_inputs.float() | 
					
						
						|  | high_res_masks = mask_inputs_float * out_scale + out_bias | 
					
						
						|  | low_res_masks = F.interpolate( | 
					
						
						|  | high_res_masks, | 
					
						
						|  | size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4), | 
					
						
						|  | align_corners=False, | 
					
						
						|  | mode="bilinear", | 
					
						
						|  | antialias=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float() | 
					
						
						|  | if not self.use_obj_ptrs_in_encoder: | 
					
						
						|  |  | 
					
						
						|  | obj_ptr = torch.zeros( | 
					
						
						|  | mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads( | 
					
						
						|  | backbone_features=backbone_features, | 
					
						
						|  | mask_inputs=self.mask_downsample(mask_inputs_float), | 
					
						
						|  | high_res_features=high_res_features, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1) | 
					
						
						|  | is_obj_appearing = is_obj_appearing[..., None] | 
					
						
						|  | lambda_is_obj_appearing = is_obj_appearing.float() | 
					
						
						|  | object_score_logits = out_scale * lambda_is_obj_appearing + out_bias | 
					
						
						|  | if self.pred_obj_scores: | 
					
						
						|  | if self.fixed_no_obj_ptr: | 
					
						
						|  | obj_ptr = lambda_is_obj_appearing * obj_ptr | 
					
						
						|  | obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | low_res_masks, | 
					
						
						|  | high_res_masks, | 
					
						
						|  | ious, | 
					
						
						|  | low_res_masks, | 
					
						
						|  | high_res_masks, | 
					
						
						|  | obj_ptr, | 
					
						
						|  | object_score_logits, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward_image(self, img_batch: torch.Tensor): | 
					
						
						|  | """Get the image feature on the input batch.""" | 
					
						
						|  | backbone_out = self.image_encoder(img_batch) | 
					
						
						|  | if self.use_high_res_features_in_sam: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0( | 
					
						
						|  | backbone_out["backbone_fpn"][0] | 
					
						
						|  | ) | 
					
						
						|  | backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1( | 
					
						
						|  | backbone_out["backbone_fpn"][1] | 
					
						
						|  | ) | 
					
						
						|  | return backbone_out | 
					
						
						|  |  | 
					
						
						|  | def _prepare_backbone_features(self, backbone_out): | 
					
						
						|  | """Prepare and flatten visual features.""" | 
					
						
						|  | backbone_out = backbone_out.copy() | 
					
						
						|  | assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"]) | 
					
						
						|  | assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels | 
					
						
						|  |  | 
					
						
						|  | feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :] | 
					
						
						|  | vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :] | 
					
						
						|  |  | 
					
						
						|  | feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds] | 
					
						
						|  |  | 
					
						
						|  | vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps] | 
					
						
						|  | vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds] | 
					
						
						|  |  | 
					
						
						|  | return backbone_out, vision_feats, vision_pos_embeds, feat_sizes | 
					
						
						|  |  | 
					
						
						|  | def _prepare_memory_conditioned_features( | 
					
						
						|  | self, | 
					
						
						|  | frame_idx, | 
					
						
						|  | is_init_cond_frame, | 
					
						
						|  | current_vision_feats, | 
					
						
						|  | current_vision_pos_embeds, | 
					
						
						|  | feat_sizes, | 
					
						
						|  | output_dict, | 
					
						
						|  | num_frames, | 
					
						
						|  | track_in_reverse=False, | 
					
						
						|  | ): | 
					
						
						|  | """Fuse the current frame's visual feature map with previous memory.""" | 
					
						
						|  | B = current_vision_feats[-1].size(1) | 
					
						
						|  | C = self.hidden_dim | 
					
						
						|  | H, W = feat_sizes[-1] | 
					
						
						|  | device = current_vision_feats[-1].device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.num_maskmem == 0: | 
					
						
						|  | pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) | 
					
						
						|  | return pix_feat | 
					
						
						|  |  | 
					
						
						|  | num_obj_ptr_tokens = 0 | 
					
						
						|  |  | 
					
						
						|  | if not is_init_cond_frame: | 
					
						
						|  |  | 
					
						
						|  | to_cat_memory, to_cat_memory_pos_embed = [], [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert len(output_dict["cond_frame_outputs"]) > 0 | 
					
						
						|  |  | 
					
						
						|  | cond_outputs = output_dict["cond_frame_outputs"] | 
					
						
						|  | selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames( | 
					
						
						|  | frame_idx, cond_outputs, self.max_cond_frames_in_attn | 
					
						
						|  | ) | 
					
						
						|  | t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | r = self.memory_temporal_stride_for_eval | 
					
						
						|  | for t_pos in range(1, self.num_maskmem): | 
					
						
						|  | t_rel = self.num_maskmem - t_pos | 
					
						
						|  | if t_rel == 1: | 
					
						
						|  |  | 
					
						
						|  | if not track_in_reverse: | 
					
						
						|  |  | 
					
						
						|  | prev_frame_idx = frame_idx - t_rel | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | prev_frame_idx = frame_idx + t_rel | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if not track_in_reverse: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prev_frame_idx = ((frame_idx - 2) // r) * r | 
					
						
						|  |  | 
					
						
						|  | prev_frame_idx = prev_frame_idx - (t_rel - 2) * r | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prev_frame_idx = -(-(frame_idx + 2) // r) * r | 
					
						
						|  |  | 
					
						
						|  | prev_frame_idx = prev_frame_idx + (t_rel - 2) * r | 
					
						
						|  | out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None) | 
					
						
						|  | if out is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | out = unselected_cond_outputs.get(prev_frame_idx, None) | 
					
						
						|  | t_pos_and_prevs.append((t_pos, out)) | 
					
						
						|  |  | 
					
						
						|  | for t_pos, prev in t_pos_and_prevs: | 
					
						
						|  | if prev is None: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | feats = prev["maskmem_features"].cuda(non_blocking=True) | 
					
						
						|  | to_cat_memory.append(feats.flatten(2).permute(2, 0, 1)) | 
					
						
						|  |  | 
					
						
						|  | maskmem_enc = prev["maskmem_pos_enc"][-1].cuda() | 
					
						
						|  | maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1) | 
					
						
						|  |  | 
					
						
						|  | maskmem_enc = ( | 
					
						
						|  | maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1] | 
					
						
						|  | ) | 
					
						
						|  | to_cat_memory_pos_embed.append(maskmem_enc) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.use_obj_ptrs_in_encoder: | 
					
						
						|  | max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not self.training and self.only_obj_ptrs_in_the_past_for_eval: | 
					
						
						|  | ptr_cond_outputs = { | 
					
						
						|  | t: out | 
					
						
						|  | for t, out in selected_cond_outputs.items() | 
					
						
						|  | if (t >= frame_idx if track_in_reverse else t <= frame_idx) | 
					
						
						|  | } | 
					
						
						|  | else: | 
					
						
						|  | ptr_cond_outputs = selected_cond_outputs | 
					
						
						|  | pos_and_ptrs = [ | 
					
						
						|  |  | 
					
						
						|  | (abs(frame_idx - t), out["obj_ptr"]) | 
					
						
						|  | for t, out in ptr_cond_outputs.items() | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | for t_diff in range(1, max_obj_ptrs_in_encoder): | 
					
						
						|  | t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff | 
					
						
						|  | if t < 0 or (num_frames is not None and t >= num_frames): | 
					
						
						|  | break | 
					
						
						|  | out = output_dict["non_cond_frame_outputs"].get( | 
					
						
						|  | t, unselected_cond_outputs.get(t, None) | 
					
						
						|  | ) | 
					
						
						|  | if out is not None: | 
					
						
						|  | pos_and_ptrs.append((t_diff, out["obj_ptr"])) | 
					
						
						|  |  | 
					
						
						|  | if len(pos_and_ptrs) > 0: | 
					
						
						|  | pos_list, ptrs_list = zip(*pos_and_ptrs) | 
					
						
						|  |  | 
					
						
						|  | obj_ptrs = torch.stack(ptrs_list, dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.add_tpos_enc_to_obj_ptrs: | 
					
						
						|  | t_diff_max = max_obj_ptrs_in_encoder - 1 | 
					
						
						|  | tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim | 
					
						
						|  | obj_pos = torch.tensor(pos_list, device=device) | 
					
						
						|  | obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim) | 
					
						
						|  | obj_pos = self.obj_ptr_tpos_proj(obj_pos) | 
					
						
						|  | obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim) | 
					
						
						|  | else: | 
					
						
						|  | obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim) | 
					
						
						|  | if self.mem_dim < C: | 
					
						
						|  |  | 
					
						
						|  | obj_ptrs = obj_ptrs.reshape( | 
					
						
						|  | -1, B, C // self.mem_dim, self.mem_dim | 
					
						
						|  | ) | 
					
						
						|  | obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1) | 
					
						
						|  | obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0) | 
					
						
						|  | to_cat_memory.append(obj_ptrs) | 
					
						
						|  | to_cat_memory_pos_embed.append(obj_pos) | 
					
						
						|  | num_obj_ptr_tokens = obj_ptrs.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | num_obj_ptr_tokens = 0 | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if self.directly_add_no_mem_embed: | 
					
						
						|  |  | 
					
						
						|  | pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed | 
					
						
						|  | pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) | 
					
						
						|  | return pix_feat_with_mem | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)] | 
					
						
						|  | to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | memory = torch.cat(to_cat_memory, dim=0) | 
					
						
						|  | memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0) | 
					
						
						|  |  | 
					
						
						|  | pix_feat_with_mem = self.memory_attention( | 
					
						
						|  | curr=current_vision_feats, | 
					
						
						|  | curr_pos=current_vision_pos_embeds, | 
					
						
						|  | memory=memory, | 
					
						
						|  | memory_pos=memory_pos_embed, | 
					
						
						|  | num_obj_ptr_tokens=num_obj_ptr_tokens, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) | 
					
						
						|  | return pix_feat_with_mem | 
					
						
						|  |  | 
					
						
						|  | def _encode_new_memory( | 
					
						
						|  | self, | 
					
						
						|  | current_vision_feats, | 
					
						
						|  | feat_sizes, | 
					
						
						|  | pred_masks_high_res, | 
					
						
						|  | is_mask_from_pts, | 
					
						
						|  | ): | 
					
						
						|  | """Encode the current image and its prediction into a memory feature.""" | 
					
						
						|  | B = current_vision_feats[-1].size(1) | 
					
						
						|  | C = self.hidden_dim | 
					
						
						|  | H, W = feat_sizes[-1] | 
					
						
						|  |  | 
					
						
						|  | pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) | 
					
						
						|  | if self.non_overlap_masks_for_mem_enc and not self.training: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pred_masks_high_res = self._apply_non_overlapping_constraints( | 
					
						
						|  | pred_masks_high_res | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts | 
					
						
						|  | if binarize and not self.training: | 
					
						
						|  | mask_for_mem = (pred_masks_high_res > 0).float() | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | mask_for_mem = torch.sigmoid(pred_masks_high_res) | 
					
						
						|  |  | 
					
						
						|  | if self.sigmoid_scale_for_mem_enc != 1.0: | 
					
						
						|  | mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc | 
					
						
						|  | if self.sigmoid_bias_for_mem_enc != 0.0: | 
					
						
						|  | mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc | 
					
						
						|  | maskmem_out = self.memory_encoder( | 
					
						
						|  | pix_feat, mask_for_mem, skip_mask_sigmoid=True | 
					
						
						|  | ) | 
					
						
						|  | maskmem_features = maskmem_out["vision_features"] | 
					
						
						|  | maskmem_pos_enc = maskmem_out["vision_pos_enc"] | 
					
						
						|  |  | 
					
						
						|  | return maskmem_features, maskmem_pos_enc | 
					
						
						|  |  | 
					
						
						|  | def track_step( | 
					
						
						|  | self, | 
					
						
						|  | frame_idx, | 
					
						
						|  | is_init_cond_frame, | 
					
						
						|  | current_vision_feats, | 
					
						
						|  | current_vision_pos_embeds, | 
					
						
						|  | feat_sizes, | 
					
						
						|  | point_inputs, | 
					
						
						|  | mask_inputs, | 
					
						
						|  | output_dict, | 
					
						
						|  | num_frames, | 
					
						
						|  | track_in_reverse=False, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | run_mem_encoder=True, | 
					
						
						|  |  | 
					
						
						|  | prev_sam_mask_logits=None, | 
					
						
						|  | ): | 
					
						
						|  | current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs} | 
					
						
						|  |  | 
					
						
						|  | if len(current_vision_feats) > 1: | 
					
						
						|  | high_res_features = [ | 
					
						
						|  | x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) | 
					
						
						|  | for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1]) | 
					
						
						|  | ] | 
					
						
						|  | else: | 
					
						
						|  | high_res_features = None | 
					
						
						|  | if mask_inputs is not None and self.use_mask_input_as_output_without_sam: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pix_feat = current_vision_feats[-1].permute(1, 2, 0) | 
					
						
						|  | pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1]) | 
					
						
						|  | sam_outputs = self._use_mask_as_output( | 
					
						
						|  | pix_feat, high_res_features, mask_inputs | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | pix_feat_with_mem = self._prepare_memory_conditioned_features( | 
					
						
						|  | frame_idx=frame_idx, | 
					
						
						|  | is_init_cond_frame=is_init_cond_frame, | 
					
						
						|  | current_vision_feats=current_vision_feats[-1:], | 
					
						
						|  | current_vision_pos_embeds=current_vision_pos_embeds[-1:], | 
					
						
						|  | feat_sizes=feat_sizes[-1:], | 
					
						
						|  | output_dict=output_dict, | 
					
						
						|  | num_frames=num_frames, | 
					
						
						|  | track_in_reverse=track_in_reverse, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prev_sam_mask_logits is not None: | 
					
						
						|  | assert point_inputs is not None and mask_inputs is None | 
					
						
						|  | mask_inputs = prev_sam_mask_logits | 
					
						
						|  | multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) | 
					
						
						|  | sam_outputs = self._forward_sam_heads( | 
					
						
						|  | backbone_features=pix_feat_with_mem, | 
					
						
						|  | point_inputs=point_inputs, | 
					
						
						|  | mask_inputs=mask_inputs, | 
					
						
						|  | high_res_features=high_res_features, | 
					
						
						|  | multimask_output=multimask_output, | 
					
						
						|  | ) | 
					
						
						|  | ( | 
					
						
						|  | _, | 
					
						
						|  | _, | 
					
						
						|  | _, | 
					
						
						|  | low_res_masks, | 
					
						
						|  | high_res_masks, | 
					
						
						|  | obj_ptr, | 
					
						
						|  | _, | 
					
						
						|  | ) = sam_outputs | 
					
						
						|  |  | 
					
						
						|  | current_out["pred_masks"] = low_res_masks | 
					
						
						|  | current_out["pred_masks_high_res"] = high_res_masks | 
					
						
						|  | current_out["obj_ptr"] = obj_ptr | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if run_mem_encoder and self.num_maskmem > 0: | 
					
						
						|  | high_res_masks_for_mem_enc = high_res_masks | 
					
						
						|  | maskmem_features, maskmem_pos_enc = self._encode_new_memory( | 
					
						
						|  | current_vision_feats=current_vision_feats, | 
					
						
						|  | feat_sizes=feat_sizes, | 
					
						
						|  | pred_masks_high_res=high_res_masks_for_mem_enc, | 
					
						
						|  | is_mask_from_pts=(point_inputs is not None), | 
					
						
						|  | ) | 
					
						
						|  | current_out["maskmem_features"] = maskmem_features | 
					
						
						|  | current_out["maskmem_pos_enc"] = maskmem_pos_enc | 
					
						
						|  | else: | 
					
						
						|  | current_out["maskmem_features"] = None | 
					
						
						|  | current_out["maskmem_pos_enc"] = None | 
					
						
						|  |  | 
					
						
						|  | return current_out | 
					
						
						|  |  | 
					
						
						|  | def _use_multimask(self, is_init_cond_frame, point_inputs): | 
					
						
						|  | """Whether to use multimask output in the SAM head.""" | 
					
						
						|  | num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1) | 
					
						
						|  | multimask_output = ( | 
					
						
						|  | self.multimask_output_in_sam | 
					
						
						|  | and (is_init_cond_frame or self.multimask_output_for_tracking) | 
					
						
						|  | and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num) | 
					
						
						|  | ) | 
					
						
						|  | return multimask_output | 
					
						
						|  |  | 
					
						
						|  | def _apply_non_overlapping_constraints(self, pred_masks): | 
					
						
						|  | """ | 
					
						
						|  | Apply non-overlapping constraints to the object scores in pred_masks. Here we | 
					
						
						|  | keep only the highest scoring object at each spatial location in pred_masks. | 
					
						
						|  | """ | 
					
						
						|  | batch_size = pred_masks.size(0) | 
					
						
						|  | if batch_size == 1: | 
					
						
						|  | return pred_masks | 
					
						
						|  |  | 
					
						
						|  | device = pred_masks.device | 
					
						
						|  |  | 
					
						
						|  | max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True) | 
					
						
						|  |  | 
					
						
						|  | batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None] | 
					
						
						|  | keep = max_obj_inds == batch_obj_inds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0)) | 
					
						
						|  | return pred_masks | 
					
						
						|  |  | 
					
						
						|  | class SAM2Base(SAM2Base_): | 
					
						
						|  |  | 
					
						
						|  | def track_step( | 
					
						
						|  | self, | 
					
						
						|  | frame_idx, | 
					
						
						|  | is_init_cond_frame, | 
					
						
						|  | current_vision_feats, | 
					
						
						|  | current_vision_pos_embeds, | 
					
						
						|  | feat_sizes, | 
					
						
						|  | point_inputs, | 
					
						
						|  | mask_inputs, | 
					
						
						|  | output_dict, | 
					
						
						|  | num_frames, | 
					
						
						|  | track_in_reverse=False, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | run_mem_encoder=True, | 
					
						
						|  |  | 
					
						
						|  | prev_sam_mask_logits=None, | 
					
						
						|  |  | 
					
						
						|  | language_embd=None, | 
					
						
						|  | ): | 
					
						
						|  | current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs} | 
					
						
						|  |  | 
					
						
						|  | if len(current_vision_feats) > 1: | 
					
						
						|  | high_res_features = [ | 
					
						
						|  | x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) | 
					
						
						|  | for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1]) | 
					
						
						|  | ] | 
					
						
						|  | else: | 
					
						
						|  | high_res_features = None | 
					
						
						|  | if mask_inputs is not None and self.use_mask_input_as_output_without_sam: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pix_feat = current_vision_feats[-1].permute(1, 2, 0) | 
					
						
						|  | pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1]) | 
					
						
						|  | sam_outputs = self._use_mask_as_output( | 
					
						
						|  | pix_feat, high_res_features, mask_inputs | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | pix_feat_with_mem = self._prepare_memory_conditioned_features( | 
					
						
						|  | frame_idx=frame_idx, | 
					
						
						|  | is_init_cond_frame=is_init_cond_frame, | 
					
						
						|  | current_vision_feats=current_vision_feats[-1:], | 
					
						
						|  | current_vision_pos_embeds=current_vision_pos_embeds[-1:], | 
					
						
						|  | feat_sizes=feat_sizes[-1:], | 
					
						
						|  | output_dict=output_dict, | 
					
						
						|  | num_frames=num_frames, | 
					
						
						|  | track_in_reverse=track_in_reverse, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prev_sam_mask_logits is not None: | 
					
						
						|  | assert point_inputs is not None and mask_inputs is None | 
					
						
						|  | mask_inputs = prev_sam_mask_logits | 
					
						
						|  | multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) | 
					
						
						|  | sam_outputs = self._forward_sam_heads( | 
					
						
						|  | backbone_features=pix_feat_with_mem, | 
					
						
						|  | point_inputs=point_inputs, | 
					
						
						|  | mask_inputs=mask_inputs, | 
					
						
						|  | high_res_features=high_res_features, | 
					
						
						|  | multimask_output=multimask_output, | 
					
						
						|  |  | 
					
						
						|  | language_embd=language_embd, | 
					
						
						|  | ) | 
					
						
						|  | ( | 
					
						
						|  | _, | 
					
						
						|  | _, | 
					
						
						|  | _, | 
					
						
						|  | low_res_masks, | 
					
						
						|  | high_res_masks, | 
					
						
						|  | obj_ptr, | 
					
						
						|  | _, | 
					
						
						|  | ) = sam_outputs | 
					
						
						|  |  | 
					
						
						|  | current_out["pred_masks"] = low_res_masks | 
					
						
						|  | current_out["pred_masks_high_res"] = high_res_masks | 
					
						
						|  | current_out["obj_ptr"] = obj_ptr | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if run_mem_encoder and self.num_maskmem > 0: | 
					
						
						|  | high_res_masks_for_mem_enc = high_res_masks | 
					
						
						|  | maskmem_features, maskmem_pos_enc = self._encode_new_memory( | 
					
						
						|  | current_vision_feats=current_vision_feats, | 
					
						
						|  | feat_sizes=feat_sizes, | 
					
						
						|  | pred_masks_high_res=high_res_masks_for_mem_enc, | 
					
						
						|  | is_mask_from_pts=(point_inputs is not None), | 
					
						
						|  | ) | 
					
						
						|  | current_out["maskmem_features"] = maskmem_features | 
					
						
						|  | current_out["maskmem_pos_enc"] = maskmem_pos_enc | 
					
						
						|  | else: | 
					
						
						|  | current_out["maskmem_features"] = None | 
					
						
						|  | current_out["maskmem_pos_enc"] = None | 
					
						
						|  |  | 
					
						
						|  | return current_out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _forward_sam_heads( | 
					
						
						|  | self, | 
					
						
						|  | backbone_features, | 
					
						
						|  | point_inputs=None, | 
					
						
						|  | mask_inputs=None, | 
					
						
						|  | high_res_features=None, | 
					
						
						|  | multimask_output=False, | 
					
						
						|  |  | 
					
						
						|  | language_embd=None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Forward SAM prompt encoders and mask heads. | 
					
						
						|  |  | 
					
						
						|  | Inputs: | 
					
						
						|  | - backbone_features: image features of [B, C, H, W] shape | 
					
						
						|  | - point_inputs: a dictionary with "point_coords" and "point_labels", where | 
					
						
						|  | 1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the | 
					
						
						|  | absolute pixel-unit coordinate in (x, y) format of the P input points | 
					
						
						|  | 2) "point_labels" has shape [B, P] and int32 dtype, where 1 means | 
					
						
						|  | positive clicks, 0 means negative clicks, and -1 means padding | 
					
						
						|  | - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the | 
					
						
						|  | same spatial size as the image. | 
					
						
						|  | - high_res_features: either 1) None or 2) or a list of length 2 containing | 
					
						
						|  | two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively, | 
					
						
						|  | which will be used as high-resolution feature maps for SAM decoder. | 
					
						
						|  | - multimask_output: if it's True, we output 3 candidate masks and their 3 | 
					
						
						|  | corresponding IoU estimates, and if it's False, we output only 1 mask and | 
					
						
						|  | its corresponding IoU estimate. | 
					
						
						|  |  | 
					
						
						|  | Outputs: | 
					
						
						|  | - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if | 
					
						
						|  | `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM | 
					
						
						|  | output mask logits (before sigmoid) for the low-resolution masks, with 4x | 
					
						
						|  | the resolution (1/4 stride) of the input backbone_features. | 
					
						
						|  | - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3 | 
					
						
						|  | if `multimask_output=True` and M = 1 if `multimask_output=False`), | 
					
						
						|  | upsampled from the low-resolution masks, with shape size as the image | 
					
						
						|  | (stride is 1 pixel). | 
					
						
						|  | - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1 | 
					
						
						|  | if `multimask_output=False`), the estimated IoU of each output mask. | 
					
						
						|  | - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`. | 
					
						
						|  | If `multimask_output=True`, it's the mask with the highest IoU estimate. | 
					
						
						|  | If `multimask_output=False`, it's the same as `low_res_multimasks`. | 
					
						
						|  | - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`. | 
					
						
						|  | If `multimask_output=True`, it's the mask with the highest IoU estimate. | 
					
						
						|  | If `multimask_output=False`, it's the same as `high_res_multimasks`. | 
					
						
						|  | - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted | 
					
						
						|  | based on the output token from the SAM mask decoder. | 
					
						
						|  | """ | 
					
						
						|  | B = backbone_features.size(0) | 
					
						
						|  | device = backbone_features.device | 
					
						
						|  | assert backbone_features.size(1) == self.sam_prompt_embed_dim | 
					
						
						|  | assert backbone_features.size(2) == self.sam_image_embedding_size | 
					
						
						|  | assert backbone_features.size(3) == self.sam_image_embedding_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if point_inputs is not None: | 
					
						
						|  | sam_point_coords = point_inputs["point_coords"] | 
					
						
						|  | sam_point_labels = point_inputs["point_labels"] | 
					
						
						|  | assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | sam_point_coords = torch.zeros(B, 1, 2, device=device) | 
					
						
						|  | sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if mask_inputs is not None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1) | 
					
						
						|  | if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size: | 
					
						
						|  | sam_mask_prompt = F.interpolate( | 
					
						
						|  | mask_inputs.float(), | 
					
						
						|  | size=self.sam_prompt_encoder.mask_input_size, | 
					
						
						|  | align_corners=False, | 
					
						
						|  | mode="bilinear", | 
					
						
						|  | antialias=True, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | sam_mask_prompt = mask_inputs | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sam_mask_prompt = None | 
					
						
						|  |  | 
					
						
						|  | sparse_embeddings, dense_embeddings = self.sam_prompt_encoder( | 
					
						
						|  | points=(sam_point_coords, sam_point_labels), | 
					
						
						|  | boxes=None, | 
					
						
						|  | masks=sam_mask_prompt, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if language_embd is not None: | 
					
						
						|  |  | 
					
						
						|  | assert sparse_embeddings.size(0) == language_embd.size(0) | 
					
						
						|  | assert sparse_embeddings.size(2) == language_embd.size(2) | 
					
						
						|  | sparse_embeddings = torch.cat([sparse_embeddings, language_embd], dim=1) | 
					
						
						|  |  | 
					
						
						|  | ( | 
					
						
						|  | low_res_multimasks, | 
					
						
						|  | ious, | 
					
						
						|  | sam_output_tokens, | 
					
						
						|  | object_score_logits, | 
					
						
						|  | ) = self.sam_mask_decoder( | 
					
						
						|  | image_embeddings=backbone_features, | 
					
						
						|  | image_pe=self.sam_prompt_encoder.get_dense_pe(), | 
					
						
						|  | sparse_prompt_embeddings=sparse_embeddings, | 
					
						
						|  | dense_prompt_embeddings=dense_embeddings, | 
					
						
						|  | multimask_output=multimask_output, | 
					
						
						|  | repeat_image=False, | 
					
						
						|  | high_res_features=high_res_features, | 
					
						
						|  | ) | 
					
						
						|  | if self.pred_obj_scores: | 
					
						
						|  | is_obj_appearing = object_score_logits > 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | low_res_multimasks = low_res_multimasks.float() | 
					
						
						|  | high_res_multimasks = F.interpolate( | 
					
						
						|  | low_res_multimasks, | 
					
						
						|  | size=(self.image_size, self.image_size), | 
					
						
						|  | mode="bilinear", | 
					
						
						|  | align_corners=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sam_output_token = sam_output_tokens[:, 0] | 
					
						
						|  | if multimask_output: | 
					
						
						|  |  | 
					
						
						|  | best_iou_inds = torch.argmax(ious, dim=-1) | 
					
						
						|  | batch_inds = torch.arange(B, device=device) | 
					
						
						|  | low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) | 
					
						
						|  | high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) | 
					
						
						|  | if sam_output_tokens.size(1) > 1: | 
					
						
						|  | sam_output_token = sam_output_tokens[batch_inds, best_iou_inds] | 
					
						
						|  | else: | 
					
						
						|  | low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | obj_ptr = self.obj_ptr_proj(sam_output_token) | 
					
						
						|  | if self.pred_obj_scores: | 
					
						
						|  |  | 
					
						
						|  | if self.soft_no_obj_ptr: | 
					
						
						|  |  | 
					
						
						|  | assert not self.teacher_force_obj_scores_for_mem | 
					
						
						|  | lambda_is_obj_appearing = object_score_logits.sigmoid() | 
					
						
						|  | else: | 
					
						
						|  | lambda_is_obj_appearing = is_obj_appearing.float() | 
					
						
						|  |  | 
					
						
						|  | if self.fixed_no_obj_ptr: | 
					
						
						|  | obj_ptr = lambda_is_obj_appearing * obj_ptr | 
					
						
						|  | obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | low_res_multimasks, | 
					
						
						|  | high_res_multimasks, | 
					
						
						|  | ious, | 
					
						
						|  | low_res_masks, | 
					
						
						|  | high_res_masks, | 
					
						
						|  | obj_ptr, | 
					
						
						|  | object_score_logits, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _obj_id_to_idx(inference_state, obj_id): | 
					
						
						|  | """Map client-side object id to model-side object index.""" | 
					
						
						|  | obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None) | 
					
						
						|  | if obj_idx is not None: | 
					
						
						|  | return obj_idx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | allow_new_object = not inference_state["tracking_has_started"] | 
					
						
						|  | if allow_new_object: | 
					
						
						|  |  | 
					
						
						|  | obj_idx = len(inference_state["obj_id_to_idx"]) | 
					
						
						|  | inference_state["obj_id_to_idx"][obj_id] = obj_idx | 
					
						
						|  | inference_state["obj_idx_to_id"][obj_idx] = obj_id | 
					
						
						|  | inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"]) | 
					
						
						|  |  | 
					
						
						|  | inference_state["point_inputs_per_obj"][obj_idx] = {} | 
					
						
						|  | inference_state["mask_inputs_per_obj"][obj_idx] = {} | 
					
						
						|  | inference_state["output_dict_per_obj"][obj_idx] = { | 
					
						
						|  | "cond_frame_outputs": {}, | 
					
						
						|  | "non_cond_frame_outputs": {}, | 
					
						
						|  | } | 
					
						
						|  | inference_state["temp_output_dict_per_obj"][obj_idx] = { | 
					
						
						|  | "cond_frame_outputs": {}, | 
					
						
						|  | "non_cond_frame_outputs": {}, | 
					
						
						|  | } | 
					
						
						|  | return obj_idx | 
					
						
						|  | else: | 
					
						
						|  | raise RuntimeError( | 
					
						
						|  | f"Cannot add new object id {obj_id} after tracking starts. " | 
					
						
						|  | f"All existing object ids: {inference_state['obj_ids']}. " | 
					
						
						|  | f"Please call 'reset_state' to restart from scratch." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_maskmem_pos_enc(inference_state, current_out): | 
					
						
						|  | """ | 
					
						
						|  | `maskmem_pos_enc` is the same across frames and objects, so we cache it as | 
					
						
						|  | a constant in the inference session to reduce session storage size. | 
					
						
						|  | """ | 
					
						
						|  | model_constants = inference_state["constants"] | 
					
						
						|  |  | 
					
						
						|  | out_maskmem_pos_enc = current_out["maskmem_pos_enc"] | 
					
						
						|  | if out_maskmem_pos_enc is not None: | 
					
						
						|  | if "maskmem_pos_enc" not in model_constants: | 
					
						
						|  | assert isinstance(out_maskmem_pos_enc, list) | 
					
						
						|  |  | 
					
						
						|  | maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc] | 
					
						
						|  | model_constants["maskmem_pos_enc"] = maskmem_pos_enc | 
					
						
						|  | else: | 
					
						
						|  | maskmem_pos_enc = model_constants["maskmem_pos_enc"] | 
					
						
						|  |  | 
					
						
						|  | batch_size = out_maskmem_pos_enc[0].size(0) | 
					
						
						|  | expanded_maskmem_pos_enc = [ | 
					
						
						|  | x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc | 
					
						
						|  | ] | 
					
						
						|  | else: | 
					
						
						|  | expanded_maskmem_pos_enc = None | 
					
						
						|  | return expanded_maskmem_pos_enc | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _obj_idx_to_id(inference_state, obj_idx): | 
					
						
						|  | """Map model-side object index to client-side object id.""" | 
					
						
						|  | return inference_state["obj_idx_to_id"][obj_idx] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_obj_num(inference_state): | 
					
						
						|  | """Get the total number of unique object ids received so far in this session.""" | 
					
						
						|  | return len(inference_state["obj_idx_to_id"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SAM2VideoPredictor(SAM2Base): | 
					
						
						|  | """The predictor class to handle user interactions and manage inference states.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | fill_hole_area=0, | 
					
						
						|  |  | 
					
						
						|  | non_overlap_masks=False, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | clear_non_cond_mem_around_input=False, | 
					
						
						|  |  | 
					
						
						|  | clear_non_cond_mem_for_multi_obj=False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  | self.fill_hole_area = fill_hole_area | 
					
						
						|  | self.non_overlap_masks = non_overlap_masks | 
					
						
						|  | self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input | 
					
						
						|  | self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj | 
					
						
						|  |  | 
					
						
						|  | def _get_image_feature(self, inference_state, frame_idx, batch_size): | 
					
						
						|  | """Compute the image features on a given frame.""" | 
					
						
						|  |  | 
					
						
						|  | image, backbone_out = inference_state["cached_features"].get( | 
					
						
						|  | frame_idx, (None, None) | 
					
						
						|  | ) | 
					
						
						|  | if backbone_out is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = inference_state["images"][frame_idx].cuda().unsqueeze(0) | 
					
						
						|  | backbone_out = self.forward_image(image) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inference_state["cached_features"] = {frame_idx: (image, backbone_out)} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | expanded_image = image.expand(batch_size, -1, -1, -1) | 
					
						
						|  | expanded_backbone_out = { | 
					
						
						|  | "backbone_fpn": backbone_out["backbone_fpn"].copy(), | 
					
						
						|  | "vision_pos_enc": backbone_out["vision_pos_enc"].copy(), | 
					
						
						|  | } | 
					
						
						|  | for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]): | 
					
						
						|  | expanded_backbone_out["backbone_fpn"][i] = feat.expand( | 
					
						
						|  | batch_size, -1, -1, -1 | 
					
						
						|  | ) | 
					
						
						|  | for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]): | 
					
						
						|  | pos = pos.expand(batch_size, -1, -1, -1) | 
					
						
						|  | expanded_backbone_out["vision_pos_enc"][i] = pos | 
					
						
						|  |  | 
					
						
						|  | features = self._prepare_backbone_features(expanded_backbone_out) | 
					
						
						|  | features = (expanded_image,) + features | 
					
						
						|  | return features | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _run_single_frame_inference( | 
					
						
						|  | self, | 
					
						
						|  | inference_state, | 
					
						
						|  | output_dict, | 
					
						
						|  | frame_idx, | 
					
						
						|  | batch_size, | 
					
						
						|  | is_init_cond_frame, | 
					
						
						|  | point_inputs, | 
					
						
						|  | mask_inputs, | 
					
						
						|  | reverse, | 
					
						
						|  | run_mem_encoder, | 
					
						
						|  | prev_sam_mask_logits=None, | 
					
						
						|  |  | 
					
						
						|  | language_embd=None, | 
					
						
						|  | ): | 
					
						
						|  | """Run tracking on a single frame based on current inputs and previous memory.""" | 
					
						
						|  |  | 
					
						
						|  | ( | 
					
						
						|  | _, | 
					
						
						|  | _, | 
					
						
						|  | current_vision_feats, | 
					
						
						|  | current_vision_pos_embeds, | 
					
						
						|  | feat_sizes, | 
					
						
						|  | ) = self._get_image_feature(inference_state, frame_idx, batch_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert point_inputs is None or mask_inputs is None | 
					
						
						|  | current_out = self.track_step( | 
					
						
						|  | frame_idx=frame_idx, | 
					
						
						|  | is_init_cond_frame=is_init_cond_frame, | 
					
						
						|  | current_vision_feats=current_vision_feats, | 
					
						
						|  | current_vision_pos_embeds=current_vision_pos_embeds, | 
					
						
						|  | feat_sizes=feat_sizes, | 
					
						
						|  | point_inputs=point_inputs, | 
					
						
						|  | mask_inputs=mask_inputs, | 
					
						
						|  | output_dict=output_dict, | 
					
						
						|  | num_frames=inference_state["num_frames"], | 
					
						
						|  | track_in_reverse=reverse, | 
					
						
						|  | run_mem_encoder=run_mem_encoder, | 
					
						
						|  | prev_sam_mask_logits=prev_sam_mask_logits, | 
					
						
						|  | language_embd=language_embd, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | storage_device = inference_state["storage_device"] | 
					
						
						|  | maskmem_features = current_out["maskmem_features"] | 
					
						
						|  | if maskmem_features is not None: | 
					
						
						|  | maskmem_features = maskmem_features.to(torch.bfloat16) | 
					
						
						|  | maskmem_features = maskmem_features.to(storage_device, non_blocking=True) | 
					
						
						|  | pred_masks_gpu = current_out["pred_masks"] | 
					
						
						|  |  | 
					
						
						|  | if self.fill_hole_area > 0: | 
					
						
						|  | pred_masks_gpu = fill_holes_in_mask_scores( | 
					
						
						|  | pred_masks_gpu, self.fill_hole_area | 
					
						
						|  | ) | 
					
						
						|  | pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) | 
					
						
						|  |  | 
					
						
						|  | maskmem_pos_enc = _get_maskmem_pos_enc(inference_state, current_out) | 
					
						
						|  |  | 
					
						
						|  | obj_ptr = current_out["obj_ptr"] | 
					
						
						|  |  | 
					
						
						|  | compact_current_out = { | 
					
						
						|  | "maskmem_features": maskmem_features, | 
					
						
						|  | "maskmem_pos_enc": maskmem_pos_enc, | 
					
						
						|  | "pred_masks": pred_masks, | 
					
						
						|  | "obj_ptr": obj_ptr, | 
					
						
						|  | } | 
					
						
						|  | return compact_current_out, pred_masks_gpu | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _consolidate_temp_output_across_obj( | 
					
						
						|  | self, | 
					
						
						|  | inference_state, | 
					
						
						|  | frame_idx, | 
					
						
						|  | is_cond, | 
					
						
						|  | run_mem_encoder, | 
					
						
						|  | consolidate_at_video_res=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on | 
					
						
						|  | a frame into a single output for all objects, including | 
					
						
						|  | 1) fill any missing objects either from `output_dict_per_obj` (if they exist in | 
					
						
						|  | `output_dict_per_obj` for this frame) or leave them as placeholder values | 
					
						
						|  | (if they don't exist in `output_dict_per_obj` for this frame); | 
					
						
						|  | 2) if specified, rerun memory encoder after apply non-overlapping constraints | 
					
						
						|  | on the object scores. | 
					
						
						|  | """ | 
					
						
						|  | batch_size = _get_obj_num(inference_state) | 
					
						
						|  | storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if consolidate_at_video_res: | 
					
						
						|  | assert not run_mem_encoder, "memory encoder cannot run at video resolution" | 
					
						
						|  | consolidated_H = inference_state["video_height"] | 
					
						
						|  | consolidated_W = inference_state["video_width"] | 
					
						
						|  | consolidated_mask_key = "pred_masks_video_res" | 
					
						
						|  | else: | 
					
						
						|  | consolidated_H = consolidated_W = self.image_size // 4 | 
					
						
						|  | consolidated_mask_key = "pred_masks" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | consolidated_out = { | 
					
						
						|  | "maskmem_features": None, | 
					
						
						|  | "maskmem_pos_enc": None, | 
					
						
						|  | consolidated_mask_key: torch.full( | 
					
						
						|  | size=(batch_size, 1, consolidated_H, consolidated_W), | 
					
						
						|  | fill_value=NO_OBJ_SCORE, | 
					
						
						|  | dtype=torch.float32, | 
					
						
						|  | device=inference_state["storage_device"], | 
					
						
						|  | ), | 
					
						
						|  | "obj_ptr": torch.full( | 
					
						
						|  | size=(batch_size, self.hidden_dim), | 
					
						
						|  | fill_value=NO_OBJ_SCORE, | 
					
						
						|  | dtype=torch.float32, | 
					
						
						|  | device=inference_state["device"], | 
					
						
						|  | ), | 
					
						
						|  | } | 
					
						
						|  | empty_mask_ptr = None | 
					
						
						|  | for obj_idx in range(batch_size): | 
					
						
						|  | obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] | 
					
						
						|  | obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] | 
					
						
						|  | out = obj_temp_output_dict[storage_key].get(frame_idx, None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if out is None: | 
					
						
						|  | out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None) | 
					
						
						|  | if out is None: | 
					
						
						|  | out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if out is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if run_mem_encoder: | 
					
						
						|  | if empty_mask_ptr is None: | 
					
						
						|  | empty_mask_ptr = self._get_empty_mask_ptr( | 
					
						
						|  | inference_state, frame_idx | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | obj_mask = out["pred_masks"] | 
					
						
						|  | consolidated_pred_masks = consolidated_out[consolidated_mask_key] | 
					
						
						|  | if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]: | 
					
						
						|  | consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | resized_obj_mask = torch.nn.functional.interpolate( | 
					
						
						|  | obj_mask, | 
					
						
						|  | size=consolidated_pred_masks.shape[-2:], | 
					
						
						|  | mode="bilinear", | 
					
						
						|  | align_corners=False, | 
					
						
						|  | ) | 
					
						
						|  | consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask | 
					
						
						|  | consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if run_mem_encoder: | 
					
						
						|  | device = inference_state["device"] | 
					
						
						|  | high_res_masks = torch.nn.functional.interpolate( | 
					
						
						|  | consolidated_out["pred_masks"].to(device, non_blocking=True), | 
					
						
						|  | size=(self.image_size, self.image_size), | 
					
						
						|  | mode="bilinear", | 
					
						
						|  | align_corners=False, | 
					
						
						|  | ) | 
					
						
						|  | if self.non_overlap_masks_for_mem_enc: | 
					
						
						|  | high_res_masks = self._apply_non_overlapping_constraints(high_res_masks) | 
					
						
						|  | maskmem_features, maskmem_pos_enc = self._run_memory_encoder( | 
					
						
						|  | inference_state=inference_state, | 
					
						
						|  | frame_idx=frame_idx, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | high_res_masks=high_res_masks, | 
					
						
						|  | is_mask_from_pts=True, | 
					
						
						|  | ) | 
					
						
						|  | consolidated_out["maskmem_features"] = maskmem_features | 
					
						
						|  | consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc | 
					
						
						|  |  | 
					
						
						|  | return consolidated_out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_orig_video_res_output(self, inference_state, any_res_masks): | 
					
						
						|  | """ | 
					
						
						|  | Resize the object scores to the original video resolution (video_res_masks) | 
					
						
						|  | and apply non-overlapping constraints for final output. | 
					
						
						|  | """ | 
					
						
						|  | device = inference_state["device"] | 
					
						
						|  | video_H = inference_state["video_height"] | 
					
						
						|  | video_W = inference_state["video_width"] | 
					
						
						|  | any_res_masks = any_res_masks.to(device, non_blocking=True) | 
					
						
						|  | if any_res_masks.shape[-2:] == (video_H, video_W): | 
					
						
						|  | video_res_masks = any_res_masks | 
					
						
						|  | else: | 
					
						
						|  | video_res_masks = torch.nn.functional.interpolate( | 
					
						
						|  | any_res_masks, | 
					
						
						|  | size=(video_H, video_W), | 
					
						
						|  | mode="bilinear", | 
					
						
						|  | align_corners=False, | 
					
						
						|  | ) | 
					
						
						|  | if self.non_overlap_masks: | 
					
						
						|  | video_res_masks = self._apply_non_overlapping_constraints(video_res_masks) | 
					
						
						|  | return any_res_masks, video_res_masks | 
					
						
						|  |  | 
					
						
						|  | def init_state( | 
					
						
						|  | self, | 
					
						
						|  | images | 
					
						
						|  | ): | 
					
						
						|  | """Initialize a inference state.""" | 
					
						
						|  | inference_state = {} | 
					
						
						|  | inference_state["images"] = images | 
					
						
						|  | inference_state["num_frames"] = len(images) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inference_state["offload_video_to_cpu"] = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inference_state["offload_state_to_cpu"] = False | 
					
						
						|  |  | 
					
						
						|  | inference_state["video_height"] = self.image_size | 
					
						
						|  | inference_state["video_width"] = self.image_size | 
					
						
						|  | inference_state["device"] = torch.device("cuda") | 
					
						
						|  | inference_state["storage_device"] = torch.device("cuda") | 
					
						
						|  |  | 
					
						
						|  | inference_state["point_inputs_per_obj"] = {} | 
					
						
						|  | inference_state["mask_inputs_per_obj"] = {} | 
					
						
						|  |  | 
					
						
						|  | inference_state["cached_features"] = {} | 
					
						
						|  |  | 
					
						
						|  | inference_state["constants"] = {} | 
					
						
						|  |  | 
					
						
						|  | inference_state["obj_id_to_idx"] = OrderedDict() | 
					
						
						|  | inference_state["obj_idx_to_id"] = OrderedDict() | 
					
						
						|  | inference_state["obj_ids"] = [] | 
					
						
						|  |  | 
					
						
						|  | inference_state["output_dict"] = { | 
					
						
						|  | "cond_frame_outputs": {}, | 
					
						
						|  | "non_cond_frame_outputs": {}, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | inference_state["output_dict_per_obj"] = {} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inference_state["temp_output_dict_per_obj"] = {} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inference_state["consolidated_frame_inds"] = { | 
					
						
						|  | "cond_frame_outputs": set(), | 
					
						
						|  | "non_cond_frame_outputs": set(), | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | inference_state["tracking_has_started"] = False | 
					
						
						|  | inference_state["frames_already_tracked"] = {} | 
					
						
						|  | return inference_state | 
					
						
						|  |  | 
					
						
						|  | def add_language_embd( | 
					
						
						|  | self, | 
					
						
						|  | inference_state, | 
					
						
						|  | frame_idx, | 
					
						
						|  | obj_id, | 
					
						
						|  | language_embd, | 
					
						
						|  | inference=False, | 
					
						
						|  | ): | 
					
						
						|  | obj_idx = _obj_id_to_idx(inference_state, obj_id) | 
					
						
						|  |  | 
					
						
						|  | is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] | 
					
						
						|  |  | 
					
						
						|  | if is_init_cond_frame: | 
					
						
						|  | reverse = False | 
					
						
						|  | else: | 
					
						
						|  | reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] | 
					
						
						|  |  | 
					
						
						|  | obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] | 
					
						
						|  | obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond | 
					
						
						|  | storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prev_sam_mask_logits = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prev_out = obj_temp_output_dict[storage_key].get(frame_idx) | 
					
						
						|  | if prev_out is None: | 
					
						
						|  | prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx) | 
					
						
						|  | if prev_out is None: | 
					
						
						|  | prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx) | 
					
						
						|  |  | 
					
						
						|  | if prev_out is not None and prev_out["pred_masks"] is not None: | 
					
						
						|  | prev_sam_mask_logits = prev_out["pred_masks"].cuda(non_blocking=True) | 
					
						
						|  |  | 
					
						
						|  | prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) | 
					
						
						|  |  | 
					
						
						|  | current_out, pred_mask_gpu = self._run_single_frame_inference( | 
					
						
						|  | inference_state=inference_state, | 
					
						
						|  | output_dict=obj_output_dict, | 
					
						
						|  | frame_idx=frame_idx, | 
					
						
						|  | batch_size=1, | 
					
						
						|  | is_init_cond_frame=is_init_cond_frame, | 
					
						
						|  | point_inputs=None, | 
					
						
						|  | mask_inputs=None, | 
					
						
						|  | reverse=reverse, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | run_mem_encoder=False, | 
					
						
						|  | prev_sam_mask_logits=prev_sam_mask_logits, | 
					
						
						|  |  | 
					
						
						|  | language_embd=language_embd, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | obj_temp_output_dict[storage_key][frame_idx] = current_out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | obj_ids = inference_state["obj_ids"] | 
					
						
						|  | if inference: | 
					
						
						|  | _consolidated_out = self._consolidate_temp_output_across_obj( | 
					
						
						|  | inference_state, | 
					
						
						|  | frame_idx, | 
					
						
						|  | is_cond=is_cond, | 
					
						
						|  | run_mem_encoder=False, | 
					
						
						|  | consolidate_at_video_res=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return frame_idx, obj_ids, pred_mask_gpu | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _clear_non_cond_mem_around_input(self, inference_state, frame_idx): | 
					
						
						|  | """ | 
					
						
						|  | Remove the non-conditioning memory around the input frame. When users provide | 
					
						
						|  | correction clicks, the surrounding frames' non-conditioning memories can still | 
					
						
						|  | contain outdated object appearance information and could confuse the model. | 
					
						
						|  |  | 
					
						
						|  | This method clears those non-conditioning memories surrounding the interacted | 
					
						
						|  | frame to avoid giving the model both old and new information about the object. | 
					
						
						|  | """ | 
					
						
						|  | r = self.memory_temporal_stride_for_eval | 
					
						
						|  | frame_idx_begin = frame_idx - r * self.num_maskmem | 
					
						
						|  | frame_idx_end = frame_idx + r * self.num_maskmem | 
					
						
						|  | output_dict = inference_state["output_dict"] | 
					
						
						|  | non_cond_frame_outputs = output_dict["non_cond_frame_outputs"] | 
					
						
						|  | for t in range(frame_idx_begin, frame_idx_end + 1): | 
					
						
						|  | non_cond_frame_outputs.pop(t, None) | 
					
						
						|  | for obj_output_dict in inference_state["output_dict_per_obj"].values(): | 
					
						
						|  | obj_output_dict["non_cond_frame_outputs"].pop(t, None) | 
					
						
						|  |  | 
					
						
						|  | def _run_memory_encoder( | 
					
						
						|  | self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Run the memory encoder on `high_res_masks`. This is usually after applying | 
					
						
						|  | non-overlapping constraints to object scores. Since their scores changed, their | 
					
						
						|  | memory also need to be computed again with the memory encoder. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _, _, current_vision_feats, _, feat_sizes = self._get_image_feature( | 
					
						
						|  | inference_state, frame_idx, batch_size | 
					
						
						|  | ) | 
					
						
						|  | maskmem_features, maskmem_pos_enc = self._encode_new_memory( | 
					
						
						|  | current_vision_feats=current_vision_feats, | 
					
						
						|  | feat_sizes=feat_sizes, | 
					
						
						|  | pred_masks_high_res=high_res_masks, | 
					
						
						|  | is_mask_from_pts=is_mask_from_pts, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | storage_device = inference_state["storage_device"] | 
					
						
						|  | maskmem_features = maskmem_features.to(torch.bfloat16) | 
					
						
						|  | maskmem_features = maskmem_features.to(storage_device, non_blocking=True) | 
					
						
						|  |  | 
					
						
						|  | maskmem_pos_enc = _get_maskmem_pos_enc( | 
					
						
						|  | inference_state, {"maskmem_pos_enc": maskmem_pos_enc} | 
					
						
						|  | ) | 
					
						
						|  | return maskmem_features, maskmem_pos_enc | 
					
						
						|  |  | 
					
						
						|  | def _add_output_per_object( | 
					
						
						|  | self, inference_state, frame_idx, current_out, storage_key | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Split a multi-object output into per-object output slices and add them into | 
					
						
						|  | `output_dict_per_obj`. The resulting slices share the same tensor storage. | 
					
						
						|  | """ | 
					
						
						|  | maskmem_features = current_out["maskmem_features"] | 
					
						
						|  | assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor) | 
					
						
						|  |  | 
					
						
						|  | maskmem_pos_enc = current_out["maskmem_pos_enc"] | 
					
						
						|  | assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list) | 
					
						
						|  |  | 
					
						
						|  | output_dict_per_obj = inference_state["output_dict_per_obj"] | 
					
						
						|  | for obj_idx, obj_output_dict in output_dict_per_obj.items(): | 
					
						
						|  | obj_slice = slice(obj_idx, obj_idx + 1) | 
					
						
						|  | obj_out = { | 
					
						
						|  | "maskmem_features": None, | 
					
						
						|  | "maskmem_pos_enc": None, | 
					
						
						|  | "pred_masks": current_out["pred_masks"][obj_slice], | 
					
						
						|  | "obj_ptr": current_out["obj_ptr"][obj_slice], | 
					
						
						|  | } | 
					
						
						|  | if maskmem_features is not None: | 
					
						
						|  | obj_out["maskmem_features"] = maskmem_features[obj_slice] | 
					
						
						|  | if maskmem_pos_enc is not None: | 
					
						
						|  | obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc] | 
					
						
						|  | obj_output_dict[storage_key][frame_idx] = obj_out | 
					
						
						|  |  | 
					
						
						|  | @torch.inference_mode() | 
					
						
						|  | def propagate_in_video_preflight(self, inference_state): | 
					
						
						|  | """Prepare inference_state and consolidate temporary outputs before tracking.""" | 
					
						
						|  |  | 
					
						
						|  | inference_state["tracking_has_started"] = True | 
					
						
						|  | batch_size = _get_obj_num(inference_state) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] | 
					
						
						|  | output_dict = inference_state["output_dict"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | consolidated_frame_inds = inference_state["consolidated_frame_inds"] | 
					
						
						|  | for is_cond in [False, True]: | 
					
						
						|  |  | 
					
						
						|  | storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | temp_frame_inds = set() | 
					
						
						|  | for obj_temp_output_dict in temp_output_dict_per_obj.values(): | 
					
						
						|  | temp_frame_inds.update(obj_temp_output_dict[storage_key].keys()) | 
					
						
						|  | consolidated_frame_inds[storage_key].update(temp_frame_inds) | 
					
						
						|  |  | 
					
						
						|  | for frame_idx in temp_frame_inds: | 
					
						
						|  | consolidated_out = self._consolidate_temp_output_across_obj( | 
					
						
						|  | inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | output_dict[storage_key][frame_idx] = consolidated_out | 
					
						
						|  | self._add_output_per_object( | 
					
						
						|  | inference_state, frame_idx, consolidated_out, storage_key | 
					
						
						|  | ) | 
					
						
						|  | clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( | 
					
						
						|  | self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 | 
					
						
						|  | ) | 
					
						
						|  | if clear_non_cond_mem: | 
					
						
						|  |  | 
					
						
						|  | self._clear_non_cond_mem_around_input(inference_state, frame_idx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for obj_temp_output_dict in temp_output_dict_per_obj.values(): | 
					
						
						|  | obj_temp_output_dict[storage_key].clear() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for frame_idx in output_dict["cond_frame_outputs"]: | 
					
						
						|  | output_dict["non_cond_frame_outputs"].pop(frame_idx, None) | 
					
						
						|  | for obj_output_dict in inference_state["output_dict_per_obj"].values(): | 
					
						
						|  | for frame_idx in obj_output_dict["cond_frame_outputs"]: | 
					
						
						|  | obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None) | 
					
						
						|  | for frame_idx in consolidated_frame_inds["cond_frame_outputs"]: | 
					
						
						|  | assert frame_idx in output_dict["cond_frame_outputs"] | 
					
						
						|  | consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_consolidated_frame_inds = ( | 
					
						
						|  | consolidated_frame_inds["cond_frame_outputs"] | 
					
						
						|  | | consolidated_frame_inds["non_cond_frame_outputs"] | 
					
						
						|  | ) | 
					
						
						|  | input_frames_inds = set() | 
					
						
						|  | for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values(): | 
					
						
						|  | input_frames_inds.update(point_inputs_per_frame.keys()) | 
					
						
						|  | for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values(): | 
					
						
						|  | input_frames_inds.update(mask_inputs_per_frame.keys()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @torch.inference_mode() | 
					
						
						|  | def propagate_in_video( | 
					
						
						|  | self, | 
					
						
						|  | inference_state, | 
					
						
						|  | start_frame_idx=None, | 
					
						
						|  | max_frame_num_to_track=None, | 
					
						
						|  | reverse=False, | 
					
						
						|  | ): | 
					
						
						|  | """Propagate the input points across frames to track in the entire video.""" | 
					
						
						|  | self.propagate_in_video_preflight(inference_state) | 
					
						
						|  |  | 
					
						
						|  | output_dict = inference_state["output_dict"] | 
					
						
						|  | consolidated_frame_inds = inference_state["consolidated_frame_inds"] | 
					
						
						|  | obj_ids = inference_state["obj_ids"] | 
					
						
						|  | num_frames = inference_state["num_frames"] | 
					
						
						|  | batch_size = _get_obj_num(inference_state) | 
					
						
						|  | if len(output_dict["cond_frame_outputs"]) == 0: | 
					
						
						|  | raise RuntimeError("No points are provided; please add points first") | 
					
						
						|  | clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( | 
					
						
						|  | self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if start_frame_idx is None: | 
					
						
						|  |  | 
					
						
						|  | start_frame_idx = min(output_dict["cond_frame_outputs"]) | 
					
						
						|  | if max_frame_num_to_track is None: | 
					
						
						|  |  | 
					
						
						|  | max_frame_num_to_track = num_frames | 
					
						
						|  | if reverse: | 
					
						
						|  | end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0) | 
					
						
						|  | if start_frame_idx > 0: | 
					
						
						|  | processing_order = range(start_frame_idx, end_frame_idx - 1, -1) | 
					
						
						|  | else: | 
					
						
						|  | processing_order = [] | 
					
						
						|  | else: | 
					
						
						|  | end_frame_idx = min( | 
					
						
						|  | start_frame_idx + max_frame_num_to_track, num_frames - 1 | 
					
						
						|  | ) | 
					
						
						|  | processing_order = range(start_frame_idx, end_frame_idx + 1) | 
					
						
						|  |  | 
					
						
						|  | for frame_idx in tqdm(processing_order, desc="propagate in video", disable=True): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if frame_idx in consolidated_frame_inds["cond_frame_outputs"]: | 
					
						
						|  | storage_key = "cond_frame_outputs" | 
					
						
						|  | current_out = output_dict[storage_key][frame_idx] | 
					
						
						|  | pred_masks = current_out["pred_masks"] | 
					
						
						|  | if clear_non_cond_mem: | 
					
						
						|  |  | 
					
						
						|  | self._clear_non_cond_mem_around_input(inference_state, frame_idx) | 
					
						
						|  | elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]: | 
					
						
						|  | storage_key = "non_cond_frame_outputs" | 
					
						
						|  | current_out = output_dict[storage_key][frame_idx] | 
					
						
						|  | pred_masks = current_out["pred_masks"] | 
					
						
						|  | else: | 
					
						
						|  | storage_key = "non_cond_frame_outputs" | 
					
						
						|  | current_out, pred_masks = self._run_single_frame_inference( | 
					
						
						|  | inference_state=inference_state, | 
					
						
						|  | output_dict=output_dict, | 
					
						
						|  | frame_idx=frame_idx, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | is_init_cond_frame=False, | 
					
						
						|  | point_inputs=None, | 
					
						
						|  | mask_inputs=None, | 
					
						
						|  | reverse=reverse, | 
					
						
						|  | run_mem_encoder=True, | 
					
						
						|  | ) | 
					
						
						|  | output_dict[storage_key][frame_idx] = current_out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._add_output_per_object( | 
					
						
						|  | inference_state, frame_idx, current_out, storage_key | 
					
						
						|  | ) | 
					
						
						|  | inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _, video_res_masks = self._get_orig_video_res_output( | 
					
						
						|  | inference_state, pred_masks | 
					
						
						|  | ) | 
					
						
						|  | yield frame_idx, obj_ids, video_res_masks | 
					
						
						|  |  | 
					
						
						|  | def fill_holes_in_mask_scores(mask, max_area): | 
					
						
						|  | """ | 
					
						
						|  | A post processor to fill small holes in mask scores with area under `max_area`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert max_area > 0, "max_area must be positive" | 
					
						
						|  | labels, areas = get_connected_components(mask <= 0) | 
					
						
						|  | is_hole = (labels > 0) & (areas <= max_area) | 
					
						
						|  |  | 
					
						
						|  | mask = torch.where(is_hole, 0.1, mask) | 
					
						
						|  | return mask | 
					
						
						|  |  | 
					
						
						|  | def get_connected_components(mask): | 
					
						
						|  | """ | 
					
						
						|  | Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W). | 
					
						
						|  |  | 
					
						
						|  | Inputs: | 
					
						
						|  | - mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is | 
					
						
						|  | background. | 
					
						
						|  |  | 
					
						
						|  | Outputs: | 
					
						
						|  | - labels: A tensor of shape (N, 1, H, W) containing the connected component labels | 
					
						
						|  | for foreground pixels and 0 for background pixels. | 
					
						
						|  | - counts: A tensor of shape (N, 1, H, W) containing the area of the connected | 
					
						
						|  | components for foreground pixels and 0 for background pixels. | 
					
						
						|  | """ | 
					
						
						|  | from torch.utils.cpp_extension import load | 
					
						
						|  | os.system("wget https://github.com/facebookresearch/sam2/blob/main/sam2/csrc/connected_components.cu") | 
					
						
						|  | get_connected_componnets = load( | 
					
						
						|  | name="get_connected_componnets", | 
					
						
						|  | sources=["./connected_components.cu"], | 
					
						
						|  | verbose=True, | 
					
						
						|  | extra_cuda_cflags=[ | 
					
						
						|  | "-DCUDA_HAS_FP16=1", | 
					
						
						|  | "-D__CUDA_NO_HALF_OPERATORS__", | 
					
						
						|  | "-D__CUDA_NO_HALF_CONVERSIONS__", | 
					
						
						|  | "-D__CUDA_NO_HALF2_OPERATORS__", | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return get_connected_componnets.get_connected_componnets(mask.to(torch.uint8).contiguous()) |