import numpy as np from torch.optim.lr_scheduler import _LRScheduler class CosineWarmup(_LRScheduler): def __init__(self, optimizer, warmup_steps, total_steps, eta_ratio=0.1, last_epoch=-1): self.warmup_steps = warmup_steps self.total_steps = total_steps self.eta_ratio = eta_ratio # The ratio of minimum to maximum learning rate super(CosineWarmup, self).__init__(optimizer, last_epoch) def get_lr(self): if self.last_epoch < self.warmup_steps: return [base_lr * self.last_epoch / self.warmup_steps for base_lr in self.base_lrs] progress = (self.last_epoch - self.warmup_steps) / (self.total_steps - self.warmup_steps) cosine_decay = 0.5 * (1 + np.cos(np.pi * progress)) decayed_lr = (1 - self.eta_ratio) * cosine_decay + self.eta_ratio return [decayed_lr * base_lr for base_lr in self.base_lrs]