File size: 9,031 Bytes
e54915d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d65f3a2
 
 
 
 
 
 
e54915d
 
 
d65f3a2
e54915d
 
 
 
 
 
d79b4f8
e54915d
 
d79b4f8
 
 
 
 
 
 
 
 
 
 
 
e54915d
 
 
d65f3a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e54915d
 
 
 
d65f3a2
e54915d
 
d65f3a2
 
 
 
 
 
 
 
 
 
 
e54915d
 
 
d65f3a2
 
 
 
 
 
e54915d
d65f3a2
 
 
 
e54915d
d65f3a2
e54915d
d65f3a2
e54915d
d65f3a2
e54915d
 
 
d65f3a2
e54915d
d65f3a2
e54915d
d65f3a2
 
 
 
 
e54915d
d65f3a2
e54915d
d65f3a2
 
 
e54915d
d65f3a2
 
 
 
 
 
e54915d
d65f3a2
 
e54915d
 
 
d65f3a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e54915d
d65f3a2
 
 
e54915d
d65f3a2
 
 
 
 
 
 
 
 
 
 
 
 
d79b4f8
d65f3a2
 
 
e54915d
 
d79b4f8
e54915d
d65f3a2
 
e54915d
d65f3a2
e54915d
d65f3a2
e54915d
d65f3a2
 
 
d79b4f8
d65f3a2
 
 
 
d79b4f8
d65f3a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e54915d
 
 
d65f3a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/usr/bin/env
import os
#os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:4096'
import uuid

import wandb
import fsspec
import hydra
import lightning as L
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import ModelCheckpoint, GradientAccumulationScheduler
import omegaconf
import rich.syntax
import rich.tree
import torch
import sys
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

from . import dataset as dataloader
from . import dataloading_for_dynamic_batching as dynamic_dataloader
from .diffusion import Diffusion
from .utils import utils
from .new_tokenizer.ape_tokenizer import APETokenizer
from .tokenizer.my_tokenizers import SMILES_SPE_Tokenizer
from .helm_tokenizer.helm_tokenizer import HelmTokenizer

from lightning.pytorch.strategies import DDPStrategy
from datasets import load_dataset



omegaconf.OmegaConf.register_new_resolver('cwd', os.getcwd)
omegaconf.OmegaConf.register_new_resolver('device_count', torch.cuda.device_count)
omegaconf.OmegaConf.register_new_resolver('eval', eval)
omegaconf.OmegaConf.register_new_resolver('div_up', lambda x, y: (x + y - 1) // y)
omegaconf.OmegaConf.register_new_resolver("env_or", lambda k, d: os.getenv(k, d))

def _load_from_checkpoint(config, tokenizer):
    """Create Diffusion model; load weights if checkpoint_path is set."""
    if "hf" in str(config.get("backbone", "")):
        return Diffusion(config, tokenizer=tokenizer).to("cuda")

    ckpt_path = config.eval.checkpoint_path
    model = Diffusion.load_from_checkpoint(
        ckpt_path,
        tokenizer=tokenizer,
        config=config,
        map_location="cuda" if torch.cuda.is_available() else "cpu",
    )
    return model

@L.pytorch.utilities.rank_zero_only
def print_config(
    config: omegaconf.DictConfig,
    resolve: bool = True,
    save_cfg: bool = True) -> None:
    """
    Prints content of DictConfig using Rich library and its tree structure.
    
    Args:
        config (DictConfig): Configuration composed by Hydra.
        resolve (bool): Whether to resolve reference fields of DictConfig.
        save_cfg (bool): Whether to save the configuration tree to a file.
    """

    style = 'dim'
    tree = rich.tree.Tree('CONFIG', style=style, guide_style=style)

    fields = config.keys()
    for field in fields:
        branch = tree.add(field, style=style, guide_style=style)

        config_section = config.get(field)
        branch_content = str(config_section)
        if isinstance(config_section, omegaconf.DictConfig):
            branch_content = omegaconf.OmegaConf.to_yaml(
            config_section, resolve=resolve)

        branch.add(rich.syntax.Syntax(branch_content, 'yaml'))
    rich.print(tree)
    if save_cfg:
        with fsspec.open(
            '{}/config_tree.txt'.format(
            config.checkpointing.save_dir), 'w') as fp:
            rich.print(tree, file=fp)


@L.pytorch.utilities.rank_zero_only
def print_batch(train_ds, valid_ds, tokenizer, k=64):
    #for dl_type, dl in [
    #('train', train_ds), ('valid', valid_ds)]:
    
    for dl_type, dl in [
        ('train', train_ds)]:
        print(f'Printing {dl_type} dataloader batch.')
        batch = next(iter(dl))
        print('Batch input_ids.shape', batch['input_ids'].shape)
        first = batch['input_ids'][0, :k]
        last = batch['input_ids'][0, -k:]
        print(f'First {k} tokens:', tokenizer.decode(first))
        print('ids:', first)
        print(f'Last {k} tokens:', tokenizer.decode(last))
        print('ids:', last)


def generate_samples(config, logger, tokenizer):
    logger.info('Generating samples.')
    model = _load_from_checkpoint(config=config, tokenizer=tokenizer)
    # model.gen_ppl_metric.reset()
    
    #stride_length = config.sampling.stride_length
    #num_strides = config.sampling.num_strides
 
    for _ in range(config.sampling.num_sample_batches):
        samples = model.restore_model_and_sample(num_steps=config.sampling.steps)
        peptide_sequences = model.tokenizer.batch_decode(samples)
        model.compute_generative_perplexity(peptide_sequences)
  
    print('Peptide samples:', peptide_sequences)
 
    print('Generative perplexity:', model.compute_masked_perplexity())
  
    return peptide_sequences


def ppl_eval(config, logger, tokenizer, data_module):
    logger.info('Starting Zero Shot Eval.')

    model = _load_from_checkpoint(config=config, tokenizer=tokenizer)

    wandb_logger = None
    if config.get('wandb', None) is not None:
        wandb_logger = L.pytorch.loggers.WandbLogger(
        config=omegaconf.OmegaConf.to_object(config),
        ** config.wandb)
  
    callbacks = []
 
    if 'callbacks' in config:
        for _, callback in config.callbacks.items():
            callbacks.append(hydra.utils.instantiate(callback))
   
    trainer = hydra.utils.instantiate(
        config.trainer,
        default_root_dir=os.getcwd(),
        callbacks=callbacks,
        strategy=DDPStrategy(find_unused_parameters = True),
        logger=wandb_logger)
  
    #_, valid_ds = dataloader.get_dataloaders(config, tokenizer, skiptrain=True, valid_seed=config.seed)
    trainer.test(model, data_module)


def _train(config, logger, tokenizer, data_module):
    logger.info('Starting Training.')
    wandb_logger = None

    if config.get('wandb', None) is not None:
        unique_id = str(uuid.uuid4())

        config.wandb.id = f"{config.wandb.id}_{unique_id}"

        wandb_logger = L.pytorch.loggers.WandbLogger(
            config=omegaconf.OmegaConf.to_object(config),
            ** config.wandb)

    if (config.checkpointing.resume_from_ckpt
        and config.checkpointing.resume_ckpt_path is not None
        and utils.fsspec_exists(
            config.checkpointing.resume_ckpt_path)):
        ckpt_path = config.checkpointing.resume_ckpt_path
    else:
        ckpt_path = None

    # Lightning callbacks
    callbacks = []
    if 'callbacks' in config:
        for callback_name, callback_config in config.callbacks.items():
            if callback_name == 'model_checkpoint':
                model_checkpoint_config = {k: v for k, v in callback_config.items() if k != '_target_'}
                callbacks.append(ModelCheckpoint(**model_checkpoint_config))
            else:
                callbacks.append(hydra.utils.instantiate(callback_config))
    
    if config.training.accumulator:
        accumulator = GradientAccumulationScheduler(scheduling = {1: 5, 2: 4, 3: 3, 4: 1})
        callbacks.append(accumulator)
  
    trainer = hydra.utils.instantiate(
        config.trainer,
        default_root_dir=os.getcwd(),
        callbacks=callbacks,
        accelerator='cuda',
        strategy=DDPStrategy(find_unused_parameters = True),
        devices=[2,3,4,5,6,7],
        logger=wandb_logger)
    
    model = Diffusion(config, tokenizer=tokenizer)

    if config.backbone == "finetune_roformer" and config.eval.checkpoint_path:
        checkpoint = torch.load(config.eval.checkpoint_path, map_location="cpu")
        state = checkpoint.get("state_dict", checkpoint)
        model.load_state_dict(state, strict=False)

    trainer.fit(model, datamodule=data_module, ckpt_path=ckpt_path)

  
@hydra.main(version_base=None, config_path='configs', config_name='config')
def main(config):
    """
        Main entry point for training
   """   
    L.seed_everything(config.seed)
 
    # print_config(config, resolve=True, save_cfg=True)

    logger = utils.get_logger(__name__)
    # load PeptideCLM tokenizer
    tok_dir = config.paths.tokenizers
    if config.vocab == 'new_smiles':
        tokenizer = APETokenizer()
        tokenizer.load_vocabulary(f'{tok_dir}/peptide_smiles_600_vocab.json')
    elif config.vocab == 'old_smiles':
        tokenizer = SMILES_SPE_Tokenizer(f'{tok_dir}/new_vocab.txt', 
                                   f'{tok_dir}/new_splits.txt')
    elif config.vocab == 'selfies':
        tokenizer = APETokenizer()
        tokenizer.load_vocabulary(f'{tok_dir}/peptide_selfies_600_vocab.json')
    elif config.vocab == 'helm':
        tokenizer = HelmTokenizer(f'{tok_dir}/monomer_vocab.txt')

    if config.backbone == 'finetune_roformer':
        train_dataset = load_dataset('csv', data_files=config.data.train)
        val_dataset = load_dataset('csv', data_files=config.data.valid)

        train_dataset = train_dataset['train']#.select(lst)
        val_dataset = val_dataset['train']#.select(lst)
        data_module = dataloader.CustomDataModule(train_dataset, val_dataset, None, tokenizer, batch_size=config.loader.global_batch_size)
    else:
        data_module = dynamic_dataloader.CustomDataModule(f'{config.paths.data}/smiles/11M_smiles_old_tokenizer_no_limit', tokenizer)
    
    if config.mode == 'sample_eval':
        generate_samples(config, logger, tokenizer)
    elif config.mode == 'ppl_eval':
        ppl_eval(config, logger, tokenizer, data_module)
    else:
        _train(config, logger, tokenizer, data_module)


if __name__ == '__main__':
    main()