File size: 9,031 Bytes
e54915d d65f3a2 e54915d d65f3a2 e54915d d79b4f8 e54915d d79b4f8 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 d79b4f8 d65f3a2 e54915d d79b4f8 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 e54915d d65f3a2 d79b4f8 d65f3a2 d79b4f8 d65f3a2 e54915d d65f3a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
#!/usr/bin/env
import os
#os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:4096'
import uuid
import wandb
import fsspec
import hydra
import lightning as L
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import ModelCheckpoint, GradientAccumulationScheduler
import omegaconf
import rich.syntax
import rich.tree
import torch
import sys
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from . import dataset as dataloader
from . import dataloading_for_dynamic_batching as dynamic_dataloader
from .diffusion import Diffusion
from .utils import utils
from .new_tokenizer.ape_tokenizer import APETokenizer
from .tokenizer.my_tokenizers import SMILES_SPE_Tokenizer
from .helm_tokenizer.helm_tokenizer import HelmTokenizer
from lightning.pytorch.strategies import DDPStrategy
from datasets import load_dataset
omegaconf.OmegaConf.register_new_resolver('cwd', os.getcwd)
omegaconf.OmegaConf.register_new_resolver('device_count', torch.cuda.device_count)
omegaconf.OmegaConf.register_new_resolver('eval', eval)
omegaconf.OmegaConf.register_new_resolver('div_up', lambda x, y: (x + y - 1) // y)
omegaconf.OmegaConf.register_new_resolver("env_or", lambda k, d: os.getenv(k, d))
def _load_from_checkpoint(config, tokenizer):
"""Create Diffusion model; load weights if checkpoint_path is set."""
if "hf" in str(config.get("backbone", "")):
return Diffusion(config, tokenizer=tokenizer).to("cuda")
ckpt_path = config.eval.checkpoint_path
model = Diffusion.load_from_checkpoint(
ckpt_path,
tokenizer=tokenizer,
config=config,
map_location="cuda" if torch.cuda.is_available() else "cpu",
)
return model
@L.pytorch.utilities.rank_zero_only
def print_config(
config: omegaconf.DictConfig,
resolve: bool = True,
save_cfg: bool = True) -> None:
"""
Prints content of DictConfig using Rich library and its tree structure.
Args:
config (DictConfig): Configuration composed by Hydra.
resolve (bool): Whether to resolve reference fields of DictConfig.
save_cfg (bool): Whether to save the configuration tree to a file.
"""
style = 'dim'
tree = rich.tree.Tree('CONFIG', style=style, guide_style=style)
fields = config.keys()
for field in fields:
branch = tree.add(field, style=style, guide_style=style)
config_section = config.get(field)
branch_content = str(config_section)
if isinstance(config_section, omegaconf.DictConfig):
branch_content = omegaconf.OmegaConf.to_yaml(
config_section, resolve=resolve)
branch.add(rich.syntax.Syntax(branch_content, 'yaml'))
rich.print(tree)
if save_cfg:
with fsspec.open(
'{}/config_tree.txt'.format(
config.checkpointing.save_dir), 'w') as fp:
rich.print(tree, file=fp)
@L.pytorch.utilities.rank_zero_only
def print_batch(train_ds, valid_ds, tokenizer, k=64):
#for dl_type, dl in [
#('train', train_ds), ('valid', valid_ds)]:
for dl_type, dl in [
('train', train_ds)]:
print(f'Printing {dl_type} dataloader batch.')
batch = next(iter(dl))
print('Batch input_ids.shape', batch['input_ids'].shape)
first = batch['input_ids'][0, :k]
last = batch['input_ids'][0, -k:]
print(f'First {k} tokens:', tokenizer.decode(first))
print('ids:', first)
print(f'Last {k} tokens:', tokenizer.decode(last))
print('ids:', last)
def generate_samples(config, logger, tokenizer):
logger.info('Generating samples.')
model = _load_from_checkpoint(config=config, tokenizer=tokenizer)
# model.gen_ppl_metric.reset()
#stride_length = config.sampling.stride_length
#num_strides = config.sampling.num_strides
for _ in range(config.sampling.num_sample_batches):
samples = model.restore_model_and_sample(num_steps=config.sampling.steps)
peptide_sequences = model.tokenizer.batch_decode(samples)
model.compute_generative_perplexity(peptide_sequences)
print('Peptide samples:', peptide_sequences)
print('Generative perplexity:', model.compute_masked_perplexity())
return peptide_sequences
def ppl_eval(config, logger, tokenizer, data_module):
logger.info('Starting Zero Shot Eval.')
model = _load_from_checkpoint(config=config, tokenizer=tokenizer)
wandb_logger = None
if config.get('wandb', None) is not None:
wandb_logger = L.pytorch.loggers.WandbLogger(
config=omegaconf.OmegaConf.to_object(config),
** config.wandb)
callbacks = []
if 'callbacks' in config:
for _, callback in config.callbacks.items():
callbacks.append(hydra.utils.instantiate(callback))
trainer = hydra.utils.instantiate(
config.trainer,
default_root_dir=os.getcwd(),
callbacks=callbacks,
strategy=DDPStrategy(find_unused_parameters = True),
logger=wandb_logger)
#_, valid_ds = dataloader.get_dataloaders(config, tokenizer, skiptrain=True, valid_seed=config.seed)
trainer.test(model, data_module)
def _train(config, logger, tokenizer, data_module):
logger.info('Starting Training.')
wandb_logger = None
if config.get('wandb', None) is not None:
unique_id = str(uuid.uuid4())
config.wandb.id = f"{config.wandb.id}_{unique_id}"
wandb_logger = L.pytorch.loggers.WandbLogger(
config=omegaconf.OmegaConf.to_object(config),
** config.wandb)
if (config.checkpointing.resume_from_ckpt
and config.checkpointing.resume_ckpt_path is not None
and utils.fsspec_exists(
config.checkpointing.resume_ckpt_path)):
ckpt_path = config.checkpointing.resume_ckpt_path
else:
ckpt_path = None
# Lightning callbacks
callbacks = []
if 'callbacks' in config:
for callback_name, callback_config in config.callbacks.items():
if callback_name == 'model_checkpoint':
model_checkpoint_config = {k: v for k, v in callback_config.items() if k != '_target_'}
callbacks.append(ModelCheckpoint(**model_checkpoint_config))
else:
callbacks.append(hydra.utils.instantiate(callback_config))
if config.training.accumulator:
accumulator = GradientAccumulationScheduler(scheduling = {1: 5, 2: 4, 3: 3, 4: 1})
callbacks.append(accumulator)
trainer = hydra.utils.instantiate(
config.trainer,
default_root_dir=os.getcwd(),
callbacks=callbacks,
accelerator='cuda',
strategy=DDPStrategy(find_unused_parameters = True),
devices=[2,3,4,5,6,7],
logger=wandb_logger)
model = Diffusion(config, tokenizer=tokenizer)
if config.backbone == "finetune_roformer" and config.eval.checkpoint_path:
checkpoint = torch.load(config.eval.checkpoint_path, map_location="cpu")
state = checkpoint.get("state_dict", checkpoint)
model.load_state_dict(state, strict=False)
trainer.fit(model, datamodule=data_module, ckpt_path=ckpt_path)
@hydra.main(version_base=None, config_path='configs', config_name='config')
def main(config):
"""
Main entry point for training
"""
L.seed_everything(config.seed)
# print_config(config, resolve=True, save_cfg=True)
logger = utils.get_logger(__name__)
# load PeptideCLM tokenizer
tok_dir = config.paths.tokenizers
if config.vocab == 'new_smiles':
tokenizer = APETokenizer()
tokenizer.load_vocabulary(f'{tok_dir}/peptide_smiles_600_vocab.json')
elif config.vocab == 'old_smiles':
tokenizer = SMILES_SPE_Tokenizer(f'{tok_dir}/new_vocab.txt',
f'{tok_dir}/new_splits.txt')
elif config.vocab == 'selfies':
tokenizer = APETokenizer()
tokenizer.load_vocabulary(f'{tok_dir}/peptide_selfies_600_vocab.json')
elif config.vocab == 'helm':
tokenizer = HelmTokenizer(f'{tok_dir}/monomer_vocab.txt')
if config.backbone == 'finetune_roformer':
train_dataset = load_dataset('csv', data_files=config.data.train)
val_dataset = load_dataset('csv', data_files=config.data.valid)
train_dataset = train_dataset['train']#.select(lst)
val_dataset = val_dataset['train']#.select(lst)
data_module = dataloader.CustomDataModule(train_dataset, val_dataset, None, tokenizer, batch_size=config.loader.global_batch_size)
else:
data_module = dynamic_dataloader.CustomDataModule(f'{config.paths.data}/smiles/11M_smiles_old_tokenizer_no_limit', tokenizer)
if config.mode == 'sample_eval':
generate_samples(config, logger, tokenizer)
elif config.mode == 'ppl_eval':
ppl_eval(config, logger, tokenizer, data_module)
else:
_train(config, logger, tokenizer, data_module)
if __name__ == '__main__':
main()
|