Commit
·
0e28a9a
0
Parent(s):
initial commit
Browse files- .gitattributes +36 -0
- README.md +90 -0
- added_tokens.json +27 -0
- config.json +64 -0
- configuration_flmaudio.py +222 -0
- depth_gpt.py +326 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +550 -0
- modeling_flmaudio.py +1524 -0
- special_tokens_map.json +34 -0
- tokenizer-e351c8d8-checkpoint125.safetensors +3 -0
- tokenizer.json +3 -0
- tokenizer_config.json +234 -0
- vocab.json +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# FLM-Audio
|
| 2 |
+
FLM-Audio is a audio-language subversion of [RoboEgo/FLM-Ego](https://arxiv.org/abs/2506.01934v1) -- an omnimodal model with native full duplexity. It simultaneously listens, speaks, and composes internal monologue, delivering low‑latency, duplex conversational responses in both English and Chinese. FLM‑Audio is robust to noise and user interruptions, prioritizing responsiveness and naturalness.
|
| 3 |
+
|
| 4 |
+
## 📄 Model Card
|
| 5 |
+
|
| 6 |
+
- **Language(s):** Chinese; English;
|
| 7 |
+
|
| 8 |
+
## 📚 Technical Report
|
| 9 |
+
Motivation & Survey: [Toward Embodied AGI: A Review of Embodied AI and the Road Ahead](https://arxiv.org/abs/2505.14235)
|
| 10 |
+
|
| 11 |
+
System Card: [RoboEgo System Card: An Omnimodal Model with Native Full Duplexity](https://arxiv.org/abs/2506.01934v1)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
## ⚠️ Bias, Risks, and Limitations
|
| 15 |
+
|
| 16 |
+
Despite extensive data cleaning, FLM‑Audio may still produce undesired content (e.g., biased or offensive language). Users should not disseminate unsafe outputs. Project authors are not responsible for misuse or harmful consequences.
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
## 🚀 Quick Start
|
| 20 |
+
Please refer to the repository of [FLM-Audio server](https://github.com/cofe-ai/flm-audio) to interact with FLM-Audio via WebUI.
|
| 21 |
+
|
| 22 |
+
## ℹ️ Usage Notice
|
| 23 |
+
This project is intended for research use only in compliance with applicable laws. For commercial use, please contact us.
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
## 🏗️ Training Details
|
| 27 |
+
|
| 28 |
+
### Overview
|
| 29 |
+
We initialize the FLM-Audio backbone
|
| 30 |
+
with a pre-trained language model. This initialization strategy significantly reduces computational cost while remaining effective for validating the core concepts of omnimodality and full duplexity. The training process of FLM-Audio consists of two stages: post-training and fine-tuning.
|
| 31 |
+
|
| 32 |
+
#### 1. Post-training
|
| 33 |
+
In post-training, we introduce audio-oriented capabilities to the backbone model using a large-scale corpus of audio data, while preserving the language modeling abilities of the pre-trained foundation model. This stage encompasses a broad spectrum of speech-related tasks, including automatic speech recognition (ASR), text-to-speech synthesis (TTS).
|
| 34 |
+
|
| 35 |
+
#### 2. Supervised Fine-tuning (SFT)
|
| 36 |
+
In this stage, we fine-tune FLM-Audio to function as a general-purpose, full-duplex audio-language chatbot. To this
|
| 37 |
+
end, we primarily utilize synthesized multi-turn, speech dialogues. This dataset is further augmented to support full-duplex
|
| 38 |
+
interruption handling and to enhance robustness against environmental noise.
|
| 39 |
+
|
| 40 |
+
### Model Architecture
|
| 41 |
+
To handle real-time language and audio, FLM-Audio features an LLM-based backbone with 7B parameters, enhanced by an audio encoder that embeds incoming speech into semantic + acoustic tokens, and a decoder that generates audio tokens. Listening, speaking, and internal monologue are interleaved in synchronized timesteps, with improved stream organization compared to related work (e.g. Moshi).
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
## 🧪 Evaluation
|
| 45 |
+
|
| 46 |
+
### Audio Understanding, Generation
|
| 47 |
+
FLM-Audio performs comparably with strong audio-language models, most of which lacks native duplexity.
|
| 48 |
+
|
| 49 |
+
| Model | ASR-zh↓ | ASR-en↓ | TTS-zh↓ |TTS-en↓ |
|
| 50 |
+
|------------|:-------:|:----------:|:---------:|:---------:|
|
| 51 |
+
| | Fleurs-zh |LibriSpeech-clean | Seed-tts-zh| Seed-tts-en |
|
| 52 |
+
| GPT-4o | 5.4 | - | - | -|
|
| 53 |
+
| MinMo | 3.0 | 1.7| 2.48 | 2.90 |
|
| 54 |
+
| GLM-4-Voice | - |2.8| 2.10 | 2.91 |
|
| 55 |
+
| Moshi | - |5.7| - | - |
|
| 56 |
+
| Qwen-2.5-omni | 3.0 |1.8| 1.70 | 2.72 |
|
| 57 |
+
| FLM-Audio | 5.4 |3.2| 2.10 | 2.95 |
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
### Chat
|
| 61 |
+
Regarding chatting experience, FLM-Audio demonstrates advantages in speech naturalness and responsiveness. The following are LLM-scores for audio chatting scenarios like Alpaca-eval, as well as human evaluation in video-grounded omnimodal chatting. The human scores in Naturalness and Responsiveness reflect the contribution of the same audio-oriented training as FLM-Audio.
|
| 62 |
+
|
| 63 |
+
| Model | LLM score↑ | Helpfulness↑ | Naturalness↑| Responsiveness↑| Robustness↑|
|
| 64 |
+
|--------------|:-------:|:------:|:-----:|:-----:|:-----:|
|
| 65 |
+
| Qwen-2.5-omni | 6.36 | 7.4 |7.9 | 8.1| 7.7 |
|
| 66 |
+
| FLM-Audio | 6.58 | 7.2 | 8.2 | 8.8 | 8.0 |
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
## 🙏 Acknowledgements
|
| 70 |
+
This work is supported by the National Science and Technology Major Project (No. 2022ZD0116314).
|
| 71 |
+
|
| 72 |
+
## 🗨️ Citation
|
| 73 |
+
If you find our work helpful, please consider citing the following papers.
|
| 74 |
+
```
|
| 75 |
+
@article{embodied-agi,
|
| 76 |
+
title={Toward embodied agi: A review of embodied ai and the road ahead},
|
| 77 |
+
author={Wang, Yequan and Sun, Aixin},
|
| 78 |
+
journal={arXiv preprint arXiv:2505.14235},
|
| 79 |
+
year={2025}
|
| 80 |
+
}
|
| 81 |
+
@article{roboego,
|
| 82 |
+
title={RoboEgo System Card: An Omnimodal Model with Native Full Duplexity},
|
| 83 |
+
author={Yao, Yiqun and Li, Xiang and Jiang, Xin and Fang, Xuezhi and Yu, Naitong and Sun, Aixin and Wang, Yequan},
|
| 84 |
+
journal={arXiv preprint arXiv:2506.01934},
|
| 85 |
+
year={2025}
|
| 86 |
+
}
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
|
added_tokens.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|answer|>": 151667,
|
| 5 |
+
"<|asr|>": 151666,
|
| 6 |
+
"<|box_end|>": 151649,
|
| 7 |
+
"<|box_start|>": 151648,
|
| 8 |
+
"<|endoftext|>": 151643,
|
| 9 |
+
"<|file_sep|>": 151664,
|
| 10 |
+
"<|fim_middle|>": 151660,
|
| 11 |
+
"<|fim_pad|>": 151662,
|
| 12 |
+
"<|fim_prefix|>": 151659,
|
| 13 |
+
"<|fim_suffix|>": 151661,
|
| 14 |
+
"<|im_end|>": 151645,
|
| 15 |
+
"<|im_start|>": 151644,
|
| 16 |
+
"<|image_pad|>": 151655,
|
| 17 |
+
"<|object_ref_end|>": 151647,
|
| 18 |
+
"<|object_ref_start|>": 151646,
|
| 19 |
+
"<|quad_end|>": 151651,
|
| 20 |
+
"<|quad_start|>": 151650,
|
| 21 |
+
"<|repo_name|>": 151663,
|
| 22 |
+
"<|text_wait|>": 151665,
|
| 23 |
+
"<|video_pad|>": 151656,
|
| 24 |
+
"<|vision_end|>": 151653,
|
| 25 |
+
"<|vision_pad|>": 151654,
|
| 26 |
+
"<|vision_start|>": 151652
|
| 27 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"FLMAudioForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": true,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"aud_channel": 8,
|
| 8 |
+
"aud_depthgpt": {
|
| 9 |
+
"bias": false,
|
| 10 |
+
"dropout": 0.0,
|
| 11 |
+
"n_embd": 1024,
|
| 12 |
+
"n_head": 16,
|
| 13 |
+
"n_layer": 6,
|
| 14 |
+
"use_cmlp": true,
|
| 15 |
+
"use_rmsnorm": true,
|
| 16 |
+
"use_swiglu": true
|
| 17 |
+
},
|
| 18 |
+
"aud_vocab_size": 2050,
|
| 19 |
+
"auto_map": {
|
| 20 |
+
"AutoConfig": "configuration_flmaudio.FLMAudioConfig",
|
| 21 |
+
"AutoModel": "modeling_flmaudio.FLMAudioModel",
|
| 22 |
+
"AutoModelForCausalLM": "modeling_flmaudio.FLMAudioForCausalLM"
|
| 23 |
+
},
|
| 24 |
+
"bos_token_id": 151643,
|
| 25 |
+
"disable_att_o_bias": true,
|
| 26 |
+
"eos_token_id": 151645,
|
| 27 |
+
"hidden_act": "silu",
|
| 28 |
+
"hidden_size": 3584,
|
| 29 |
+
"initializer_range": 0.02,
|
| 30 |
+
"input_mult": 1.0,
|
| 31 |
+
"intermediate_size": 18944,
|
| 32 |
+
"max_position_embeddings": 8192,
|
| 33 |
+
"mm_token_info": {
|
| 34 |
+
"aud_emp_token_id": 2049,
|
| 35 |
+
"aud_pad_token_id": 2048,
|
| 36 |
+
"text_wait_token_id": 151665
|
| 37 |
+
},
|
| 38 |
+
"model_type": "FLMAudio",
|
| 39 |
+
"mup_scale_factor": 28.0,
|
| 40 |
+
"num_attention_heads": 28,
|
| 41 |
+
"num_hidden_layers": 28,
|
| 42 |
+
"num_key_value_heads": 4,
|
| 43 |
+
"output_mult": 28.0,
|
| 44 |
+
"pretraining_tp": 1,
|
| 45 |
+
"rms_norm_eps": 1e-05,
|
| 46 |
+
"rope_scaling": {
|
| 47 |
+
"mrope_section": [
|
| 48 |
+
16,
|
| 49 |
+
24,
|
| 50 |
+
24
|
| 51 |
+
],
|
| 52 |
+
"rope_type": "default",
|
| 53 |
+
"type": "default"
|
| 54 |
+
},
|
| 55 |
+
"rope_theta": 1000000,
|
| 56 |
+
"sliding_window": 32768,
|
| 57 |
+
"tie_word_embeddings": false,
|
| 58 |
+
"torch_dtype": "bfloat16",
|
| 59 |
+
"transformers_version": "4.53.1",
|
| 60 |
+
"use_cache": true,
|
| 61 |
+
"use_mup": true,
|
| 62 |
+
"use_sliding_window": false,
|
| 63 |
+
"vocab_size": 151668
|
| 64 |
+
}
|
configuration_flmaudio.py
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
"""FLM-Audio model configuration"""
|
| 21 |
+
|
| 22 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 23 |
+
from transformers.utils import logging
|
| 24 |
+
from dataclasses import dataclass
|
| 25 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 26 |
+
|
| 27 |
+
logger = logging.get_logger(__name__)
|
| 28 |
+
|
| 29 |
+
FLMAUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class TokenInfo(dict):
|
| 34 |
+
text_wait_token_id: int
|
| 35 |
+
aud_pad_token_id: int
|
| 36 |
+
aud_emp_token_id: int
|
| 37 |
+
|
| 38 |
+
def __post_init__(self):
|
| 39 |
+
super().__init__(self, **self.__dict__)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@dataclass
|
| 43 |
+
class DepthGPTConfig(dict):
|
| 44 |
+
n_layer: int
|
| 45 |
+
n_head: int
|
| 46 |
+
n_embd: int
|
| 47 |
+
dropout: float
|
| 48 |
+
bias: bool
|
| 49 |
+
use_cmlp: bool
|
| 50 |
+
use_rmsnorm: bool
|
| 51 |
+
use_swiglu: bool
|
| 52 |
+
|
| 53 |
+
def __post_init__(self):
|
| 54 |
+
super().__init__(self, **self.__dict__)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class FLMAudioConfig(PretrainedConfig):
|
| 58 |
+
r"""
|
| 59 |
+
This is the configuration class to store the configuration of a [`FLMAudio`]. It is used to instantiate an FLMAudio
|
| 60 |
+
model according to the specified arguments, defining the model architecture.
|
| 61 |
+
|
| 62 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 63 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 68 |
+
Vocabulary size of the TeleFLM model. Defines the number of different tokens that can be represented by the
|
| 69 |
+
`inputs_ids` passed when calling [`TeleFLM`]
|
| 70 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 71 |
+
Dimension of the hidden representations.
|
| 72 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 73 |
+
Dimension of the MLP representations.
|
| 74 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 75 |
+
Number of hidden layers in the Transformer decoder.
|
| 76 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 77 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 78 |
+
num_key_value_heads (`int`, *optional*):
|
| 79 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 80 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 81 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 82 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 83 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 84 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 85 |
+
`num_attention_heads`.
|
| 86 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 87 |
+
The non-linear activation function (function or string) in the decoder.
|
| 88 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 89 |
+
The maximum sequence length that this model might ever be used with. TeleFLM supports up to 4096 tokens.
|
| 90 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 91 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 92 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 93 |
+
The epsilon used by the rms normalization layers.
|
| 94 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 95 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 96 |
+
relevant if `config.is_decoder=True`.
|
| 97 |
+
pad_token_id (`int`, *optional*):
|
| 98 |
+
Padding token id.
|
| 99 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 100 |
+
Beginning of stream token id.
|
| 101 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 102 |
+
End of stream token id.
|
| 103 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 104 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 105 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
|
| 106 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
| 107 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 108 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 109 |
+
Whether to tie weight embeddings
|
| 110 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 111 |
+
The base period of the RoPE embeddings.
|
| 112 |
+
rope_scaling (`Dict`, *optional*):
|
| 113 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 114 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
| 115 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 116 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
| 117 |
+
these scaling strategies behave:
|
| 118 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
| 119 |
+
experimental feature, subject to breaking API changes in future versions.
|
| 120 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 121 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 122 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 123 |
+
The dropout ratio for the attention probabilities.
|
| 124 |
+
|
| 125 |
+
```python
|
| 126 |
+
>>> from transformers import FLMAudioModel, FLMAudioConfig
|
| 127 |
+
|
| 128 |
+
>>> # Initializing a FLMAudio configuration
|
| 129 |
+
>>> configuration = FLMAudioConfig()
|
| 130 |
+
|
| 131 |
+
>>> # Initializing a model from FLMAudio configuration
|
| 132 |
+
>>> model = FLMAudioModel(configuration)
|
| 133 |
+
|
| 134 |
+
>>> # Accessing the model configuration
|
| 135 |
+
>>> configuration = model.config
|
| 136 |
+
```"""
|
| 137 |
+
|
| 138 |
+
model_type = "FLMAudio"
|
| 139 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 140 |
+
|
| 141 |
+
def __init__(
|
| 142 |
+
self,
|
| 143 |
+
vocab_size=32000,
|
| 144 |
+
aud_vocab_size=2048,
|
| 145 |
+
aud_channel=8,
|
| 146 |
+
hidden_size=4096,
|
| 147 |
+
intermediate_size=11008,
|
| 148 |
+
num_hidden_layers=32,
|
| 149 |
+
num_attention_heads=32,
|
| 150 |
+
num_key_value_heads=None,
|
| 151 |
+
hidden_act="silu",
|
| 152 |
+
max_position_embeddings=2048,
|
| 153 |
+
initializer_range=0.02,
|
| 154 |
+
rms_norm_eps=1e-6,
|
| 155 |
+
use_cache=True,
|
| 156 |
+
pad_token_id=None,
|
| 157 |
+
bos_token_id=1,
|
| 158 |
+
eos_token_id=2,
|
| 159 |
+
mm_token_info=None,
|
| 160 |
+
aud_depthgpt=None,
|
| 161 |
+
pretraining_tp=1,
|
| 162 |
+
tie_word_embeddings=False,
|
| 163 |
+
rope_theta=10000.0,
|
| 164 |
+
rope_scaling=None,
|
| 165 |
+
attention_bias=False,
|
| 166 |
+
disable_att_o_bias=False,
|
| 167 |
+
attention_dropout=0.0,
|
| 168 |
+
use_mup=False,
|
| 169 |
+
mup_scale_factor=1.0,
|
| 170 |
+
output_mult=1.0,
|
| 171 |
+
input_mult=1.0,
|
| 172 |
+
**kwargs,
|
| 173 |
+
):
|
| 174 |
+
self.vocab_size = vocab_size
|
| 175 |
+
self.aud_vocab_size = aud_vocab_size
|
| 176 |
+
self.aud_channel = aud_channel
|
| 177 |
+
|
| 178 |
+
self.max_position_embeddings = max_position_embeddings
|
| 179 |
+
self.hidden_size = hidden_size
|
| 180 |
+
self.intermediate_size = intermediate_size
|
| 181 |
+
self.num_hidden_layers = num_hidden_layers
|
| 182 |
+
self.num_attention_heads = num_attention_heads
|
| 183 |
+
|
| 184 |
+
# for backward compatibility
|
| 185 |
+
if num_key_value_heads is None:
|
| 186 |
+
num_key_value_heads = num_attention_heads
|
| 187 |
+
|
| 188 |
+
self.num_key_value_heads = num_key_value_heads
|
| 189 |
+
self.hidden_act = hidden_act
|
| 190 |
+
self.initializer_range = initializer_range
|
| 191 |
+
self.rms_norm_eps = rms_norm_eps
|
| 192 |
+
self.pretraining_tp = pretraining_tp
|
| 193 |
+
self.use_cache = use_cache
|
| 194 |
+
self.rope_theta = rope_theta
|
| 195 |
+
self.rope_scaling = rope_scaling
|
| 196 |
+
self.attention_bias = attention_bias
|
| 197 |
+
self.disable_att_o_bias = disable_att_o_bias
|
| 198 |
+
self.attention_dropout = attention_dropout
|
| 199 |
+
self.use_mup = use_mup
|
| 200 |
+
self.mup_scale_factor = mup_scale_factor
|
| 201 |
+
self.output_mult = output_mult
|
| 202 |
+
self.input_mult = input_mult
|
| 203 |
+
|
| 204 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 205 |
+
if self.rope_scaling["type"] == "mrope":
|
| 206 |
+
self.rope_scaling["type"] = "default"
|
| 207 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 208 |
+
rope_config_validation(self, ignore_keys={"mrope_section"})
|
| 209 |
+
|
| 210 |
+
if mm_token_info is not None:
|
| 211 |
+
self.mm_token_info = TokenInfo(**mm_token_info)
|
| 212 |
+
|
| 213 |
+
if aud_depthgpt is not None:
|
| 214 |
+
self.aud_depthgpt = DepthGPTConfig(**aud_depthgpt)
|
| 215 |
+
|
| 216 |
+
super().__init__(
|
| 217 |
+
pad_token_id=pad_token_id,
|
| 218 |
+
bos_token_id=bos_token_id,
|
| 219 |
+
eos_token_id=eos_token_id,
|
| 220 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 221 |
+
**kwargs,
|
| 222 |
+
)
|
depth_gpt.py
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class DepthGPTConfig(PretrainedConfig):
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
block_size: int = 8,
|
| 13 |
+
vocab_size: int = 2049, # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
|
| 14 |
+
n_layer: int = 6,
|
| 15 |
+
n_head: int = 16,
|
| 16 |
+
n_embd: int = 1024,
|
| 17 |
+
dropout: float = 0.0,
|
| 18 |
+
bias: bool = False, # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
|
| 19 |
+
main_hidden_size = 1536,
|
| 20 |
+
pad_token_id = 2048,
|
| 21 |
+
use_cmlp = True,
|
| 22 |
+
use_rmsnorm = False,
|
| 23 |
+
use_swiglu = False
|
| 24 |
+
):
|
| 25 |
+
"""
|
| 26 |
+
{
|
| 27 |
+
"block_size": 8,
|
| 28 |
+
"vocab_size": 2049,
|
| 29 |
+
"n_layer": 6,
|
| 30 |
+
"n_head": 16,
|
| 31 |
+
"n_embd": 1024,
|
| 32 |
+
"dropout": 0.0,
|
| 33 |
+
"bias": false,
|
| 34 |
+
"main_hidden_size": 1536,
|
| 35 |
+
"pad_token_id": 2048,
|
| 36 |
+
"use_cmlp": true
|
| 37 |
+
}
|
| 38 |
+
"""
|
| 39 |
+
# super().__init__(**kwargs)
|
| 40 |
+
self.block_size = block_size
|
| 41 |
+
self.vocab_size = vocab_size
|
| 42 |
+
self.n_layer = n_layer
|
| 43 |
+
self.n_head = n_head
|
| 44 |
+
self.n_embd = n_embd
|
| 45 |
+
self.dropout = dropout
|
| 46 |
+
self.bias = bias
|
| 47 |
+
self.main_hidden_size = main_hidden_size
|
| 48 |
+
self.pad_token_id = pad_token_id
|
| 49 |
+
self.use_cmlp = use_cmlp
|
| 50 |
+
self.use_rmsnorm = use_rmsnorm
|
| 51 |
+
self.use_swiglu = use_swiglu
|
| 52 |
+
|
| 53 |
+
################################################################################################
|
| 54 |
+
# GPT style
|
| 55 |
+
################################################################################################
|
| 56 |
+
|
| 57 |
+
class LayerNorm(nn.Module):
|
| 58 |
+
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
|
| 59 |
+
|
| 60 |
+
def __init__(self, ndim, bias):
|
| 61 |
+
super().__init__()
|
| 62 |
+
self.weight = nn.Parameter(torch.ones(ndim))
|
| 63 |
+
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
| 64 |
+
|
| 65 |
+
def forward(self, input):
|
| 66 |
+
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class RMSNorm(nn.Module):
|
| 70 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 71 |
+
super(RMSNorm, self).__init__()
|
| 72 |
+
self.eps = eps
|
| 73 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 74 |
+
|
| 75 |
+
def _norm(self, x):
|
| 76 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 77 |
+
|
| 78 |
+
def forward(self, x):
|
| 79 |
+
output = self._norm(x.float()).type_as(x)
|
| 80 |
+
return output * self.weight
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class CausalSelfAttention(nn.Module):
|
| 84 |
+
|
| 85 |
+
def __init__(self, config):
|
| 86 |
+
super().__init__()
|
| 87 |
+
assert config.n_embd % config.n_head == 0
|
| 88 |
+
# key, query, value projections for all heads, but in a batch
|
| 89 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
| 90 |
+
# output projection
|
| 91 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
| 92 |
+
# regularization
|
| 93 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
| 94 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
| 95 |
+
self.n_head = config.n_head
|
| 96 |
+
self.n_embd = config.n_embd
|
| 97 |
+
self.dropout = config.dropout
|
| 98 |
+
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
|
| 99 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
| 100 |
+
if not self.flash:
|
| 101 |
+
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
| 102 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
| 103 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
| 104 |
+
.view(1, 1, config.block_size, config.block_size))
|
| 105 |
+
|
| 106 |
+
def forward(self, x):
|
| 107 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
| 108 |
+
|
| 109 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
| 110 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
| 111 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 112 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 113 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 114 |
+
|
| 115 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
| 116 |
+
if self.flash:
|
| 117 |
+
# efficient attention using Flash Attention CUDA kernels
|
| 118 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
|
| 119 |
+
else:
|
| 120 |
+
# manual implementation of attention
|
| 121 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
| 122 |
+
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
|
| 123 |
+
att = F.softmax(att, dim=-1)
|
| 124 |
+
att = self.attn_dropout(att)
|
| 125 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
| 126 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
| 127 |
+
|
| 128 |
+
# output projection
|
| 129 |
+
y = self.resid_dropout(self.c_proj(y))
|
| 130 |
+
return y
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class MLP(nn.Module):
|
| 134 |
+
def __init__(self, config):
|
| 135 |
+
super().__init__()
|
| 136 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
| 137 |
+
self.gelu = nn.GELU()
|
| 138 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
| 139 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 140 |
+
|
| 141 |
+
def forward(self, x):
|
| 142 |
+
x = self.c_fc(x)
|
| 143 |
+
x = self.gelu(x)
|
| 144 |
+
x = self.c_proj(x)
|
| 145 |
+
x = self.dropout(x)
|
| 146 |
+
return x
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
class MLP_swiglu(nn.Module):
|
| 150 |
+
def __init__(self, config):
|
| 151 |
+
super().__init__()
|
| 152 |
+
self.intermediate_size = int(8 * config.n_embd / 3)
|
| 153 |
+
self.gate_proj = nn.Linear(config.n_embd, self.intermediate_size, bias=config.bias)
|
| 154 |
+
self.up_proj = nn.Linear(config.n_embd, self.intermediate_size, bias=config.bias)
|
| 155 |
+
self.down_proj = nn.Linear(self.intermediate_size, config.n_embd, bias=config.bias)
|
| 156 |
+
self.act_fn = F.silu
|
| 157 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 158 |
+
|
| 159 |
+
def forward(self, x):
|
| 160 |
+
x = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 161 |
+
x = self.dropout(x)
|
| 162 |
+
return x
|
| 163 |
+
|
| 164 |
+
class Block(nn.Module):
|
| 165 |
+
|
| 166 |
+
def __init__(self, config):
|
| 167 |
+
super().__init__()
|
| 168 |
+
self.ln_1 = RMSNorm(config.n_embd) if config.use_rmsnorm else LayerNorm(config.n_embd, bias=config.bias)
|
| 169 |
+
self.attn = CausalSelfAttention(config)
|
| 170 |
+
self.ln_2 = RMSNorm(config.n_embd) if config.use_rmsnorm else LayerNorm(config.n_embd, bias=config.bias)
|
| 171 |
+
mlp_cls = MLP_swiglu if config.use_swiglu else MLP
|
| 172 |
+
self.mlp = mlp_cls(config)
|
| 173 |
+
|
| 174 |
+
def forward(self, x):
|
| 175 |
+
x = x + self.attn(self.ln_1(x))
|
| 176 |
+
x = x + self.mlp(self.ln_2(x))
|
| 177 |
+
return x
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class BlockCMLP(nn.Module):
|
| 181 |
+
|
| 182 |
+
def __init__(self, config):
|
| 183 |
+
super().__init__()
|
| 184 |
+
self.channel_size = config.block_size
|
| 185 |
+
self.ln_1 = RMSNorm(config.n_embd) if config.use_rmsnorm else LayerNorm(config.n_embd, bias=config.bias)
|
| 186 |
+
self.attn = CausalSelfAttention(config)
|
| 187 |
+
self.ln_2 = RMSNorm(config.n_embd) if config.use_rmsnorm else LayerNorm(config.n_embd, bias=config.bias)
|
| 188 |
+
mlp_cls = MLP_swiglu if config.use_swiglu else MLP
|
| 189 |
+
self.mlps = nn.ModuleList([mlp_cls(config) for _ in range(self.channel_size)])
|
| 190 |
+
|
| 191 |
+
assert self.channel_size == 8, f"DEBUG, self.channel_size={self.channel_size} != 8"
|
| 192 |
+
|
| 193 |
+
def forward(self, x):
|
| 194 |
+
_, channel_size, _ = x.shape
|
| 195 |
+
# assert channel_size == self.channel_size
|
| 196 |
+
x = x + self.attn(self.ln_1(x))
|
| 197 |
+
|
| 198 |
+
xl = self.ln_2(x)
|
| 199 |
+
x = x + torch.cat(
|
| 200 |
+
[self.mlps[c](xl[:, c:c+1, :]) for c in range(self.channel_size)],
|
| 201 |
+
dim=1
|
| 202 |
+
)
|
| 203 |
+
return x
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class DepthGPT(nn.Module):
|
| 207 |
+
|
| 208 |
+
def __init__(self, config):
|
| 209 |
+
super().__init__()
|
| 210 |
+
assert config.vocab_size is not None
|
| 211 |
+
assert config.block_size is not None
|
| 212 |
+
self.config = config
|
| 213 |
+
self.num_channel = config.block_size
|
| 214 |
+
|
| 215 |
+
self.linear_in = nn.Linear(config.main_hidden_size, config.n_embd * config.block_size, bias=False)
|
| 216 |
+
|
| 217 |
+
block_cls = BlockCMLP if config.use_cmlp else Block
|
| 218 |
+
self.transformer = nn.ModuleDict(dict(
|
| 219 |
+
wtes = nn.ModuleList([nn.Embedding(config.vocab_size, config.n_embd) for _ in range(self.num_channel)]),
|
| 220 |
+
wpe = nn.Embedding(self.num_channel, config.n_embd),
|
| 221 |
+
drop = nn.Dropout(config.dropout),
|
| 222 |
+
h = nn.ModuleList([block_cls(config) for _ in range(config.n_layer)]),
|
| 223 |
+
ln_f = RMSNorm(config.n_embd) if config.use_rmsnorm else LayerNorm(config.n_embd, bias=config.bias),
|
| 224 |
+
))
|
| 225 |
+
self.lm_heads = nn.ModuleList([nn.Linear(config.n_embd, config.vocab_size, bias=False) for _ in range(self.num_channel)])
|
| 226 |
+
|
| 227 |
+
# with weight tying when using torch.compile() some warnings get generated:
|
| 228 |
+
# "UserWarning: functional_call was passed multiple values for tied weights.
|
| 229 |
+
# This behavior is deprecated and will be an error in future versions"
|
| 230 |
+
# not 100% sure what this is, so far seems to be harmless. TODO investigate
|
| 231 |
+
# self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
|
| 232 |
+
|
| 233 |
+
# init all weights
|
| 234 |
+
self.apply(self._init_weights)
|
| 235 |
+
# apply special scaled init to the residual projections, per GPT-2 paper
|
| 236 |
+
for pn, p in self.named_parameters():
|
| 237 |
+
if pn.endswith('c_proj.weight'):
|
| 238 |
+
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
|
| 239 |
+
|
| 240 |
+
# report number of parameters
|
| 241 |
+
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
|
| 242 |
+
|
| 243 |
+
def get_num_params(self, non_embedding=False):
|
| 244 |
+
"""
|
| 245 |
+
Return the number of parameters in the model.
|
| 246 |
+
For non-embedding count (default), the position embeddings get subtracted.
|
| 247 |
+
The token embeddings would too, except due to the parameter sharing these
|
| 248 |
+
params are actually used as weights in the final layer, so we include them.
|
| 249 |
+
"""
|
| 250 |
+
n_params = sum(p.numel() for p in self.parameters())
|
| 251 |
+
if non_embedding:
|
| 252 |
+
n_params -= self.transformer.wpe.weight.numel()
|
| 253 |
+
return n_params
|
| 254 |
+
|
| 255 |
+
def _init_weights(self, module):
|
| 256 |
+
if isinstance(module, nn.Linear):
|
| 257 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 258 |
+
if module.bias is not None:
|
| 259 |
+
torch.nn.init.zeros_(module.bias)
|
| 260 |
+
elif isinstance(module, nn.Embedding):
|
| 261 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 262 |
+
|
| 263 |
+
def forward(self,
|
| 264 |
+
main_hidden_states, # [seq, main_dim]
|
| 265 |
+
audio_token_ids # [seq, 7]
|
| 266 |
+
):
|
| 267 |
+
|
| 268 |
+
assert main_hidden_states.shape[0] == audio_token_ids.shape[0]
|
| 269 |
+
in_audio_token_num = audio_token_ids.shape[-1]
|
| 270 |
+
|
| 271 |
+
device = audio_token_ids.device
|
| 272 |
+
|
| 273 |
+
audio_token_ids = F.pad(audio_token_ids, (1, 0), value=self.config.pad_token_id)
|
| 274 |
+
|
| 275 |
+
x = torch.stack(
|
| 276 |
+
[self.transformer.wtes[c](audio_token_ids[:, c]) for c in range(in_audio_token_num + 1)]
|
| 277 |
+
).transpose(0, 1) # [seq, in_audio_token_num]
|
| 278 |
+
|
| 279 |
+
x += self.transformer.wpe(
|
| 280 |
+
torch.arange(0, in_audio_token_num + 1, dtype=torch.long, device=device)
|
| 281 |
+
).unsqueeze(0) # position embeddings of shape (1, 8, depth_dim)
|
| 282 |
+
|
| 283 |
+
main_hidden = self.linear_in(main_hidden_states).view(main_hidden_states.shape[0], self.config.block_size, -1)[:, :in_audio_token_num+1, :]
|
| 284 |
+
x += main_hidden
|
| 285 |
+
|
| 286 |
+
x = self.transformer.drop(x)
|
| 287 |
+
for block in self.transformer.h:
|
| 288 |
+
x = block(x)
|
| 289 |
+
|
| 290 |
+
# [seq, 8, hidden]
|
| 291 |
+
x = self.transformer.ln_f(x)
|
| 292 |
+
|
| 293 |
+
# [seq, 8, hidden] (linear)-> [8, seq, vocab]
|
| 294 |
+
x = torch.stack([self.lm_heads[c](x[:, c, :]) for c in range(x.shape[1])])
|
| 295 |
+
|
| 296 |
+
# [8, seq, vocab] -> [seq, 8, vocab]
|
| 297 |
+
x = x.transpose(0,1)
|
| 298 |
+
|
| 299 |
+
return x
|
| 300 |
+
def _initialize_weights(self, module):
|
| 301 |
+
if isinstance(module, nn.Linear):
|
| 302 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 303 |
+
if module.bias is not None:
|
| 304 |
+
torch.nn.init.zeros_(module.bias)
|
| 305 |
+
elif isinstance(module, nn.Embedding):
|
| 306 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
if __name__ == "__main__":
|
| 310 |
+
config = {
|
| 311 |
+
"bias": False,
|
| 312 |
+
"dropout": 0.0,
|
| 313 |
+
"n_embd": 1024,
|
| 314 |
+
"n_head": 16,
|
| 315 |
+
"n_layer": 6,
|
| 316 |
+
"use_cmlp": True,
|
| 317 |
+
"use_rmsnorm": True,
|
| 318 |
+
"use_swiglu": True,
|
| 319 |
+
"main_hidden_size": 4096
|
| 320 |
+
}
|
| 321 |
+
model_config = DepthGPTConfig(**config)
|
| 322 |
+
model = DepthGPT(config=model_config)
|
| 323 |
+
|
| 324 |
+
main_hidden_states = torch.rand((1, 4096))
|
| 325 |
+
decoded_audio_tokens = torch.empty((1, 0), dtype=torch.long, device=main_hidden_states.device)
|
| 326 |
+
outputs = model(main_hidden_states, decoded_audio_tokens)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab5cc9261500e9a9cee44e656e97c0f05ce002021bcda732ef3d355a174c2763
|
| 3 |
+
size 4915399120
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99c7ff8c992c5f3f71b6d7c83a415a13de4bc051af71bf446114c30bcd6ddd17
|
| 3 |
+
size 4991495848
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0128fbc7e5107cf0d7cc37bec37ad0f7bffd2cd812f4dec6cafabbd82020429c
|
| 3 |
+
size 4466655904
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a4115bbe71b25661e725312c6573ba6a149640d655d2b14339021084cffc7793
|
| 3 |
+
size 2068559752
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 8221022720,
|
| 4 |
+
"total_size": 16442045440
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"aud_output_layers.linear_in.weight": "model-00004-of-00004.safetensors",
|
| 8 |
+
"aud_output_layers.lm_heads.0.weight": "model-00004-of-00004.safetensors",
|
| 9 |
+
"aud_output_layers.lm_heads.1.weight": "model-00004-of-00004.safetensors",
|
| 10 |
+
"aud_output_layers.lm_heads.2.weight": "model-00004-of-00004.safetensors",
|
| 11 |
+
"aud_output_layers.lm_heads.3.weight": "model-00004-of-00004.safetensors",
|
| 12 |
+
"aud_output_layers.lm_heads.4.weight": "model-00004-of-00004.safetensors",
|
| 13 |
+
"aud_output_layers.lm_heads.5.weight": "model-00004-of-00004.safetensors",
|
| 14 |
+
"aud_output_layers.lm_heads.6.weight": "model-00004-of-00004.safetensors",
|
| 15 |
+
"aud_output_layers.lm_heads.7.weight": "model-00004-of-00004.safetensors",
|
| 16 |
+
"aud_output_layers.transformer.h.0.attn.c_attn.weight": "model-00004-of-00004.safetensors",
|
| 17 |
+
"aud_output_layers.transformer.h.0.attn.c_proj.weight": "model-00004-of-00004.safetensors",
|
| 18 |
+
"aud_output_layers.transformer.h.0.ln_1.weight": "model-00004-of-00004.safetensors",
|
| 19 |
+
"aud_output_layers.transformer.h.0.ln_2.weight": "model-00004-of-00004.safetensors",
|
| 20 |
+
"aud_output_layers.transformer.h.0.mlps.0.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 21 |
+
"aud_output_layers.transformer.h.0.mlps.0.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 22 |
+
"aud_output_layers.transformer.h.0.mlps.0.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 23 |
+
"aud_output_layers.transformer.h.0.mlps.1.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 24 |
+
"aud_output_layers.transformer.h.0.mlps.1.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 25 |
+
"aud_output_layers.transformer.h.0.mlps.1.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 26 |
+
"aud_output_layers.transformer.h.0.mlps.2.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 27 |
+
"aud_output_layers.transformer.h.0.mlps.2.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 28 |
+
"aud_output_layers.transformer.h.0.mlps.2.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 29 |
+
"aud_output_layers.transformer.h.0.mlps.3.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 30 |
+
"aud_output_layers.transformer.h.0.mlps.3.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 31 |
+
"aud_output_layers.transformer.h.0.mlps.3.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 32 |
+
"aud_output_layers.transformer.h.0.mlps.4.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 33 |
+
"aud_output_layers.transformer.h.0.mlps.4.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 34 |
+
"aud_output_layers.transformer.h.0.mlps.4.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 35 |
+
"aud_output_layers.transformer.h.0.mlps.5.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 36 |
+
"aud_output_layers.transformer.h.0.mlps.5.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 37 |
+
"aud_output_layers.transformer.h.0.mlps.5.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 38 |
+
"aud_output_layers.transformer.h.0.mlps.6.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 39 |
+
"aud_output_layers.transformer.h.0.mlps.6.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 40 |
+
"aud_output_layers.transformer.h.0.mlps.6.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 41 |
+
"aud_output_layers.transformer.h.0.mlps.7.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 42 |
+
"aud_output_layers.transformer.h.0.mlps.7.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 43 |
+
"aud_output_layers.transformer.h.0.mlps.7.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 44 |
+
"aud_output_layers.transformer.h.1.attn.c_attn.weight": "model-00004-of-00004.safetensors",
|
| 45 |
+
"aud_output_layers.transformer.h.1.attn.c_proj.weight": "model-00004-of-00004.safetensors",
|
| 46 |
+
"aud_output_layers.transformer.h.1.ln_1.weight": "model-00004-of-00004.safetensors",
|
| 47 |
+
"aud_output_layers.transformer.h.1.ln_2.weight": "model-00004-of-00004.safetensors",
|
| 48 |
+
"aud_output_layers.transformer.h.1.mlps.0.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 49 |
+
"aud_output_layers.transformer.h.1.mlps.0.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 50 |
+
"aud_output_layers.transformer.h.1.mlps.0.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 51 |
+
"aud_output_layers.transformer.h.1.mlps.1.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 52 |
+
"aud_output_layers.transformer.h.1.mlps.1.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 53 |
+
"aud_output_layers.transformer.h.1.mlps.1.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 54 |
+
"aud_output_layers.transformer.h.1.mlps.2.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 55 |
+
"aud_output_layers.transformer.h.1.mlps.2.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 56 |
+
"aud_output_layers.transformer.h.1.mlps.2.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 57 |
+
"aud_output_layers.transformer.h.1.mlps.3.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 58 |
+
"aud_output_layers.transformer.h.1.mlps.3.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 59 |
+
"aud_output_layers.transformer.h.1.mlps.3.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 60 |
+
"aud_output_layers.transformer.h.1.mlps.4.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 61 |
+
"aud_output_layers.transformer.h.1.mlps.4.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 62 |
+
"aud_output_layers.transformer.h.1.mlps.4.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 63 |
+
"aud_output_layers.transformer.h.1.mlps.5.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 64 |
+
"aud_output_layers.transformer.h.1.mlps.5.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 65 |
+
"aud_output_layers.transformer.h.1.mlps.5.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 66 |
+
"aud_output_layers.transformer.h.1.mlps.6.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 67 |
+
"aud_output_layers.transformer.h.1.mlps.6.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 68 |
+
"aud_output_layers.transformer.h.1.mlps.6.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 69 |
+
"aud_output_layers.transformer.h.1.mlps.7.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 70 |
+
"aud_output_layers.transformer.h.1.mlps.7.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 71 |
+
"aud_output_layers.transformer.h.1.mlps.7.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 72 |
+
"aud_output_layers.transformer.h.2.attn.c_attn.weight": "model-00004-of-00004.safetensors",
|
| 73 |
+
"aud_output_layers.transformer.h.2.attn.c_proj.weight": "model-00004-of-00004.safetensors",
|
| 74 |
+
"aud_output_layers.transformer.h.2.ln_1.weight": "model-00004-of-00004.safetensors",
|
| 75 |
+
"aud_output_layers.transformer.h.2.ln_2.weight": "model-00004-of-00004.safetensors",
|
| 76 |
+
"aud_output_layers.transformer.h.2.mlps.0.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 77 |
+
"aud_output_layers.transformer.h.2.mlps.0.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 78 |
+
"aud_output_layers.transformer.h.2.mlps.0.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 79 |
+
"aud_output_layers.transformer.h.2.mlps.1.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 80 |
+
"aud_output_layers.transformer.h.2.mlps.1.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 81 |
+
"aud_output_layers.transformer.h.2.mlps.1.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 82 |
+
"aud_output_layers.transformer.h.2.mlps.2.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 83 |
+
"aud_output_layers.transformer.h.2.mlps.2.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 84 |
+
"aud_output_layers.transformer.h.2.mlps.2.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 85 |
+
"aud_output_layers.transformer.h.2.mlps.3.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 86 |
+
"aud_output_layers.transformer.h.2.mlps.3.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 87 |
+
"aud_output_layers.transformer.h.2.mlps.3.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 88 |
+
"aud_output_layers.transformer.h.2.mlps.4.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 89 |
+
"aud_output_layers.transformer.h.2.mlps.4.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 90 |
+
"aud_output_layers.transformer.h.2.mlps.4.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 91 |
+
"aud_output_layers.transformer.h.2.mlps.5.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 92 |
+
"aud_output_layers.transformer.h.2.mlps.5.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 93 |
+
"aud_output_layers.transformer.h.2.mlps.5.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 94 |
+
"aud_output_layers.transformer.h.2.mlps.6.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 95 |
+
"aud_output_layers.transformer.h.2.mlps.6.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 96 |
+
"aud_output_layers.transformer.h.2.mlps.6.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 97 |
+
"aud_output_layers.transformer.h.2.mlps.7.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 98 |
+
"aud_output_layers.transformer.h.2.mlps.7.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 99 |
+
"aud_output_layers.transformer.h.2.mlps.7.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 100 |
+
"aud_output_layers.transformer.h.3.attn.c_attn.weight": "model-00004-of-00004.safetensors",
|
| 101 |
+
"aud_output_layers.transformer.h.3.attn.c_proj.weight": "model-00004-of-00004.safetensors",
|
| 102 |
+
"aud_output_layers.transformer.h.3.ln_1.weight": "model-00004-of-00004.safetensors",
|
| 103 |
+
"aud_output_layers.transformer.h.3.ln_2.weight": "model-00004-of-00004.safetensors",
|
| 104 |
+
"aud_output_layers.transformer.h.3.mlps.0.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 105 |
+
"aud_output_layers.transformer.h.3.mlps.0.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 106 |
+
"aud_output_layers.transformer.h.3.mlps.0.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 107 |
+
"aud_output_layers.transformer.h.3.mlps.1.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 108 |
+
"aud_output_layers.transformer.h.3.mlps.1.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 109 |
+
"aud_output_layers.transformer.h.3.mlps.1.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 110 |
+
"aud_output_layers.transformer.h.3.mlps.2.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 111 |
+
"aud_output_layers.transformer.h.3.mlps.2.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 112 |
+
"aud_output_layers.transformer.h.3.mlps.2.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 113 |
+
"aud_output_layers.transformer.h.3.mlps.3.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 114 |
+
"aud_output_layers.transformer.h.3.mlps.3.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 115 |
+
"aud_output_layers.transformer.h.3.mlps.3.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 116 |
+
"aud_output_layers.transformer.h.3.mlps.4.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 117 |
+
"aud_output_layers.transformer.h.3.mlps.4.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 118 |
+
"aud_output_layers.transformer.h.3.mlps.4.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 119 |
+
"aud_output_layers.transformer.h.3.mlps.5.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 120 |
+
"aud_output_layers.transformer.h.3.mlps.5.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 121 |
+
"aud_output_layers.transformer.h.3.mlps.5.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 122 |
+
"aud_output_layers.transformer.h.3.mlps.6.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 123 |
+
"aud_output_layers.transformer.h.3.mlps.6.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 124 |
+
"aud_output_layers.transformer.h.3.mlps.6.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 125 |
+
"aud_output_layers.transformer.h.3.mlps.7.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 126 |
+
"aud_output_layers.transformer.h.3.mlps.7.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 127 |
+
"aud_output_layers.transformer.h.3.mlps.7.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 128 |
+
"aud_output_layers.transformer.h.4.attn.c_attn.weight": "model-00004-of-00004.safetensors",
|
| 129 |
+
"aud_output_layers.transformer.h.4.attn.c_proj.weight": "model-00004-of-00004.safetensors",
|
| 130 |
+
"aud_output_layers.transformer.h.4.ln_1.weight": "model-00004-of-00004.safetensors",
|
| 131 |
+
"aud_output_layers.transformer.h.4.ln_2.weight": "model-00004-of-00004.safetensors",
|
| 132 |
+
"aud_output_layers.transformer.h.4.mlps.0.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 133 |
+
"aud_output_layers.transformer.h.4.mlps.0.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 134 |
+
"aud_output_layers.transformer.h.4.mlps.0.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 135 |
+
"aud_output_layers.transformer.h.4.mlps.1.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 136 |
+
"aud_output_layers.transformer.h.4.mlps.1.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 137 |
+
"aud_output_layers.transformer.h.4.mlps.1.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 138 |
+
"aud_output_layers.transformer.h.4.mlps.2.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 139 |
+
"aud_output_layers.transformer.h.4.mlps.2.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 140 |
+
"aud_output_layers.transformer.h.4.mlps.2.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 141 |
+
"aud_output_layers.transformer.h.4.mlps.3.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 142 |
+
"aud_output_layers.transformer.h.4.mlps.3.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 143 |
+
"aud_output_layers.transformer.h.4.mlps.3.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 144 |
+
"aud_output_layers.transformer.h.4.mlps.4.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 145 |
+
"aud_output_layers.transformer.h.4.mlps.4.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 146 |
+
"aud_output_layers.transformer.h.4.mlps.4.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 147 |
+
"aud_output_layers.transformer.h.4.mlps.5.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 148 |
+
"aud_output_layers.transformer.h.4.mlps.5.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 149 |
+
"aud_output_layers.transformer.h.4.mlps.5.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 150 |
+
"aud_output_layers.transformer.h.4.mlps.6.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 151 |
+
"aud_output_layers.transformer.h.4.mlps.6.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 152 |
+
"aud_output_layers.transformer.h.4.mlps.6.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 153 |
+
"aud_output_layers.transformer.h.4.mlps.7.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 154 |
+
"aud_output_layers.transformer.h.4.mlps.7.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 155 |
+
"aud_output_layers.transformer.h.4.mlps.7.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 156 |
+
"aud_output_layers.transformer.h.5.attn.c_attn.weight": "model-00004-of-00004.safetensors",
|
| 157 |
+
"aud_output_layers.transformer.h.5.attn.c_proj.weight": "model-00004-of-00004.safetensors",
|
| 158 |
+
"aud_output_layers.transformer.h.5.ln_1.weight": "model-00004-of-00004.safetensors",
|
| 159 |
+
"aud_output_layers.transformer.h.5.ln_2.weight": "model-00004-of-00004.safetensors",
|
| 160 |
+
"aud_output_layers.transformer.h.5.mlps.0.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 161 |
+
"aud_output_layers.transformer.h.5.mlps.0.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 162 |
+
"aud_output_layers.transformer.h.5.mlps.0.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 163 |
+
"aud_output_layers.transformer.h.5.mlps.1.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 164 |
+
"aud_output_layers.transformer.h.5.mlps.1.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 165 |
+
"aud_output_layers.transformer.h.5.mlps.1.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 166 |
+
"aud_output_layers.transformer.h.5.mlps.2.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 167 |
+
"aud_output_layers.transformer.h.5.mlps.2.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 168 |
+
"aud_output_layers.transformer.h.5.mlps.2.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 169 |
+
"aud_output_layers.transformer.h.5.mlps.3.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 170 |
+
"aud_output_layers.transformer.h.5.mlps.3.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 171 |
+
"aud_output_layers.transformer.h.5.mlps.3.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 172 |
+
"aud_output_layers.transformer.h.5.mlps.4.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 173 |
+
"aud_output_layers.transformer.h.5.mlps.4.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 174 |
+
"aud_output_layers.transformer.h.5.mlps.4.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 175 |
+
"aud_output_layers.transformer.h.5.mlps.5.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 176 |
+
"aud_output_layers.transformer.h.5.mlps.5.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 177 |
+
"aud_output_layers.transformer.h.5.mlps.5.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 178 |
+
"aud_output_layers.transformer.h.5.mlps.6.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 179 |
+
"aud_output_layers.transformer.h.5.mlps.6.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 180 |
+
"aud_output_layers.transformer.h.5.mlps.6.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 181 |
+
"aud_output_layers.transformer.h.5.mlps.7.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 182 |
+
"aud_output_layers.transformer.h.5.mlps.7.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 183 |
+
"aud_output_layers.transformer.h.5.mlps.7.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 184 |
+
"aud_output_layers.transformer.ln_f.weight": "model-00004-of-00004.safetensors",
|
| 185 |
+
"aud_output_layers.transformer.wpe.weight": "model-00004-of-00004.safetensors",
|
| 186 |
+
"aud_output_layers.transformer.wtes.0.weight": "model-00004-of-00004.safetensors",
|
| 187 |
+
"aud_output_layers.transformer.wtes.1.weight": "model-00004-of-00004.safetensors",
|
| 188 |
+
"aud_output_layers.transformer.wtes.2.weight": "model-00004-of-00004.safetensors",
|
| 189 |
+
"aud_output_layers.transformer.wtes.3.weight": "model-00004-of-00004.safetensors",
|
| 190 |
+
"aud_output_layers.transformer.wtes.4.weight": "model-00004-of-00004.safetensors",
|
| 191 |
+
"aud_output_layers.transformer.wtes.5.weight": "model-00004-of-00004.safetensors",
|
| 192 |
+
"aud_output_layers.transformer.wtes.6.weight": "model-00004-of-00004.safetensors",
|
| 193 |
+
"aud_output_layers.transformer.wtes.7.weight": "model-00004-of-00004.safetensors",
|
| 194 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 195 |
+
"model.embed_tokens.aud_listen_embeddings.0.weight": "model-00001-of-00004.safetensors",
|
| 196 |
+
"model.embed_tokens.aud_listen_embeddings.1.weight": "model-00001-of-00004.safetensors",
|
| 197 |
+
"model.embed_tokens.aud_listen_embeddings.2.weight": "model-00001-of-00004.safetensors",
|
| 198 |
+
"model.embed_tokens.aud_listen_embeddings.3.weight": "model-00001-of-00004.safetensors",
|
| 199 |
+
"model.embed_tokens.aud_listen_embeddings.4.weight": "model-00001-of-00004.safetensors",
|
| 200 |
+
"model.embed_tokens.aud_listen_embeddings.5.weight": "model-00001-of-00004.safetensors",
|
| 201 |
+
"model.embed_tokens.aud_listen_embeddings.6.weight": "model-00001-of-00004.safetensors",
|
| 202 |
+
"model.embed_tokens.aud_listen_embeddings.7.weight": "model-00001-of-00004.safetensors",
|
| 203 |
+
"model.embed_tokens.aud_speak_embeddings.0.weight": "model-00001-of-00004.safetensors",
|
| 204 |
+
"model.embed_tokens.aud_speak_embeddings.1.weight": "model-00001-of-00004.safetensors",
|
| 205 |
+
"model.embed_tokens.aud_speak_embeddings.2.weight": "model-00001-of-00004.safetensors",
|
| 206 |
+
"model.embed_tokens.aud_speak_embeddings.3.weight": "model-00001-of-00004.safetensors",
|
| 207 |
+
"model.embed_tokens.aud_speak_embeddings.4.weight": "model-00001-of-00004.safetensors",
|
| 208 |
+
"model.embed_tokens.aud_speak_embeddings.5.weight": "model-00001-of-00004.safetensors",
|
| 209 |
+
"model.embed_tokens.aud_speak_embeddings.6.weight": "model-00001-of-00004.safetensors",
|
| 210 |
+
"model.embed_tokens.aud_speak_embeddings.7.weight": "model-00001-of-00004.safetensors",
|
| 211 |
+
"model.embed_tokens.text_embeddings.weight": "model-00001-of-00004.safetensors",
|
| 212 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 213 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 214 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 215 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 216 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 217 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 218 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 219 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 220 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 221 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 222 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 223 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 224 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 225 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 226 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 227 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 228 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 229 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 230 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 231 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 232 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 233 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 234 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 235 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 236 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 237 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 238 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 239 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 240 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 241 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 242 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 243 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 244 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 245 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 246 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 247 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 248 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 249 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 250 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 251 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 252 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 253 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 254 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 255 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 256 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 257 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 258 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 259 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 260 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 261 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 262 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 263 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 264 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 265 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 266 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 267 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 268 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 269 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 270 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 271 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 272 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 273 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 274 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 275 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 276 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 277 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 278 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 279 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 280 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 281 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 282 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 283 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 284 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 285 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 286 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 287 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 288 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 289 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 290 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 291 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 292 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 293 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 294 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 295 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 296 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 297 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 298 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 299 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 300 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 301 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 302 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 303 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 304 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 305 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 306 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 307 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 308 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 309 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 310 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 311 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 312 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 313 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 314 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 315 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 316 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 317 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 318 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 319 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 320 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 321 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 322 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 323 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 324 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 325 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 326 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 327 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 328 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 329 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 330 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 331 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 332 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 333 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 334 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 335 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 336 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 337 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 338 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 339 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 340 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 341 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 342 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 343 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 344 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 345 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 346 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 347 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 348 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 349 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 350 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 351 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 352 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 353 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 354 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 355 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 356 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 357 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 358 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 359 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 360 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 361 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 362 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 363 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 364 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 365 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 366 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 367 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 368 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 369 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 370 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 371 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 372 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 373 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 374 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 375 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 376 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 377 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 378 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 379 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 380 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 381 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 382 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 383 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 384 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 385 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 386 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 387 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 388 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 389 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 390 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 391 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 392 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 393 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 394 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 395 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 396 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 397 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 398 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 399 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 400 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 401 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 402 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 403 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 404 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 405 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 406 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 407 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 408 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 409 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 410 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 411 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 412 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 413 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 414 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 415 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 416 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 417 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 418 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 419 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 420 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 421 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 422 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 423 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 424 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 425 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 426 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 427 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 428 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 429 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 430 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 431 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 432 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 433 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 434 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 435 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 436 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 437 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 438 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 439 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 440 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 441 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 442 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 443 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 444 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 445 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 446 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 447 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 448 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 449 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 450 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 451 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 452 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 453 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 454 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 455 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 456 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 457 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 458 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 459 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 460 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 461 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 462 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 463 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 464 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 465 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 466 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 467 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 468 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 469 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 470 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 471 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 472 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 473 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 474 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 475 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 476 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 477 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 478 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 479 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 480 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 481 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 482 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 483 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 484 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 485 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 486 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 487 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 488 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 489 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 490 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 491 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 492 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 493 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 494 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 495 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 496 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 497 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 498 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 499 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 500 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 501 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 502 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 503 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 504 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 505 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 506 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 507 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 508 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 509 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 510 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 511 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 512 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 513 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 514 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 515 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 516 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 517 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 518 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 519 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 520 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 521 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 522 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 523 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 524 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 525 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 526 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 527 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 528 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 529 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 530 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 531 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 532 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 533 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 534 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 535 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 536 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 537 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 538 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 539 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 540 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 541 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 542 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 543 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 544 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 545 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 546 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 547 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 548 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
| 549 |
+
}
|
| 550 |
+
}
|
modeling_flmaudio.py
ADDED
|
@@ -0,0 +1,1524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
"""PyTorch FLM-Audio model, based on LLAMA implementation."""
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
import warnings
|
| 6 |
+
from typing import List, Optional, Tuple, Union
|
| 7 |
+
from dataclasses import dataclass
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
|
| 13 |
+
from transformers.activations import ACT2FN
|
| 14 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 15 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 16 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 17 |
+
from transformers.modeling_outputs import (
|
| 18 |
+
ModelOutput,
|
| 19 |
+
BaseModelOutputWithPast,
|
| 20 |
+
CausalLMOutputWithPast,
|
| 21 |
+
)
|
| 22 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 23 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 24 |
+
from transformers.utils import (
|
| 25 |
+
add_start_docstrings,
|
| 26 |
+
add_start_docstrings_to_model_forward,
|
| 27 |
+
is_flash_attn_2_available,
|
| 28 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 29 |
+
logging,
|
| 30 |
+
replace_return_docstrings,
|
| 31 |
+
)
|
| 32 |
+
from .configuration_flmaudio import FLMAudioConfig
|
| 33 |
+
from .depth_gpt import DepthGPT, DepthGPTConfig
|
| 34 |
+
|
| 35 |
+
if is_flash_attn_2_available():
|
| 36 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 37 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
logger = logging.get_logger(__name__)
|
| 41 |
+
|
| 42 |
+
_CONFIG_FOR_DOC = "FLMAudioConfig"
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def _get_unpad_data(attention_mask):
|
| 46 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 47 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 48 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 49 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 50 |
+
return (
|
| 51 |
+
indices,
|
| 52 |
+
cu_seqlens,
|
| 53 |
+
max_seqlen_in_batch,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class FLMAudioRMSNorm(nn.Module):
|
| 58 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 59 |
+
"""
|
| 60 |
+
FLMAudioRMSNorm is equivalent to T5LayerNorm
|
| 61 |
+
"""
|
| 62 |
+
super().__init__()
|
| 63 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 64 |
+
self.variance_epsilon = eps
|
| 65 |
+
|
| 66 |
+
def forward(self, hidden_states):
|
| 67 |
+
input_dtype = hidden_states.dtype
|
| 68 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 69 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 70 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 71 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
ALL_LAYERNORM_LAYERS.append(FLMAudioRMSNorm)
|
| 75 |
+
|
| 76 |
+
class FLMAudioRotaryEmbedding(nn.Module):
|
| 77 |
+
def __init__(self, config, device=None):
|
| 78 |
+
super().__init__()
|
| 79 |
+
# BC: "rope_type" was originally "type"
|
| 80 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
| 81 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 82 |
+
else:
|
| 83 |
+
self.rope_type = "default"
|
| 84 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 85 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 86 |
+
|
| 87 |
+
self.config = config
|
| 88 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 89 |
+
|
| 90 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 91 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 92 |
+
self.original_inv_freq = self.inv_freq
|
| 93 |
+
|
| 94 |
+
@torch.no_grad()
|
| 95 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 96 |
+
def forward(self, x, position_ids):
|
| 97 |
+
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
|
| 98 |
+
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
|
| 99 |
+
|
| 100 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 101 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
| 102 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
|
| 103 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 104 |
+
cos = emb.cos() * self.attention_scaling
|
| 105 |
+
sin = emb.sin() * self.attention_scaling
|
| 106 |
+
|
| 107 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def rotate_half(x):
|
| 111 |
+
"""Rotates half the hidden dims of the input."""
|
| 112 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 113 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 114 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
|
| 118 |
+
mrope_section = mrope_section * 2
|
| 119 |
+
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
| 120 |
+
unsqueeze_dim
|
| 121 |
+
)
|
| 122 |
+
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
| 123 |
+
unsqueeze_dim
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 127 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 128 |
+
return q_embed, k_embed
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class FLMAudioMLP(nn.Module):
|
| 132 |
+
def __init__(self, config):
|
| 133 |
+
super().__init__()
|
| 134 |
+
self.config = config
|
| 135 |
+
self.hidden_size = config.hidden_size
|
| 136 |
+
self.intermediate_size = config.intermediate_size
|
| 137 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 138 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 139 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 140 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 141 |
+
|
| 142 |
+
def forward(self, x):
|
| 143 |
+
if self.config.pretraining_tp > 1:
|
| 144 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
| 145 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
| 146 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
| 147 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
| 148 |
+
|
| 149 |
+
gate_proj = torch.cat(
|
| 150 |
+
[
|
| 151 |
+
F.linear(x, gate_proj_slices[i])
|
| 152 |
+
for i in range(self.config.pretraining_tp)
|
| 153 |
+
],
|
| 154 |
+
dim=-1,
|
| 155 |
+
)
|
| 156 |
+
up_proj = torch.cat(
|
| 157 |
+
[
|
| 158 |
+
F.linear(x, up_proj_slices[i])
|
| 159 |
+
for i in range(self.config.pretraining_tp)
|
| 160 |
+
],
|
| 161 |
+
dim=-1,
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
| 165 |
+
down_proj = [
|
| 166 |
+
F.linear(intermediate_states[i], down_proj_slices[i])
|
| 167 |
+
for i in range(self.config.pretraining_tp)
|
| 168 |
+
]
|
| 169 |
+
down_proj = sum(down_proj)
|
| 170 |
+
else:
|
| 171 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 172 |
+
|
| 173 |
+
return down_proj
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 177 |
+
"""
|
| 178 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 179 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 180 |
+
"""
|
| 181 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 182 |
+
if n_rep == 1:
|
| 183 |
+
return hidden_states
|
| 184 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
| 185 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
| 186 |
+
)
|
| 187 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
class FLMAudioAttention(nn.Module):
|
| 191 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 192 |
+
|
| 193 |
+
def __init__(self, config: FLMAudioConfig, layer_idx: Optional[int] = None):
|
| 194 |
+
super().__init__()
|
| 195 |
+
self.config = config
|
| 196 |
+
self.layer_idx = layer_idx
|
| 197 |
+
if layer_idx is None:
|
| 198 |
+
logger.warning_once(
|
| 199 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
| 200 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
| 201 |
+
"when creating this class."
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
self.attention_dropout = config.attention_dropout
|
| 205 |
+
self.hidden_size = config.hidden_size
|
| 206 |
+
self.num_heads = config.num_attention_heads
|
| 207 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 208 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 209 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 210 |
+
self.is_causal = True
|
| 211 |
+
self.rope_scaling = config.rope_scaling
|
| 212 |
+
|
| 213 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 214 |
+
raise ValueError(
|
| 215 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 216 |
+
f" and `num_heads`: {self.num_heads})."
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
self.q_proj = nn.Linear(
|
| 220 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias
|
| 221 |
+
)
|
| 222 |
+
self.k_proj = nn.Linear(
|
| 223 |
+
self.hidden_size,
|
| 224 |
+
self.num_key_value_heads * self.head_dim,
|
| 225 |
+
bias=config.attention_bias,
|
| 226 |
+
)
|
| 227 |
+
self.v_proj = nn.Linear(
|
| 228 |
+
self.hidden_size,
|
| 229 |
+
self.num_key_value_heads * self.head_dim,
|
| 230 |
+
bias=config.attention_bias,
|
| 231 |
+
)
|
| 232 |
+
self.o_proj = nn.Linear(
|
| 233 |
+
self.hidden_size, self.hidden_size, bias=config.attention_bias and not config.disable_att_o_bias
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def forward(
|
| 238 |
+
self,
|
| 239 |
+
hidden_states: torch.Tensor,
|
| 240 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 241 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 242 |
+
past_key_value: Optional[Cache] = None,
|
| 243 |
+
output_attentions: bool = False,
|
| 244 |
+
use_cache: bool = False,
|
| 245 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 246 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 247 |
+
**kwargs,
|
| 248 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 249 |
+
bsz, q_len, _ = hidden_states.size()
|
| 250 |
+
|
| 251 |
+
if self.config.pretraining_tp > 1:
|
| 252 |
+
key_value_slicing = (
|
| 253 |
+
self.num_key_value_heads * self.head_dim
|
| 254 |
+
) // self.config.pretraining_tp
|
| 255 |
+
query_slices = self.q_proj.weight.split(
|
| 256 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
| 257 |
+
)
|
| 258 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
| 259 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
| 260 |
+
|
| 261 |
+
query_states = [
|
| 262 |
+
F.linear(hidden_states, query_slices[i])
|
| 263 |
+
for i in range(self.config.pretraining_tp)
|
| 264 |
+
]
|
| 265 |
+
query_states = torch.cat(query_states, dim=-1)
|
| 266 |
+
|
| 267 |
+
key_states = [
|
| 268 |
+
F.linear(hidden_states, key_slices[i])
|
| 269 |
+
for i in range(self.config.pretraining_tp)
|
| 270 |
+
]
|
| 271 |
+
key_states = torch.cat(key_states, dim=-1)
|
| 272 |
+
|
| 273 |
+
value_states = [
|
| 274 |
+
F.linear(hidden_states, value_slices[i])
|
| 275 |
+
for i in range(self.config.pretraining_tp)
|
| 276 |
+
]
|
| 277 |
+
value_states = torch.cat(value_states, dim=-1)
|
| 278 |
+
|
| 279 |
+
else:
|
| 280 |
+
query_states = self.q_proj(hidden_states)
|
| 281 |
+
key_states = self.k_proj(hidden_states)
|
| 282 |
+
value_states = self.v_proj(hidden_states)
|
| 283 |
+
|
| 284 |
+
query_states = query_states.view(
|
| 285 |
+
bsz, q_len, self.num_heads, self.head_dim
|
| 286 |
+
).transpose(1, 2)
|
| 287 |
+
key_states = key_states.view(
|
| 288 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 289 |
+
).transpose(1, 2)
|
| 290 |
+
value_states = value_states.view(
|
| 291 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 292 |
+
).transpose(1, 2)
|
| 293 |
+
|
| 294 |
+
cos, sin = position_embeddings
|
| 295 |
+
|
| 296 |
+
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
| 297 |
+
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
if past_key_value is not None:
|
| 301 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 302 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 303 |
+
key_states, value_states = past_key_value.update(
|
| 304 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 308 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 309 |
+
|
| 310 |
+
attn_weights = torch.matmul(
|
| 311 |
+
query_states, key_states.transpose(2, 3)
|
| 312 |
+
) / math.sqrt(self.head_dim)
|
| 313 |
+
|
| 314 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 315 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 316 |
+
attn_weights = attn_weights + causal_mask
|
| 317 |
+
|
| 318 |
+
# upcast attention to fp32
|
| 319 |
+
attn_weights = nn.functional.softmax(
|
| 320 |
+
attn_weights, dim=-1, dtype=torch.float32
|
| 321 |
+
).to(query_states.dtype)
|
| 322 |
+
attn_weights = nn.functional.dropout(
|
| 323 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
| 324 |
+
)
|
| 325 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 326 |
+
|
| 327 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 328 |
+
raise ValueError(
|
| 329 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 330 |
+
f" {attn_output.size()}"
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 334 |
+
|
| 335 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 336 |
+
|
| 337 |
+
if self.config.pretraining_tp > 1:
|
| 338 |
+
attn_output = attn_output.split(
|
| 339 |
+
self.hidden_size // self.config.pretraining_tp, dim=2
|
| 340 |
+
)
|
| 341 |
+
o_proj_slices = self.o_proj.weight.split(
|
| 342 |
+
self.hidden_size // self.config.pretraining_tp, dim=1
|
| 343 |
+
)
|
| 344 |
+
attn_output = sum(
|
| 345 |
+
[
|
| 346 |
+
F.linear(attn_output[i], o_proj_slices[i])
|
| 347 |
+
for i in range(self.config.pretraining_tp)
|
| 348 |
+
]
|
| 349 |
+
)
|
| 350 |
+
else:
|
| 351 |
+
attn_output = self.o_proj(attn_output)
|
| 352 |
+
|
| 353 |
+
if not output_attentions:
|
| 354 |
+
attn_weights = None
|
| 355 |
+
|
| 356 |
+
return attn_output, attn_weights, past_key_value
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
class FLMAudioFlashAttention2(FLMAudioAttention):
|
| 360 |
+
"""
|
| 361 |
+
FLM-Audio flash attention module. This module inherits from `FLMAudioAttention` as the weights of the module stays
|
| 362 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 363 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 364 |
+
"""
|
| 365 |
+
|
| 366 |
+
def __init__(self, *args, **kwargs):
|
| 367 |
+
super().__init__(*args, **kwargs)
|
| 368 |
+
|
| 369 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 370 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 371 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 372 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 373 |
+
|
| 374 |
+
def forward(
|
| 375 |
+
self,
|
| 376 |
+
hidden_states: torch.Tensor,
|
| 377 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 378 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 379 |
+
past_key_value: Optional[Cache] = None,
|
| 380 |
+
output_attentions: bool = False,
|
| 381 |
+
use_cache: bool = False,
|
| 382 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 383 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 384 |
+
**kwargs,
|
| 385 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 386 |
+
output_attentions = False
|
| 387 |
+
|
| 388 |
+
bsz, q_len, _ = hidden_states.size()
|
| 389 |
+
|
| 390 |
+
query_states = self.q_proj(hidden_states)
|
| 391 |
+
key_states = self.k_proj(hidden_states)
|
| 392 |
+
value_states = self.v_proj(hidden_states)
|
| 393 |
+
|
| 394 |
+
# Flash attention requires the input to have the shape
|
| 395 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 396 |
+
# therefore we just need to keep the original shape
|
| 397 |
+
query_states = query_states.view(
|
| 398 |
+
bsz, q_len, self.num_heads, self.head_dim
|
| 399 |
+
).transpose(1, 2)
|
| 400 |
+
key_states = key_states.view(
|
| 401 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 402 |
+
).transpose(1, 2)
|
| 403 |
+
value_states = value_states.view(
|
| 404 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 405 |
+
).transpose(1, 2)
|
| 406 |
+
|
| 407 |
+
# cos, sin = self.rotary_emb(value_states, position_ids)
|
| 408 |
+
cos, sin = position_embeddings
|
| 409 |
+
# query_states, key_states = apply_rotary_pos_emb(
|
| 410 |
+
# query_states, key_states, cos, sin
|
| 411 |
+
# )
|
| 412 |
+
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
| 413 |
+
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
| 417 |
+
|
| 418 |
+
if past_key_value is not None:
|
| 419 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 420 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 421 |
+
key_states, value_states = past_key_value.update(
|
| 422 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 426 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 427 |
+
query_states = query_states.transpose(1, 2)
|
| 428 |
+
key_states = key_states.transpose(1, 2)
|
| 429 |
+
value_states = value_states.transpose(1, 2)
|
| 430 |
+
|
| 431 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
| 432 |
+
|
| 433 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 434 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 435 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 436 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 437 |
+
# in fp32. (FLMAudioRMSNorm handles it correctly)
|
| 438 |
+
|
| 439 |
+
input_dtype = query_states.dtype
|
| 440 |
+
if input_dtype == torch.float32:
|
| 441 |
+
if torch.is_autocast_enabled():
|
| 442 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 443 |
+
# Handle the case where the model is quantized
|
| 444 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 445 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 446 |
+
else:
|
| 447 |
+
target_dtype = self.q_proj.weight.dtype
|
| 448 |
+
|
| 449 |
+
logger.warning_once(
|
| 450 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 451 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 452 |
+
f" {target_dtype}."
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
query_states = query_states.to(target_dtype)
|
| 456 |
+
key_states = key_states.to(target_dtype)
|
| 457 |
+
value_states = value_states.to(target_dtype)
|
| 458 |
+
|
| 459 |
+
attn_output = self._flash_attention_forward(
|
| 460 |
+
query_states,
|
| 461 |
+
key_states,
|
| 462 |
+
value_states,
|
| 463 |
+
attention_mask,
|
| 464 |
+
q_len,
|
| 465 |
+
dropout=dropout_rate,
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 469 |
+
attn_output = self.o_proj(attn_output)
|
| 470 |
+
|
| 471 |
+
if not output_attentions:
|
| 472 |
+
attn_weights = None
|
| 473 |
+
|
| 474 |
+
return attn_output, attn_weights, past_key_value
|
| 475 |
+
|
| 476 |
+
def _flash_attention_forward(
|
| 477 |
+
self,
|
| 478 |
+
query_states,
|
| 479 |
+
key_states,
|
| 480 |
+
value_states,
|
| 481 |
+
attention_mask,
|
| 482 |
+
query_length,
|
| 483 |
+
dropout=0.0,
|
| 484 |
+
softmax_scale=None,
|
| 485 |
+
):
|
| 486 |
+
"""
|
| 487 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 488 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 489 |
+
|
| 490 |
+
Args:
|
| 491 |
+
query_states (`torch.Tensor`):
|
| 492 |
+
Input query states to be passed to Flash Attention API
|
| 493 |
+
key_states (`torch.Tensor`):
|
| 494 |
+
Input key states to be passed to Flash Attention API
|
| 495 |
+
value_states (`torch.Tensor`):
|
| 496 |
+
Input value states to be passed to Flash Attention API
|
| 497 |
+
attention_mask (`torch.Tensor`):
|
| 498 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 499 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 500 |
+
dropout (`float`):
|
| 501 |
+
Attention dropout
|
| 502 |
+
softmax_scale (`float`, *optional*):
|
| 503 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 504 |
+
"""
|
| 505 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 506 |
+
causal = self.is_causal
|
| 507 |
+
else:
|
| 508 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in FLMAudioFlashAttention2 __init__.
|
| 509 |
+
causal = self.is_causal and query_length != 1
|
| 510 |
+
|
| 511 |
+
# Contains at least one padding token in the sequence
|
| 512 |
+
if attention_mask is not None:
|
| 513 |
+
batch_size = query_states.shape[0]
|
| 514 |
+
(
|
| 515 |
+
query_states,
|
| 516 |
+
key_states,
|
| 517 |
+
value_states,
|
| 518 |
+
indices_q,
|
| 519 |
+
cu_seq_lens,
|
| 520 |
+
max_seq_lens,
|
| 521 |
+
) = self._upad_input(
|
| 522 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 526 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 527 |
+
|
| 528 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 529 |
+
query_states,
|
| 530 |
+
key_states,
|
| 531 |
+
value_states,
|
| 532 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 533 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 534 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 535 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 536 |
+
dropout_p=dropout,
|
| 537 |
+
softmax_scale=softmax_scale,
|
| 538 |
+
causal=causal,
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
attn_output = pad_input(
|
| 542 |
+
attn_output_unpad, indices_q, batch_size, query_length
|
| 543 |
+
)
|
| 544 |
+
else:
|
| 545 |
+
attn_output = flash_attn_func(
|
| 546 |
+
query_states,
|
| 547 |
+
key_states,
|
| 548 |
+
value_states,
|
| 549 |
+
dropout,
|
| 550 |
+
softmax_scale=softmax_scale,
|
| 551 |
+
causal=causal,
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
return attn_output
|
| 555 |
+
|
| 556 |
+
def _upad_input(
|
| 557 |
+
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
| 558 |
+
):
|
| 559 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 560 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 561 |
+
|
| 562 |
+
key_layer = index_first_axis(
|
| 563 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
| 564 |
+
indices_k,
|
| 565 |
+
)
|
| 566 |
+
value_layer = index_first_axis(
|
| 567 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
| 568 |
+
indices_k,
|
| 569 |
+
)
|
| 570 |
+
if query_length == kv_seq_len:
|
| 571 |
+
query_layer = index_first_axis(
|
| 572 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
| 573 |
+
indices_k,
|
| 574 |
+
)
|
| 575 |
+
cu_seqlens_q = cu_seqlens_k
|
| 576 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 577 |
+
indices_q = indices_k
|
| 578 |
+
elif query_length == 1:
|
| 579 |
+
max_seqlen_in_batch_q = 1
|
| 580 |
+
cu_seqlens_q = torch.arange(
|
| 581 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 582 |
+
) # There is a memcpy here, that is very bad.
|
| 583 |
+
indices_q = cu_seqlens_q[:-1]
|
| 584 |
+
query_layer = query_layer.squeeze(1)
|
| 585 |
+
else:
|
| 586 |
+
# The -q_len: slice assumes left padding.
|
| 587 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 588 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
| 589 |
+
query_layer, attention_mask
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
return (
|
| 593 |
+
query_layer,
|
| 594 |
+
key_layer,
|
| 595 |
+
value_layer,
|
| 596 |
+
indices_q,
|
| 597 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 598 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
class FLMAudioSdpaAttention(FLMAudioAttention):
|
| 603 |
+
"""
|
| 604 |
+
FLM-Audio attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 605 |
+
`FLMAudioAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 606 |
+
SDPA API.
|
| 607 |
+
"""
|
| 608 |
+
|
| 609 |
+
# Adapted from FLMAudioAttention.forward
|
| 610 |
+
def forward(
|
| 611 |
+
self,
|
| 612 |
+
hidden_states: torch.Tensor,
|
| 613 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 614 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 615 |
+
past_key_value: Optional[Cache] = None,
|
| 616 |
+
output_attentions: bool = False,
|
| 617 |
+
use_cache: bool = False,
|
| 618 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 619 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 620 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 621 |
+
if output_attentions:
|
| 622 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 623 |
+
logger.warning_once(
|
| 624 |
+
"FLMAudioModel is using FLMAudioSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 625 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 626 |
+
)
|
| 627 |
+
return super().forward(
|
| 628 |
+
hidden_states=hidden_states,
|
| 629 |
+
attention_mask=attention_mask,
|
| 630 |
+
position_ids=position_ids,
|
| 631 |
+
past_key_value=past_key_value,
|
| 632 |
+
output_attentions=output_attentions,
|
| 633 |
+
use_cache=use_cache,
|
| 634 |
+
cache_position=cache_position,
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
bsz, q_len, _ = hidden_states.size()
|
| 638 |
+
|
| 639 |
+
query_states = self.q_proj(hidden_states)
|
| 640 |
+
key_states = self.k_proj(hidden_states)
|
| 641 |
+
value_states = self.v_proj(hidden_states)
|
| 642 |
+
|
| 643 |
+
query_states = query_states.view(
|
| 644 |
+
bsz, q_len, self.num_heads, self.head_dim
|
| 645 |
+
).transpose(1, 2)
|
| 646 |
+
key_states = key_states.view(
|
| 647 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 648 |
+
).transpose(1, 2)
|
| 649 |
+
value_states = value_states.view(
|
| 650 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 651 |
+
).transpose(1, 2)
|
| 652 |
+
|
| 653 |
+
cos, sin = position_embeddings
|
| 654 |
+
|
| 655 |
+
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
| 656 |
+
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
if past_key_value is not None:
|
| 660 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 661 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 662 |
+
key_states, value_states = past_key_value.update(
|
| 663 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 667 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 668 |
+
|
| 669 |
+
causal_mask = attention_mask
|
| 670 |
+
# if attention_mask is not None and cache_position is not None:
|
| 671 |
+
if attention_mask is not None:
|
| 672 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
| 673 |
+
|
| 674 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 675 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 676 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
| 677 |
+
query_states = query_states.contiguous()
|
| 678 |
+
key_states = key_states.contiguous()
|
| 679 |
+
value_states = value_states.contiguous()
|
| 680 |
+
|
| 681 |
+
attn_output = F.scaled_dot_product_attention(
|
| 682 |
+
query_states,
|
| 683 |
+
key_states,
|
| 684 |
+
value_states,
|
| 685 |
+
attn_mask=causal_mask,
|
| 686 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 687 |
+
)
|
| 688 |
+
|
| 689 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 690 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
| 691 |
+
|
| 692 |
+
attn_output = self.o_proj(attn_output)
|
| 693 |
+
|
| 694 |
+
return attn_output, None, past_key_value
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
FLMAUDIO_ATTENTION_CLASSES = {
|
| 698 |
+
"eager": FLMAudioAttention,
|
| 699 |
+
"flash_attention_2": FLMAudioFlashAttention2,
|
| 700 |
+
"sdpa": FLMAudioSdpaAttention,
|
| 701 |
+
}
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
class FLMAudioDecoderLayer(nn.Module):
|
| 705 |
+
def __init__(self, config: FLMAudioConfig, layer_idx: int):
|
| 706 |
+
super().__init__()
|
| 707 |
+
self.hidden_size = config.hidden_size
|
| 708 |
+
self.self_attn = FLMAUDIO_ATTENTION_CLASSES.get(
|
| 709 |
+
config._attn_implementation, FLMAudioAttention
|
| 710 |
+
)(config=config, layer_idx=layer_idx)
|
| 711 |
+
self.mlp = FLMAudioMLP(config)
|
| 712 |
+
self.input_layernorm = FLMAudioRMSNorm(
|
| 713 |
+
config.hidden_size, eps=config.rms_norm_eps
|
| 714 |
+
)
|
| 715 |
+
self.post_attention_layernorm = FLMAudioRMSNorm(
|
| 716 |
+
config.hidden_size, eps=config.rms_norm_eps
|
| 717 |
+
)
|
| 718 |
+
|
| 719 |
+
def forward(
|
| 720 |
+
self,
|
| 721 |
+
hidden_states: torch.Tensor,
|
| 722 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 723 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 724 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 725 |
+
output_attentions: Optional[bool] = False,
|
| 726 |
+
use_cache: Optional[bool] = False,
|
| 727 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 728 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 729 |
+
**kwargs,
|
| 730 |
+
) -> Tuple[
|
| 731 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
| 732 |
+
]:
|
| 733 |
+
"""
|
| 734 |
+
Args:
|
| 735 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 736 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 737 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 738 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 739 |
+
output_attentions (`bool`, *optional*):
|
| 740 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 741 |
+
returned tensors for more detail.
|
| 742 |
+
use_cache (`bool`, *optional*):
|
| 743 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 744 |
+
(see `past_key_values`).
|
| 745 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 746 |
+
"""
|
| 747 |
+
if "padding_mask" in kwargs:
|
| 748 |
+
warnings.warn(
|
| 749 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 750 |
+
)
|
| 751 |
+
|
| 752 |
+
residual = hidden_states
|
| 753 |
+
|
| 754 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 755 |
+
|
| 756 |
+
# Self Attention
|
| 757 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 758 |
+
hidden_states=hidden_states,
|
| 759 |
+
attention_mask=attention_mask,
|
| 760 |
+
position_ids=position_ids,
|
| 761 |
+
past_key_value=past_key_value,
|
| 762 |
+
output_attentions=output_attentions,
|
| 763 |
+
use_cache=use_cache,
|
| 764 |
+
cache_position=cache_position,
|
| 765 |
+
position_embeddings=position_embeddings,
|
| 766 |
+
**kwargs,
|
| 767 |
+
)
|
| 768 |
+
hidden_states = residual + hidden_states
|
| 769 |
+
|
| 770 |
+
# Fully Connected
|
| 771 |
+
residual = hidden_states
|
| 772 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 773 |
+
hidden_states = self.mlp(hidden_states)
|
| 774 |
+
hidden_states = residual + hidden_states
|
| 775 |
+
|
| 776 |
+
outputs = (hidden_states,)
|
| 777 |
+
|
| 778 |
+
if output_attentions:
|
| 779 |
+
outputs += (self_attn_weights,)
|
| 780 |
+
|
| 781 |
+
if use_cache:
|
| 782 |
+
outputs += (present_key_value,)
|
| 783 |
+
|
| 784 |
+
return outputs
|
| 785 |
+
|
| 786 |
+
|
| 787 |
+
FLMAUDIO_START_DOCSTRING = r"""
|
| 788 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 789 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 790 |
+
etc.)
|
| 791 |
+
|
| 792 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 793 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 794 |
+
and behavior.
|
| 795 |
+
|
| 796 |
+
Parameters:
|
| 797 |
+
config ([`FLMAudioConfig`]):
|
| 798 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 799 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 800 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 801 |
+
"""
|
| 802 |
+
|
| 803 |
+
|
| 804 |
+
@add_start_docstrings(
|
| 805 |
+
"The bare FLM-Audio Model outputting raw hidden-states without any specific head on top.",
|
| 806 |
+
FLMAUDIO_START_DOCSTRING,
|
| 807 |
+
)
|
| 808 |
+
class FLMAudioPreTrainedModel(PreTrainedModel):
|
| 809 |
+
config_class = FLMAudioConfig
|
| 810 |
+
base_model_prefix = "model"
|
| 811 |
+
supports_gradient_checkpointing = True
|
| 812 |
+
_no_split_modules = ["FLMAudioDecoderLayer"]
|
| 813 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 814 |
+
_supports_flash_attn_2 = True
|
| 815 |
+
_supports_sdpa = True
|
| 816 |
+
_supports_cache_class = True
|
| 817 |
+
|
| 818 |
+
def _init_weights(self, module):
|
| 819 |
+
std = self.config.initializer_range
|
| 820 |
+
if isinstance(module, nn.Linear):
|
| 821 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 822 |
+
if module.bias is not None:
|
| 823 |
+
module.bias.data.zero_()
|
| 824 |
+
elif isinstance(module, nn.Embedding):
|
| 825 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 826 |
+
if module.padding_idx is not None:
|
| 827 |
+
module.weight.data[module.padding_idx].zero_()
|
| 828 |
+
|
| 829 |
+
def _setup_cache(
|
| 830 |
+
self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None
|
| 831 |
+
):
|
| 832 |
+
if (
|
| 833 |
+
self.config._attn_implementation == "flash_attention_2"
|
| 834 |
+
and cache_cls == StaticCache
|
| 835 |
+
):
|
| 836 |
+
raise ValueError(
|
| 837 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
| 838 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
| 839 |
+
)
|
| 840 |
+
|
| 841 |
+
for layer in self.model.layers:
|
| 842 |
+
device = layer.input_layernorm.weight.device
|
| 843 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
| 844 |
+
dtype = self.config._pre_quantization_dtype
|
| 845 |
+
else:
|
| 846 |
+
dtype = layer.self_attn.o_proj.weight.dtype
|
| 847 |
+
layer.self_attn.past_key_value = cache_cls(
|
| 848 |
+
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
def _reset_cache(self):
|
| 852 |
+
for layer in self.model.layers:
|
| 853 |
+
layer.self_attn.past_key_value = None
|
| 854 |
+
|
| 855 |
+
|
| 856 |
+
class MultiModalEmbedding(nn.Module):
|
| 857 |
+
def __init__(self, config):
|
| 858 |
+
super().__init__()
|
| 859 |
+
self.config = config
|
| 860 |
+
self.use_mup = config.use_mup
|
| 861 |
+
self.input_mult = config.input_mult
|
| 862 |
+
self.hidden_size = config.hidden_size
|
| 863 |
+
|
| 864 |
+
self.vocab_size = config.vocab_size
|
| 865 |
+
self.aud_vocab_size = config.aud_vocab_size
|
| 866 |
+
|
| 867 |
+
self.aud_channel = config.aud_channel
|
| 868 |
+
|
| 869 |
+
self.aud_emp_token_id = config.mm_token_info.aud_emp_token_id
|
| 870 |
+
|
| 871 |
+
self.text_embeddings = nn.Embedding(self.vocab_size, self.hidden_size)
|
| 872 |
+
|
| 873 |
+
self.aud_listen_embeddings = nn.ModuleList(
|
| 874 |
+
[
|
| 875 |
+
nn.Embedding(self.aud_vocab_size, self.hidden_size)
|
| 876 |
+
for _ in range(self.aud_channel)
|
| 877 |
+
]
|
| 878 |
+
)
|
| 879 |
+
self.aud_speak_embeddings = nn.ModuleList(
|
| 880 |
+
[
|
| 881 |
+
nn.Embedding(self.aud_vocab_size, self.hidden_size)
|
| 882 |
+
for _ in range(self.aud_channel)
|
| 883 |
+
]
|
| 884 |
+
)
|
| 885 |
+
|
| 886 |
+
@staticmethod
|
| 887 |
+
def merge_multichannel_embeddings(
|
| 888 |
+
token_ids, embedding_layer, emp_token_id, embeddings
|
| 889 |
+
):
|
| 890 |
+
if token_ids is not None and embedding_layer is not None:
|
| 891 |
+
assert token_ids.shape[2] == len(embedding_layer)
|
| 892 |
+
for c in range(token_ids.shape[2]):
|
| 893 |
+
_emb_state = embedding_layer[c](token_ids[:, :, c])
|
| 894 |
+
_emb_state[token_ids[:, :, c] == emp_token_id] = 0.0
|
| 895 |
+
embeddings += _emb_state
|
| 896 |
+
_emb_state = None
|
| 897 |
+
del _emb_state
|
| 898 |
+
return embeddings
|
| 899 |
+
|
| 900 |
+
def forward(
|
| 901 |
+
self,
|
| 902 |
+
text_ids,
|
| 903 |
+
speak_ids,
|
| 904 |
+
listen_ids,
|
| 905 |
+
):
|
| 906 |
+
assert text_ids is not None
|
| 907 |
+
embeddings = self.text_embeddings(text_ids)
|
| 908 |
+
mask = ~(text_ids == self.config.pad_token_id)
|
| 909 |
+
|
| 910 |
+
for aud_chn_idx in range(self.aud_channel):
|
| 911 |
+
aud_speak_embed = self.aud_speak_embeddings[aud_chn_idx](
|
| 912 |
+
speak_ids[..., aud_chn_idx]
|
| 913 |
+
).squeeze(0)
|
| 914 |
+
aud_listen_embed = self.aud_listen_embeddings[aud_chn_idx](
|
| 915 |
+
listen_ids[..., aud_chn_idx]
|
| 916 |
+
).squeeze(0)
|
| 917 |
+
embeddings[mask] += aud_speak_embed + aud_listen_embed
|
| 918 |
+
|
| 919 |
+
if self.use_mup:
|
| 920 |
+
embeddings = embeddings * self.input_mult
|
| 921 |
+
|
| 922 |
+
return embeddings
|
| 923 |
+
|
| 924 |
+
|
| 925 |
+
FLMAUDIO_INPUTS_DOCSTRING = r"""
|
| 926 |
+
Args:
|
| 927 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 928 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 929 |
+
it.
|
| 930 |
+
|
| 931 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 932 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 933 |
+
|
| 934 |
+
[What are input IDs?](../glossary#input-ids)
|
| 935 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 936 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 937 |
+
|
| 938 |
+
- 1 for tokens that are **not masked**,
|
| 939 |
+
- 0 for tokens that are **masked**.
|
| 940 |
+
|
| 941 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 942 |
+
|
| 943 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 944 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 945 |
+
|
| 946 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 947 |
+
`past_key_values`).
|
| 948 |
+
|
| 949 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 950 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 951 |
+
information on the default strategy.
|
| 952 |
+
|
| 953 |
+
- 1 indicates the head is **not masked**,
|
| 954 |
+
- 0 indicates the head is **masked**.
|
| 955 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 956 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 957 |
+
config.n_positions - 1]`.
|
| 958 |
+
|
| 959 |
+
[What are position IDs?](../glossary#position-ids)
|
| 960 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 961 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 962 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 963 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 964 |
+
|
| 965 |
+
Two formats are allowed:
|
| 966 |
+
- a [`~cache_utils.Cache`] instance;
|
| 967 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 968 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 969 |
+
cache format.
|
| 970 |
+
|
| 971 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 972 |
+
legacy cache format will be returned.
|
| 973 |
+
|
| 974 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 975 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 976 |
+
of shape `(batch_size, sequence_length)`.
|
| 977 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 978 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 979 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 980 |
+
model's internal embedding lookup matrix.
|
| 981 |
+
use_cache (`bool`, *optional*):
|
| 982 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 983 |
+
`past_key_values`).
|
| 984 |
+
output_attentions (`bool`, *optional*):
|
| 985 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 986 |
+
tensors for more detail.
|
| 987 |
+
output_hidden_states (`bool`, *optional*):
|
| 988 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 989 |
+
more detail.
|
| 990 |
+
return_dict (`bool`, *optional*):
|
| 991 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 992 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 993 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 994 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 995 |
+
the complete sequence length.
|
| 996 |
+
"""
|
| 997 |
+
|
| 998 |
+
|
| 999 |
+
@add_start_docstrings(
|
| 1000 |
+
"The bare FLM-Audio Model outputting raw hidden-states without any specific head on top.",
|
| 1001 |
+
FLMAUDIO_START_DOCSTRING,
|
| 1002 |
+
)
|
| 1003 |
+
class FLMAudioModel(FLMAudioPreTrainedModel):
|
| 1004 |
+
"""
|
| 1005 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`FLMAudioDecoderLayer`]
|
| 1006 |
+
|
| 1007 |
+
Args:
|
| 1008 |
+
config: FLMAudioConfig
|
| 1009 |
+
"""
|
| 1010 |
+
|
| 1011 |
+
def __init__(self, config: FLMAudioConfig):
|
| 1012 |
+
super().__init__(config)
|
| 1013 |
+
self.padding_idx = config.pad_token_id
|
| 1014 |
+
self.vocab_size = config.vocab_size
|
| 1015 |
+
|
| 1016 |
+
self.embed_tokens = MultiModalEmbedding(config)
|
| 1017 |
+
self.layers = nn.ModuleList(
|
| 1018 |
+
[
|
| 1019 |
+
FLMAudioDecoderLayer(config, layer_idx)
|
| 1020 |
+
for layer_idx in range(config.num_hidden_layers)
|
| 1021 |
+
]
|
| 1022 |
+
)
|
| 1023 |
+
self.norm = FLMAudioRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1024 |
+
self.rotary_emb = FLMAudioRotaryEmbedding(config=config)
|
| 1025 |
+
self.gradient_checkpointing = False
|
| 1026 |
+
self.rope_deltas = None # cache rope_deltas here
|
| 1027 |
+
|
| 1028 |
+
# Initialize weights and apply final processing
|
| 1029 |
+
self.post_init()
|
| 1030 |
+
|
| 1031 |
+
def get_input_embeddings(self) -> MultiModalEmbedding:
|
| 1032 |
+
return self.embed_tokens
|
| 1033 |
+
|
| 1034 |
+
def set_input_embeddings(self, value: MultiModalEmbedding):
|
| 1035 |
+
self.embed_tokens = value
|
| 1036 |
+
|
| 1037 |
+
def get_rope_index(
|
| 1038 |
+
self,
|
| 1039 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1040 |
+
second_per_grid_ts: Optional[torch.Tensor] = None,
|
| 1041 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1042 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 1043 |
+
|
| 1044 |
+
mrope_position_deltas = []
|
| 1045 |
+
|
| 1046 |
+
if attention_mask is not None:
|
| 1047 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1048 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1049 |
+
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
|
| 1050 |
+
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
|
| 1051 |
+
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
| 1052 |
+
else:
|
| 1053 |
+
position_ids = (
|
| 1054 |
+
torch.arange(input_ids.shape[1], device=input_ids.device)
|
| 1055 |
+
.view(1, 1, -1)
|
| 1056 |
+
.expand(3, input_ids.shape[0], -1)
|
| 1057 |
+
)
|
| 1058 |
+
mrope_position_deltas = torch.zeros(
|
| 1059 |
+
[input_ids.shape[0], 1],
|
| 1060 |
+
device=input_ids.device,
|
| 1061 |
+
dtype=input_ids.dtype,
|
| 1062 |
+
)
|
| 1063 |
+
|
| 1064 |
+
return position_ids, mrope_position_deltas
|
| 1065 |
+
|
| 1066 |
+
|
| 1067 |
+
@add_start_docstrings_to_model_forward(FLMAUDIO_INPUTS_DOCSTRING)
|
| 1068 |
+
def forward(
|
| 1069 |
+
self,
|
| 1070 |
+
text_ids: torch.LongTensor = None,
|
| 1071 |
+
listen_ids: torch.LongTensor = None,
|
| 1072 |
+
speak_ids: torch.LongTensor = None,
|
| 1073 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1074 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1075 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1076 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1077 |
+
use_cache: Optional[bool] = None,
|
| 1078 |
+
output_attentions: Optional[bool] = None,
|
| 1079 |
+
output_hidden_states: Optional[bool] = None,
|
| 1080 |
+
return_dict: Optional[bool] = None,
|
| 1081 |
+
rope_deltas: Optional[torch.LongTensor] = None,
|
| 1082 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1083 |
+
second_per_grid_ts: Optional[torch.Tensor] = None,
|
| 1084 |
+
**kwargs,
|
| 1085 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 1086 |
+
output_attentions = (
|
| 1087 |
+
output_attentions
|
| 1088 |
+
if output_attentions is not None
|
| 1089 |
+
else self.config.output_attentions
|
| 1090 |
+
)
|
| 1091 |
+
output_hidden_states = (
|
| 1092 |
+
output_hidden_states
|
| 1093 |
+
if output_hidden_states is not None
|
| 1094 |
+
else self.config.output_hidden_states
|
| 1095 |
+
)
|
| 1096 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1097 |
+
return_dict = (
|
| 1098 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1099 |
+
)
|
| 1100 |
+
|
| 1101 |
+
if (text_ids is None) ^ (inputs_embeds is not None):
|
| 1102 |
+
raise ValueError(
|
| 1103 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 1104 |
+
)
|
| 1105 |
+
|
| 1106 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 1107 |
+
logger.warning_once(
|
| 1108 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 1109 |
+
)
|
| 1110 |
+
use_cache = False
|
| 1111 |
+
|
| 1112 |
+
if inputs_embeds is None:
|
| 1113 |
+
inputs_embeds = self.embed_tokens(
|
| 1114 |
+
text_ids,
|
| 1115 |
+
speak_ids,
|
| 1116 |
+
listen_ids,
|
| 1117 |
+
)
|
| 1118 |
+
|
| 1119 |
+
past_seen_tokens = 0
|
| 1120 |
+
if use_cache: # kept for BC (cache positions)
|
| 1121 |
+
if not isinstance(past_key_values, StaticCache):
|
| 1122 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 1123 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
| 1124 |
+
|
| 1125 |
+
if cache_position is None:
|
| 1126 |
+
if isinstance(past_key_values, StaticCache):
|
| 1127 |
+
raise ValueError(
|
| 1128 |
+
"cache_position is a required argument when using StaticCache."
|
| 1129 |
+
)
|
| 1130 |
+
cache_position = torch.arange(
|
| 1131 |
+
past_seen_tokens,
|
| 1132 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
| 1133 |
+
device=inputs_embeds.device,
|
| 1134 |
+
)
|
| 1135 |
+
|
| 1136 |
+
# if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
|
| 1137 |
+
if position_ids is None:
|
| 1138 |
+
# calculate RoPE index once per generation in the pre-fill stage only
|
| 1139 |
+
if (
|
| 1140 |
+
(cache_position is not None and cache_position[0] == 0)
|
| 1141 |
+
or self.rope_deltas is None
|
| 1142 |
+
or (past_key_values is None or past_key_values.get_seq_length() == 0)
|
| 1143 |
+
):
|
| 1144 |
+
position_ids, rope_deltas = self.get_rope_index(
|
| 1145 |
+
text_ids,
|
| 1146 |
+
second_per_grid_ts,
|
| 1147 |
+
attention_mask,
|
| 1148 |
+
)
|
| 1149 |
+
self.rope_deltas = rope_deltas
|
| 1150 |
+
# then use the prev pre-calculated rope-deltas to get the correct position ids
|
| 1151 |
+
else:
|
| 1152 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 1153 |
+
delta = (
|
| 1154 |
+
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
|
| 1155 |
+
if cache_position is not None
|
| 1156 |
+
else 0
|
| 1157 |
+
)
|
| 1158 |
+
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
|
| 1159 |
+
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
|
| 1160 |
+
if cache_position is not None: # otherwise `deltas` is an int `0`
|
| 1161 |
+
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
|
| 1162 |
+
position_ids = position_ids.add(delta)
|
| 1163 |
+
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
|
| 1164 |
+
|
| 1165 |
+
causal_mask = self._update_causal_mask(
|
| 1166 |
+
attention_mask, inputs_embeds, cache_position
|
| 1167 |
+
)
|
| 1168 |
+
|
| 1169 |
+
# embed positions
|
| 1170 |
+
hidden_states = inputs_embeds
|
| 1171 |
+
|
| 1172 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 1173 |
+
|
| 1174 |
+
# decoder layers
|
| 1175 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1176 |
+
all_self_attns = () if output_attentions else None
|
| 1177 |
+
next_decoder_cache = None
|
| 1178 |
+
|
| 1179 |
+
for decoder_layer in self.layers:
|
| 1180 |
+
if output_hidden_states:
|
| 1181 |
+
all_hidden_states += (hidden_states,)
|
| 1182 |
+
|
| 1183 |
+
if self.gradient_checkpointing and self.training:
|
| 1184 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1185 |
+
decoder_layer.__call__,
|
| 1186 |
+
hidden_states,
|
| 1187 |
+
causal_mask,
|
| 1188 |
+
position_ids,
|
| 1189 |
+
past_key_values,
|
| 1190 |
+
output_attentions,
|
| 1191 |
+
use_cache,
|
| 1192 |
+
cache_position,
|
| 1193 |
+
position_embeddings,
|
| 1194 |
+
)
|
| 1195 |
+
else:
|
| 1196 |
+
layer_outputs = decoder_layer(
|
| 1197 |
+
hidden_states,
|
| 1198 |
+
attention_mask=causal_mask,
|
| 1199 |
+
position_ids=position_ids,
|
| 1200 |
+
past_key_value=past_key_values,
|
| 1201 |
+
output_attentions=output_attentions,
|
| 1202 |
+
use_cache=use_cache,
|
| 1203 |
+
cache_position=cache_position,
|
| 1204 |
+
position_embeddings=position_embeddings,
|
| 1205 |
+
)
|
| 1206 |
+
|
| 1207 |
+
hidden_states = layer_outputs[0]
|
| 1208 |
+
|
| 1209 |
+
if use_cache:
|
| 1210 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 1211 |
+
|
| 1212 |
+
if output_attentions:
|
| 1213 |
+
all_self_attns += (layer_outputs[1],)
|
| 1214 |
+
|
| 1215 |
+
hidden_states = self.norm(hidden_states)
|
| 1216 |
+
|
| 1217 |
+
# add hidden states from the last decoder layer
|
| 1218 |
+
if output_hidden_states:
|
| 1219 |
+
all_hidden_states += (hidden_states,)
|
| 1220 |
+
|
| 1221 |
+
next_cache = None
|
| 1222 |
+
if use_cache:
|
| 1223 |
+
next_cache = (
|
| 1224 |
+
next_decoder_cache.to_legacy_cache()
|
| 1225 |
+
if isinstance(next_decoder_cache, Cache)
|
| 1226 |
+
else next_decoder_cache
|
| 1227 |
+
)
|
| 1228 |
+
if not return_dict:
|
| 1229 |
+
return tuple(
|
| 1230 |
+
v
|
| 1231 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 1232 |
+
if v is not None
|
| 1233 |
+
)
|
| 1234 |
+
return BaseModelOutputWithPast(
|
| 1235 |
+
last_hidden_state=hidden_states,
|
| 1236 |
+
past_key_values=next_cache,
|
| 1237 |
+
hidden_states=all_hidden_states,
|
| 1238 |
+
attentions=all_self_attns,
|
| 1239 |
+
)
|
| 1240 |
+
|
| 1241 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
| 1242 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
| 1243 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
| 1244 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
| 1245 |
+
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
|
| 1246 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 1247 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 1248 |
+
return attention_mask
|
| 1249 |
+
return None
|
| 1250 |
+
|
| 1251 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 1252 |
+
min_dtype = torch.finfo(dtype).min
|
| 1253 |
+
sequence_length = input_tensor.shape[1]
|
| 1254 |
+
if hasattr(
|
| 1255 |
+
getattr(self.layers[0], "self_attn", {}), "past_key_value"
|
| 1256 |
+
): # static cache
|
| 1257 |
+
target_length = self.config.max_position_embeddings
|
| 1258 |
+
else: # dynamic cache
|
| 1259 |
+
target_length = (
|
| 1260 |
+
attention_mask.shape[-1]
|
| 1261 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 1262 |
+
else cache_position[-1] + 1
|
| 1263 |
+
)
|
| 1264 |
+
|
| 1265 |
+
causal_mask = torch.full(
|
| 1266 |
+
(sequence_length, target_length),
|
| 1267 |
+
fill_value=min_dtype,
|
| 1268 |
+
dtype=dtype,
|
| 1269 |
+
device=device,
|
| 1270 |
+
)
|
| 1271 |
+
if sequence_length != 1:
|
| 1272 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 1273 |
+
causal_mask *= torch.arange(
|
| 1274 |
+
target_length, device=device
|
| 1275 |
+
) > cache_position.reshape(-1, 1)
|
| 1276 |
+
causal_mask = causal_mask[None, None, :, :].expand(
|
| 1277 |
+
input_tensor.shape[0], 1, -1, -1
|
| 1278 |
+
)
|
| 1279 |
+
if attention_mask is not None:
|
| 1280 |
+
causal_mask = (
|
| 1281 |
+
causal_mask.clone()
|
| 1282 |
+
) # copy to contiguous memory for in-place edit
|
| 1283 |
+
if attention_mask.dim() == 2:
|
| 1284 |
+
mask_length = attention_mask.shape[-1]
|
| 1285 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[
|
| 1286 |
+
:, None, None, :
|
| 1287 |
+
].eq(0.0)
|
| 1288 |
+
causal_mask[..., :mask_length] = causal_mask[
|
| 1289 |
+
..., :mask_length
|
| 1290 |
+
].masked_fill(padding_mask, min_dtype)
|
| 1291 |
+
elif attention_mask.dim() == 4:
|
| 1292 |
+
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
| 1293 |
+
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
| 1294 |
+
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
| 1295 |
+
offset = cache_position[0]
|
| 1296 |
+
else:
|
| 1297 |
+
offset = 0
|
| 1298 |
+
mask_shape = attention_mask.shape
|
| 1299 |
+
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
| 1300 |
+
causal_mask[
|
| 1301 |
+
: mask_shape[0],
|
| 1302 |
+
: mask_shape[1],
|
| 1303 |
+
offset : mask_shape[2] + offset,
|
| 1304 |
+
: mask_shape[3],
|
| 1305 |
+
] = mask_slice
|
| 1306 |
+
|
| 1307 |
+
if (
|
| 1308 |
+
self.config._attn_implementation == "sdpa"
|
| 1309 |
+
and attention_mask is not None
|
| 1310 |
+
and attention_mask.device.type == "cuda"
|
| 1311 |
+
):
|
| 1312 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1313 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1314 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1315 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
| 1316 |
+
causal_mask, min_dtype
|
| 1317 |
+
)
|
| 1318 |
+
|
| 1319 |
+
return causal_mask
|
| 1320 |
+
|
| 1321 |
+
|
| 1322 |
+
@dataclass
|
| 1323 |
+
class FLMAudioCausalLMOutputWithPast(ModelOutput):
|
| 1324 |
+
loss: Optional[torch.FloatTensor] = None
|
| 1325 |
+
logits: torch.FloatTensor = None
|
| 1326 |
+
audio_logits: torch.FloatTensor = None
|
| 1327 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
| 1328 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 1329 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 1330 |
+
rope_deltas: Optional[torch.LongTensor] = None
|
| 1331 |
+
|
| 1332 |
+
|
| 1333 |
+
class FLMAudioForCausalLM(FLMAudioPreTrainedModel):
|
| 1334 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1335 |
+
|
| 1336 |
+
def __init__(self, config):
|
| 1337 |
+
super().__init__(config)
|
| 1338 |
+
self.model = FLMAudioModel(config)
|
| 1339 |
+
self.vocab_size = config.vocab_size
|
| 1340 |
+
self.output_mult = config.output_mult
|
| 1341 |
+
|
| 1342 |
+
depth_config = DepthGPTConfig(
|
| 1343 |
+
block_size=config.aud_channel,
|
| 1344 |
+
vocab_size=config.aud_vocab_size,
|
| 1345 |
+
n_layer=config.aud_depthgpt.n_layer,
|
| 1346 |
+
n_head=config.aud_depthgpt.n_head,
|
| 1347 |
+
n_embd=config.aud_depthgpt.n_embd,
|
| 1348 |
+
dropout=config.aud_depthgpt.dropout,
|
| 1349 |
+
bias=config.aud_depthgpt.bias,
|
| 1350 |
+
main_hidden_size=config.hidden_size,
|
| 1351 |
+
pad_token_id=config.mm_token_info.aud_emp_token_id,
|
| 1352 |
+
use_cmlp=config.aud_depthgpt.use_cmlp,
|
| 1353 |
+
use_rmsnorm=config.aud_depthgpt.use_rmsnorm,
|
| 1354 |
+
use_swiglu=config.aud_depthgpt.use_swiglu,
|
| 1355 |
+
)
|
| 1356 |
+
|
| 1357 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1358 |
+
|
| 1359 |
+
self.aud_output_layers = DepthGPT(depth_config)
|
| 1360 |
+
|
| 1361 |
+
self.use_mup = config.use_mup
|
| 1362 |
+
if self.use_mup:
|
| 1363 |
+
self.mup_scale_factor = config.mup_scale_factor
|
| 1364 |
+
self.output_mult = config.output_mult / self.mup_scale_factor
|
| 1365 |
+
# Initialize weights and apply final processing
|
| 1366 |
+
self.post_init()
|
| 1367 |
+
|
| 1368 |
+
def get_input_embeddings(self):
|
| 1369 |
+
return self.model.embed_tokens
|
| 1370 |
+
|
| 1371 |
+
def set_input_embeddings(self, value):
|
| 1372 |
+
self.model.embed_tokens = value
|
| 1373 |
+
|
| 1374 |
+
def get_output_embeddings(self):
|
| 1375 |
+
return self.lm_head
|
| 1376 |
+
|
| 1377 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1378 |
+
self.lm_head = new_embeddings
|
| 1379 |
+
|
| 1380 |
+
def set_decoder(self, decoder):
|
| 1381 |
+
self.model = decoder
|
| 1382 |
+
|
| 1383 |
+
def get_decoder(self):
|
| 1384 |
+
return self.model
|
| 1385 |
+
|
| 1386 |
+
def _forward_text(self, outputs, labels, return_dict):
|
| 1387 |
+
|
| 1388 |
+
logits = self.lm_head(outputs[0])
|
| 1389 |
+
logits = logits.float()
|
| 1390 |
+
# Mup
|
| 1391 |
+
if self.use_mup:
|
| 1392 |
+
logits = logits * self.output_mult
|
| 1393 |
+
|
| 1394 |
+
loss = None
|
| 1395 |
+
if labels is not None:
|
| 1396 |
+
raise NotImplementedError
|
| 1397 |
+
|
| 1398 |
+
if not return_dict:
|
| 1399 |
+
output = (logits,) + outputs[1:]
|
| 1400 |
+
return (loss,) + output if loss is not None else output
|
| 1401 |
+
|
| 1402 |
+
return FLMAudioCausalLMOutputWithPast(
|
| 1403 |
+
loss=loss,
|
| 1404 |
+
logits=logits,
|
| 1405 |
+
past_key_values=outputs.past_key_values,
|
| 1406 |
+
hidden_states=outputs.last_hidden_state,
|
| 1407 |
+
attentions=outputs.attentions,
|
| 1408 |
+
)
|
| 1409 |
+
|
| 1410 |
+
def forward_audio(self, transformer_output_states, audio_input_ids):
|
| 1411 |
+
return self.aud_output_layers(transformer_output_states, audio_input_ids)
|
| 1412 |
+
|
| 1413 |
+
@add_start_docstrings_to_model_forward(FLMAUDIO_INPUTS_DOCSTRING)
|
| 1414 |
+
@replace_return_docstrings(
|
| 1415 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
| 1416 |
+
)
|
| 1417 |
+
def forward(
|
| 1418 |
+
self,
|
| 1419 |
+
input_ids: torch.LongTensor = None,
|
| 1420 |
+
listen_ids: torch.LongTensor = None,
|
| 1421 |
+
speak_ids: torch.LongTensor = None,
|
| 1422 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1423 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1424 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1425 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1426 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1427 |
+
use_cache: Optional[bool] = None,
|
| 1428 |
+
output_attentions: Optional[bool] = None,
|
| 1429 |
+
output_hidden_states: Optional[bool] = None,
|
| 1430 |
+
return_dict: Optional[bool] = None,
|
| 1431 |
+
rope_deltas: Optional[torch.LongTensor] = None,
|
| 1432 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1433 |
+
second_per_grid_ts: Optional[torch.Tensor] = None,
|
| 1434 |
+
**kwargs,
|
| 1435 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1436 |
+
r"""
|
| 1437 |
+
Args:
|
| 1438 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1439 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1440 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1441 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1442 |
+
|
| 1443 |
+
Returns:
|
| 1444 |
+
|
| 1445 |
+
Example:
|
| 1446 |
+
|
| 1447 |
+
```python
|
| 1448 |
+
>>> from transformers import AutoTokenizer, FLMAudioForCausalLM
|
| 1449 |
+
|
| 1450 |
+
>>> model = FLMAudioForCausalLM.from_pretrained("CofeAI/FLM-Audio")
|
| 1451 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("CofeAI/FLM-Audio")
|
| 1452 |
+
|
| 1453 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1454 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1455 |
+
|
| 1456 |
+
>>> # Generate
|
| 1457 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1458 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1459 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1460 |
+
```"""
|
| 1461 |
+
output_attentions = (
|
| 1462 |
+
output_attentions
|
| 1463 |
+
if output_attentions is not None
|
| 1464 |
+
else self.config.output_attentions
|
| 1465 |
+
)
|
| 1466 |
+
output_hidden_states = (
|
| 1467 |
+
output_hidden_states
|
| 1468 |
+
if output_hidden_states is not None
|
| 1469 |
+
else self.config.output_hidden_states
|
| 1470 |
+
)
|
| 1471 |
+
return_dict = (
|
| 1472 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1473 |
+
)
|
| 1474 |
+
|
| 1475 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1476 |
+
|
| 1477 |
+
if listen_ids is None and speak_ids is None:
|
| 1478 |
+
batch_size, seq_len = input_ids.shape[:2]
|
| 1479 |
+
listen_ids = torch.full((seq_len*batch_size, 8), self.model.config.mm_token_info.aud_pad_token_id, device=input_ids.device, dtype=input_ids.dtype)
|
| 1480 |
+
speak_ids = torch.full((seq_len*batch_size, 8), self.model.config.mm_token_info.aud_pad_token_id, device=input_ids.device, dtype=input_ids.dtype)
|
| 1481 |
+
outputs = self.model(
|
| 1482 |
+
text_ids=input_ids,
|
| 1483 |
+
listen_ids=listen_ids,
|
| 1484 |
+
speak_ids=speak_ids,
|
| 1485 |
+
attention_mask=attention_mask,
|
| 1486 |
+
position_ids=position_ids,
|
| 1487 |
+
past_key_values=past_key_values,
|
| 1488 |
+
inputs_embeds=inputs_embeds,
|
| 1489 |
+
use_cache=use_cache,
|
| 1490 |
+
output_attentions=output_attentions,
|
| 1491 |
+
output_hidden_states=output_hidden_states,
|
| 1492 |
+
return_dict=return_dict,
|
| 1493 |
+
cache_position=cache_position,
|
| 1494 |
+
second_per_grid_ts=second_per_grid_ts
|
| 1495 |
+
)
|
| 1496 |
+
return self._forward_text(outputs, labels, return_dict)
|
| 1497 |
+
|
| 1498 |
+
@staticmethod
|
| 1499 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1500 |
+
reordered_past = ()
|
| 1501 |
+
for layer_past in past_key_values:
|
| 1502 |
+
reordered_past += (
|
| 1503 |
+
tuple(
|
| 1504 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 1505 |
+
for past_state in layer_past
|
| 1506 |
+
),
|
| 1507 |
+
)
|
| 1508 |
+
return reordered_past
|
| 1509 |
+
|
| 1510 |
+
def _get_initial_token(self) -> torch.Tensor:
|
| 1511 |
+
# Returns the initial token that will be fed to the model to predict the very first timestep.
|
| 1512 |
+
# The output shape will be [B, K, 1].
|
| 1513 |
+
device = next(iter(self.parameters())).device
|
| 1514 |
+
zero = torch.full([1, 1, 1], 0, device=device, dtype=torch.long)
|
| 1515 |
+
special = torch.full_like(zero, self.config.mm_token_info.aud_pad_token_id)
|
| 1516 |
+
|
| 1517 |
+
text_special = torch.full_like(
|
| 1518 |
+
zero, self.config.mm_token_info.text_wait_token_id
|
| 1519 |
+
)
|
| 1520 |
+
audio_token = special
|
| 1521 |
+
text_token = text_special
|
| 1522 |
+
audio_token = audio_token.expand(-1, 2 * self.config.aud_channel, -1).clone()
|
| 1523 |
+
token = torch.cat([text_token, audio_token], dim=1)
|
| 1524 |
+
return token
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>",
|
| 16 |
+
"<|text_wait|>",
|
| 17 |
+
"<|asr|>",
|
| 18 |
+
"<|answer|>"
|
| 19 |
+
],
|
| 20 |
+
"eos_token": {
|
| 21 |
+
"content": "<|im_end|>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
},
|
| 27 |
+
"pad_token": {
|
| 28 |
+
"content": "<|endoftext|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false
|
| 33 |
+
}
|
| 34 |
+
}
|
tokenizer-e351c8d8-checkpoint125.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:09b782f0629851a271227fb9d36db65c041790365f11bbe5d3d59369cf863f50
|
| 3 |
+
size 384644900
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:805c30668219574cf25bb2e2d361be36f68910bf290bd574ba9bc4e73150169a
|
| 3 |
+
size 11422457
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<|text_wait|>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": true
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "<|asr|>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": true
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<|answer|>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": true
|
| 204 |
+
}
|
| 205 |
+
},
|
| 206 |
+
"additional_special_tokens": [
|
| 207 |
+
"<|im_start|>",
|
| 208 |
+
"<|im_end|>",
|
| 209 |
+
"<|object_ref_start|>",
|
| 210 |
+
"<|object_ref_end|>",
|
| 211 |
+
"<|box_start|>",
|
| 212 |
+
"<|box_end|>",
|
| 213 |
+
"<|quad_start|>",
|
| 214 |
+
"<|quad_end|>",
|
| 215 |
+
"<|vision_start|>",
|
| 216 |
+
"<|vision_end|>",
|
| 217 |
+
"<|vision_pad|>",
|
| 218 |
+
"<|image_pad|>",
|
| 219 |
+
"<|video_pad|>",
|
| 220 |
+
"<|text_wait|>",
|
| 221 |
+
"<|asr|>",
|
| 222 |
+
"<|answer|>"
|
| 223 |
+
],
|
| 224 |
+
"bos_token": null,
|
| 225 |
+
"clean_up_tokenization_spaces": false,
|
| 226 |
+
"eos_token": "<|im_end|>",
|
| 227 |
+
"errors": "replace",
|
| 228 |
+
"extra_special_tokens": {},
|
| 229 |
+
"model_max_length": 131072,
|
| 230 |
+
"pad_token": "<|endoftext|>",
|
| 231 |
+
"split_special_tokens": false,
|
| 232 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 233 |
+
"unk_token": null
|
| 234 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|