nanditasn commited on
Commit
265d0e1
·
verified ·
1 Parent(s): 9500826

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -181
README.md CHANGED
@@ -1,199 +1,133 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
 
 
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Qwen/Qwen2.5-72B-Instruct
7
+ tags:
8
+ - evaluation
9
  ---
10
 
11
+ <div align="center">
12
 
13
+ # LMUnit: Fine-grained Evaluation with Natural Language Unit Tests
14
+ <img src="Contextual_AI_Brand_Mark_Dark.png" width="10%" alt="Contextual_AI"/>
15
 
16
+ </div>
17
 
18
+ <hr>
19
 
20
+ <div align="center">
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
+ [![Paper](https://img.shields.io/badge/Paper-LMUnit-blue)](https://arxiv.org/abs/2412.13091)
23
+ [![Blog Post](https://img.shields.io/badge/📝%20Blog-LMUnit-green)](https://contextual.ai/research/lmunit)
24
+ [![GitHub](https://img.shields.io/badge/GitHub-LMUnit-black?logo=github)](https://github.com/ContextualAI/LMUnit)
25
+ [![Hugging Face Collection](https://img.shields.io/badge/🤗%20Hugging%20Face-Model%20Collection-yellow)](https://huggingface.co/collections/ContextualAI/lmunit)
26
 
27
+ </div>
28
 
29
+ **LMUnit** is a state-of-the-art language model that is optimized for evaluating natural language unit tests. It takes three inputs: a prompt, a response, and a unit test. It then produces a continuous score between 1 and 5 where higher scores indicate that the response better satisfies the unit test criteria.
30
 
31
+ The LMUnit model achieves leading averaged performance across preference, direct scoring, and fine-grained unit test evaluation tasks, as measured by FLASK and BiGGen Bench, and performs on par with frontier models for coarse evaluation of long-form responses (per LFQA). The model also demonstrates exceptional alignment with human preferences, ranking in the top 5 of the RewardBench benchmark with 93.5% accuracy and in top #2 of RewardBench2 with 82.1% accuracy.
32
 
33
+ For more details, please check out the [blogpost](https://contextual.ai/research/lmunit) or the [paper](https://arxiv.org/abs/2412.13091).
34
 
35
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ LMUnit is highly performant and versatile because of key methodologies in its training approach:
38
 
39
+ - **Multi-Objective Training:** The model simultaneously learns from multiple evaluation signals, including pairwise comparisons between responses, direct quality ratings, and specialized criteria-based judgments.
40
+ - **Synthetic Data Generation:** We developed a sophisticated pipeline to generate training data that captures nuanced, fine-grained evaluation criteria and subtle quality distinctions between responses across a wide range of use cases and scenarios.
41
+ - **Importance Weighting:** We demonstrate that adjusting unit test weights to reflect the relative importance of different criteria achieves results that better align with human preferences.
42
 
43
+ ### Model Description
44
 
45
+ - **Developed by:** Contextual AI
46
+ - **Language(s) (NLP):** English
47
+ - **Finetuned from model:** Qwen2.5-72B
48
+
49
+ ### Model Sources
50
+
51
+ - **Repository:** https://github.com/ContextualAI/LMUnit
52
+ - **Paper:** https://arxiv.org/abs/2412.13091
53
+
54
+ ## 🚀 Model Quick Start
55
+
56
+ ### Installation
57
+ ```bash
58
+ pip install lmunit
59
+ ```
60
+
61
+ ### Basic Usage
62
+ ```python
63
+ from lmunit import LMUnit
64
+ from vllm import SamplingParams
65
+
66
+ # Initialize LMUnit
67
+ model = LMUnit(
68
+ model_path="ContextualAI/LMUnit-qwen2.5-72b",
69
+ tp_size=4
70
+ )
71
+
72
+ # Define evaluation
73
+ query = "What is the capital of France?"
74
+ response = "Paris"
75
+ unit_test = "Does the response correctly identify the capital city?"
76
+
77
+ # Generate score
78
+ sampling_params = SamplingParams(temperature=0.0, max_tokens=10, logprobs=20)
79
+ prompt = f"Query: {query}\n\nResponse: {response}\n\nUnit Test: {unit_test}"
80
+ output = model.generate(prompt, sampling_params)
81
+ print(output)
82
+ ```
83
+
84
+ ### Alternative: Using Transformers
85
+ ```python
86
+ from transformers import AutoTokenizer, AutoModelForCausalLM
87
+
88
+ # Load model
89
+ tokenizer = AutoTokenizer.from_pretrained("ContextualAI/LMUnit-qwen2.5-72b")
90
+ model = AutoModelForCausalLM.from_pretrained("ContextualAI/LMUnit-qwen2.5-72b")
91
+
92
+ # Prepare prompt
93
+ query = "What is the capital of France?"
94
+ response = "Paris"
95
+ unit_test = "Does the response correctly identify the capital city?"
96
+ content = f"Query: {query}\n\nResponse: {response}\n\nUnit Test: {unit_test}"
97
+
98
+ messages = [{"role": "user", "content": content}]
99
+ inputs = tokenizer.apply_chat_template(
100
+ messages,
101
+ add_generation_prompt=True,
102
+ tokenize=True,
103
+ return_dict=True,
104
+ return_tensors="pt",
105
+ ).to(model.device)
106
+
107
+ # Generate
108
+ outputs = model.generate(**inputs, max_new_tokens=40)
109
+ result = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:])
110
+ print(result)
111
+ ```
112
+
113
+ For more examples, see our [GitHub repository](https://github.com/ContextualAI/LMUnit).
114
+
115
+ ### Evaluation - Results
116
+
117
+ | Model | Flask | BiGGen-Bench | Human-Internal | InfoBench | RB | LFQA | RB2 |
118
+ |:------|------:|-------------:|---------------:|----------:|----:|------:|----:|
119
+ | **LMUnit-LLaMA-3.1-70B** | 72.03 | 67.69 | 93.63 | 89.00 | 91.56 | 76.15 | 80.5 |
120
+ | **LMUnit-Qwen2.5-72B** | 73.85 | 69.56 | 94.44 | 88.67 | 91.13 | 73.85 | 82.1 |
121
+
122
+ ## Citation
123
+
124
+ If you find our work helpful, feel free to cite our paper:
125
+ ```bibtex
126
+ @inproceedings{saadfalcon2025lmunit,
127
+ title={{LMUnit}: Fine-grained Evaluation with Natural Language Unit Tests},
128
+ author={Jon Saad-Falcon and Rajan Vivek and William Berrios and Nandita Shankar Naik and Matija Franklin and Bertie Vidgen and Amanpreet Singh and Douwe Kiela and Shikib Mehri},
129
+ booktitle={Findings of the Association for Computational Linguistics: EMNLP 2025},
130
+ year={2025},
131
+ url={https://arxiv.org/abs/2412.13091}
132
+ }
133
+ ```