File size: 33,919 Bytes
695fbf0 9068525 695fbf0 42c372b 695fbf0 42c372b 695fbf0 42c372b 478379a 42c372b 478379a 42c372b 478379a 42c372b 695fbf0 478379a 695fbf0 42c372b 695fbf0 9068525 695fbf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
import os
import sys
import math
import torch
import torch.nn.functional as F
import numpy as np
import comfy.model_management as model_management
from .mg_upscale_module import clear_gpu_and_ram_cache
_DEPTH_INIT = False
_DEPTH_MODEL = None
_DEPTH_PROC = None
_DEPTH_WARNED = False
def _find_custom_nodes_root() -> str | None:
try:
here = os.path.abspath(os.path.dirname(__file__))
cur = here
for _ in range(6):
if os.path.basename(cur).lower() == 'custom_nodes':
return cur
parent = os.path.dirname(cur)
if parent == cur:
break
cur = parent
except Exception:
return None
return None
def _insert_aux_path():
try:
base = _find_custom_nodes_root()
if base is None:
base = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', '..', '..'))
aux_root = os.path.join(base, 'comfyui_controlnet_aux')
aux_src = os.path.join(aux_root, 'src')
for p in (aux_src, aux_root):
if os.path.isdir(p) and p not in sys.path:
sys.path.insert(0, p)
except Exception:
pass
def _try_init_depth_anything(model_path: str):
global _DEPTH_INIT, _DEPTH_MODEL, _DEPTH_PROC
# If already loaded, reuse
if _DEPTH_MODEL is not None:
return True
# Resolve model path: allow 'auto' or directory and prefer vitl>vitb>vits>vitg
try:
def _prefer_order(paths):
order = ["vitl", "vitb", "vits", "vitg"]
scored = []
for p in paths:
name = os.path.basename(p).lower()
score = 100
for i, tag in enumerate(order):
if tag in name:
score = i
break
scored.append((score, p))
scored.sort(key=lambda x: x[0])
return [p for _, p in scored]
def _resolve_path(mp: str) -> str:
if isinstance(mp, str) and mp.strip().lower() == "auto":
mp = ""
if mp and os.path.isfile(mp):
return mp
search_dirs = []
if mp and os.path.isdir(mp):
search_dirs.append(mp)
base_dir = os.path.join(os.path.dirname(__file__), '..', 'depth-anything')
search_dirs.append(base_dir)
# also scan comfyui_controlnet_aux ckpts/depth-anything recursively if present
base_custom = _find_custom_nodes_root()
if base_custom is None:
base_custom = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', '..', '..'))
aux_ckpts = os.path.join(base_custom, 'comfyui_controlnet_aux', 'ckpts', 'depth-anything')
search_dirs.append(aux_ckpts)
cand = []
for d in search_dirs:
try:
if not os.path.isdir(d):
continue
for root, _dirs, files in os.walk(d):
for fn in files:
fnl = fn.lower()
key = fnl.replace('-', '_')
if fnl.endswith('.pth') and ('depth_anything' in key) and ('v2' in key):
cand.append(os.path.join(root, fn))
except Exception:
pass
if cand:
return _prefer_order(cand)[0]
return mp
model_path = _resolve_path(model_path)
except Exception:
pass
# If no local weights resolved, bail out to cheap fallback instead of triggering heavy auto-downloads
try:
if not (isinstance(model_path, str) and os.path.isfile(model_path)):
global _DEPTH_WARNED
if not _DEPTH_WARNED:
try:
print("[ControlFusion][Depth] no local Depth Anything v2 weights found; using pseudo-depth fallback.")
except Exception:
pass
_DEPTH_WARNED = True
_DEPTH_MODEL = None
_DEPTH_PROC = False
return False
except Exception:
_DEPTH_MODEL = None
_DEPTH_PROC = False
return False
# Prefer our vendored implementation first
try:
from ...vendor.depth_anything_v2.dpt import DepthAnythingV2 # type: ignore
# Guess config from filename
fname = os.path.basename(model_path or '')
cfgs = {
'depth_anything_v2_vits.pth': dict(encoder='vits', features=64, out_channels=[48,96,192,384]),
'depth_anything_v2_vitb.pth': dict(encoder='vitb', features=128, out_channels=[96,192,384,768]),
'depth_anything_v2_vitl.pth': dict(encoder='vitl', features=256, out_channels=[256,512,1024,1024]),
'depth_anything_v2_vitg.pth': dict(encoder='vitg', features=384, out_channels=[1536,1536,1536,1536]),
'depth_anything_v2_metric_vkitti_vitl.pth': dict(encoder='vitl', features=256, out_channels=[256,512,1024,1024]),
'depth_anything_v2_metric_hypersim_vitl.pth': dict(encoder='vitl', features=256, out_channels=[256,512,1024,1024]),
}
# fallback to vitl if unknown
cfg = cfgs.get(fname, cfgs['depth_anything_v2_vitl.pth'])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
m = DepthAnythingV2(**cfg)
sd = torch.load(model_path, map_location='cpu')
m.load_state_dict(sd)
_DEPTH_MODEL = m.to(device).eval()
_DEPTH_PROC = True
return True
except Exception:
# Try local checkout of comfyui_controlnet_aux (if present)
_insert_aux_path()
try:
from custom_controlnet_aux.depth_anything_v2.dpt import DepthAnythingV2 # type: ignore
fname = os.path.basename(model_path or '')
cfgs = {
'depth_anything_v2_vits.pth': dict(encoder='vits', features=64, out_channels=[48,96,192,384]),
'depth_anything_v2_vitb.pth': dict(encoder='vitb', features=128, out_channels=[96,192,384,768]),
'depth_anything_v2_vitl.pth': dict(encoder='vitl', features=256, out_channels=[256,512,1024,1024]),
'depth_anything_v2_vitg.pth': dict(encoder='vitg', features=384, out_channels=[1536,1536,1536,1536]),
'depth_anything_v2_metric_vkitti_vitl.pth': dict(encoder='vitl', features=256, out_channels=[256,512,1024,1024]),
'depth_anything_v2_metric_hypersim_vitl.pth': dict(encoder='vitl', features=256, out_channels=[256,512,1024,1024]),
}
cfg = cfgs.get(fname, cfgs['depth_anything_v2_vitl.pth'])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
m = DepthAnythingV2(**cfg)
sd = torch.load(model_path, map_location='cpu')
m.load_state_dict(sd)
_DEPTH_MODEL = m.to(device).eval()
_DEPTH_PROC = True
return True
except Exception:
# Fallback: packaged auxiliary API
try:
from controlnet_aux.depth_anything import DepthAnythingDetector, DepthAnythingV2 # type: ignore
device = 'cuda' if torch.cuda.is_available() else 'cpu'
_DEPTH_MODEL = DepthAnythingV2(model_path=model_path, device=device)
_DEPTH_PROC = True
return True
except Exception:
_DEPTH_MODEL = None
_DEPTH_PROC = False
return False
def _build_depth_map(image_bhwc: torch.Tensor, res: int, model_path: str, hires_mode: bool = True) -> torch.Tensor:
B, H, W, C = image_bhwc.shape
dev = image_bhwc.device
dtype = image_bhwc.dtype
# Choose target min-side for processing. In hires mode we allow higher caps and keep aspect.
# DepthAnything v2 can be memory-hungry on large inputs; cap min-side at 1024
cap = 1024
target = int(max(16, min(cap, res)))
if _try_init_depth_anything(model_path):
try:
# to CPU uint8
img = image_bhwc.detach().to('cpu')
x = img[0].movedim(-1, 0).unsqueeze(0)
# keep aspect ratio: scale so that min(H,W) == target
_, Cc, Ht, Wt = x.shape
min_side = max(1, min(Ht, Wt))
scale = float(target) / float(min_side)
out_h = max(1, int(round(Ht * scale)))
out_w = max(1, int(round(Wt * scale)))
x = F.interpolate(x, size=(out_h, out_w), mode='bilinear', align_corners=False)
# make channels-last and ensure contiguous layout for OpenCV
arr = (x[0].movedim(0, -1).contiguous().numpy() * 255.0).astype('uint8')
# Prefer direct DepthAnythingV2 inference if model has infer_image
if hasattr(_DEPTH_MODEL, 'infer_image'):
import cv2
# Drive input_size from desired depth resolution (min side), let DA keep aspect
input_sz = int(max(224, min(cap, res)))
depth = _DEPTH_MODEL.infer_image(cv2.cvtColor(arr, cv2.COLOR_RGB2BGR), input_size=input_sz, max_depth=20.0)
d = np.asarray(depth, dtype=np.float32)
# Normalize DepthAnythingV2 output (0..max_depth) to 0..1
d = d / 20.0
else:
depth = _DEPTH_MODEL(arr)
d = np.asarray(depth, dtype=np.float32)
if d.max() > 1.0:
d = d / 255.0
d = torch.from_numpy(d)[None, None] # 1,1,h,w
d = F.interpolate(d, size=(H, W), mode='bilinear', align_corners=False)
d = d[0, 0].to(device=dev, dtype=dtype)
# Heuristic de-banding: sometimes upstream returns column-wise banding
# Detect when column variance >> row variance, indicating vertical stripes
try:
with torch.no_grad():
dr = d.clamp(0,1)
# compute per-axis variance summaries in a small, cheap way
vcol = torch.var(dr, dim=0).mean()
vrow = torch.var(dr, dim=1).mean()
if torch.isfinite(vcol) and torch.isfinite(vrow) and (vcol > 8.0 * (vrow + 1e-6)):
# Apply mild horizontal smoothing only (reduce vertical banding)
k = max(3, int(round(min(W, 21) // 2 * 2 + 1))) # odd kernel up to ~21
dr2 = F.avg_pool2d(dr.unsqueeze(0).unsqueeze(0), kernel_size=(1, k), stride=1, padding=(0, k//2))[0,0]
# preserve global contrast by gentle blend
d = (0.6 * dr + 0.4 * dr2).clamp(0,1)
except Exception:
pass
d = d.clamp(0, 1)
return d
except Exception:
pass
# Fallback depth: constant mid-gray (0.5) to keep uniform guidance without heavy processing
try:
return torch.full((H, W), 0.5, device=dev, dtype=dtype)
except Exception:
# last-resort tensor creation on CPU
return torch.full((H, W), 0.5, device='cpu', dtype=torch.float32).to(device=dev, dtype=dtype)
def _pyracanny(image_bhwc: torch.Tensor,
low: int,
high: int,
res: int,
thin_iter: int = 0,
edge_boost: float = 0.0,
smart_tune: bool = False,
smart_boost: float = 0.2,
preserve_aspect: bool = True) -> torch.Tensor:
try:
import cv2
except Exception:
# Fallback: simple Sobel magnitude
x = image_bhwc.movedim(-1, 1)
xg = x.mean(dim=1, keepdim=True)
gx = F.conv2d(xg, torch.tensor([[[-1, 0, 1],[-2,0,2],[-1,0,1]]], dtype=x.dtype, device=x.device).unsqueeze(1), padding=1)
gy = F.conv2d(xg, torch.tensor([[[-1,-2,-1],[0,0,0],[1,2,1]]], dtype=x.dtype, device=x.device).unsqueeze(1), padding=1)
mag = torch.sqrt(gx*gx + gy*gy)
mag = (mag - mag.amin())/(mag.amax()-mag.amin()+1e-6)
return mag[0,0].clamp(0,1)
B,H,W,C = image_bhwc.shape
img = (image_bhwc.detach().to('cpu')[0].contiguous().numpy()*255.0).astype('uint8')
cap = 4096
target = int(max(64, min(cap, res)))
if preserve_aspect:
scale = float(target) / float(max(1, min(H, W)))
out_h = max(8, int(round(H * scale)))
out_w = max(8, int(round(W * scale)))
img_res = cv2.resize(img, (out_w, out_h), interpolation=cv2.INTER_LINEAR)
else:
img_res = cv2.resize(img, (target, target), interpolation=cv2.INTER_LINEAR)
gray = cv2.cvtColor(img_res, cv2.COLOR_RGB2GRAY)
pyr_scales = [1.0, 0.5, 0.25]
acc = None
for s in pyr_scales:
if preserve_aspect:
sz = (max(8, int(round(img_res.shape[1]*s))), max(8, int(round(img_res.shape[0]*s))))
else:
sz = (max(8, int(target*s)), max(8, int(target*s)))
g = cv2.resize(gray, sz, interpolation=cv2.INTER_AREA)
g = cv2.GaussianBlur(g, (5,5), 0)
e = cv2.Canny(g, threshold1=int(low*s), threshold2=int(high*s))
e = cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR)
e = (e.astype(np.float32)/255.0)
acc = e if acc is None else np.maximum(acc, e)
# Estimate density and sharpness for smart tuning
edensity_pre = None
try:
edensity_pre = float(np.mean(acc)) if acc is not None else None
except Exception:
edensity_pre = None
lap_var = None
try:
g32 = gray.astype(np.float32) / 255.0
lap = cv2.Laplacian(g32, cv2.CV_32F)
lap_var = float(lap.var())
except Exception:
lap_var = None
# optional thinning
try:
thin_iter_eff = int(thin_iter)
if smart_tune:
# simple heuristic: more thinning on high res and dense edges
auto = 0
if target >= 1024:
auto += 1
if target >= 1400:
auto += 1
if edensity_pre is not None and edensity_pre > 0.12:
auto += 1
if edensity_pre is not None and edensity_pre < 0.05:
auto = max(0, auto - 1)
thin_iter_eff = max(thin_iter_eff, min(3, auto))
if thin_iter_eff > 0:
import cv2
if hasattr(cv2, 'ximgproc') and hasattr(cv2.ximgproc, 'thinning'):
th = acc.copy()
th = (th*255).astype('uint8')
th = cv2.ximgproc.thinning(th)
acc = th.astype(np.float32)/255.0
else:
# simple erosion-based thinning approximation
kernel = np.ones((3,3), np.uint8)
t = (acc*255).astype('uint8')
for _ in range(int(thin_iter_eff)):
t = cv2.erode(t, kernel, iterations=1)
acc = t.astype(np.float32)/255.0
except Exception:
pass
# optional edge boost (unsharp on edge map)
# We fix a gentle boost for micro‑contrast; smart_tune may nudge it slightly
boost_eff = 0.10
if smart_tune:
try:
lv = 0.0 if lap_var is None else max(0.0, min(1.0, lap_var / 2.0))
dens = 0.0 if edensity_pre is None else float(max(0.0, min(1.0, edensity_pre)))
boost_eff = max(0.05, min(0.20, boost_eff + (1.0 - dens) * 0.05 + (1.0 - lv) * 0.02))
except Exception:
pass
if boost_eff and boost_eff != 0.0:
try:
import cv2
blur = cv2.GaussianBlur(acc, (0,0), sigmaX=1.0)
acc = np.clip(acc + float(boost_eff)*(acc - blur), 0.0, 1.0)
except Exception:
pass
ed = torch.from_numpy(acc).to(device=image_bhwc.device, dtype=image_bhwc.dtype)
return ed.clamp(0,1)
def _blend(depth: torch.Tensor, edges: torch.Tensor, mode: str, factor: float) -> torch.Tensor:
depth = depth.clamp(0,1)
edges = edges.clamp(0,1)
if mode == 'max':
return torch.maximum(depth, edges)
if mode == 'edge_over_depth':
# edges override depth (edge=1) while preserving depth elsewhere
return (depth * (1.0 - edges) + edges).clamp(0,1)
# normal
f = float(max(0.0, min(1.0, factor)))
return (depth*(1.0-f) + edges*f).clamp(0,1)
def _apply_controlnet_separate(positive, negative, control_net, image_bhwc: torch.Tensor,
strength_pos: float, strength_neg: float,
start_percent: float, end_percent: float, vae=None,
apply_to_uncond: bool = False,
stack_prev_control: bool = False):
control_hint = image_bhwc.movedim(-1,1)
out_pos = []
out_neg = []
# POS
for t in positive:
d = t[1].copy()
prev = d.get('control', None) if stack_prev_control else None
c_net = control_net.copy().set_cond_hint(control_hint, float(strength_pos), (start_percent, end_percent), vae=vae, extra_concat=[])
c_net.set_previous_controlnet(prev)
d['control'] = c_net
d['control_apply_to_uncond'] = bool(apply_to_uncond)
out_pos.append([t[0], d])
# NEG
for t in negative:
d = t[1].copy()
prev = d.get('control', None) if stack_prev_control else None
c_net = control_net.copy().set_cond_hint(control_hint, float(strength_neg), (start_percent, end_percent), vae=vae, extra_concat=[])
c_net.set_previous_controlnet(prev)
d['control'] = c_net
d['control_apply_to_uncond'] = bool(apply_to_uncond)
out_neg.append([t[0], d])
return out_pos, out_neg
class MG_ControlFusion:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE", {"tooltip": "Input RGB image (B,H,W,3) in 0..1."}),
"positive": ("CONDITIONING", {"tooltip": "Positive conditioning to apply ControlNet to."}),
"negative": ("CONDITIONING", {"tooltip": "Negative conditioning to apply ControlNet to."}),
"control_net": ("CONTROL_NET", {"tooltip": "ControlNet module receiving the fused mask as hint."}),
"vae": ("VAE", {"tooltip": "VAE used by ControlNet when encoding the hint."}),
},
"optional": {
"enable_depth": ("BOOLEAN", {"default": True, "tooltip": "Enable depth map fusion (Depth Anything v2 if available)."}),
"depth_model_path": ("STRING", {"default": os.path.join(os.path.dirname(os.path.dirname(__file__)), 'MagicNodes','depth-anything','depth_anything_v2_vitl.pth') if False else os.path.join(os.path.dirname(__file__), '..','depth-anything','depth_anything_v2_vitl.pth'), "tooltip": "Path to Depth Anything v2 .pth weights (vits/vitb/vitl/vitg)."}),
"depth_resolution": ("INT", {"default": 768, "min": 64, "max": 1024, "step": 64, "tooltip": "Depth min-side resolution (cap 1024). In Hi‑Res mode drives DepthAnything input_size."}),
"enable_pyra": ("BOOLEAN", {"default": True, "tooltip": "Enable PyraCanny edge detector."}),
"pyra_low": ("INT", {"default": 109, "min": 0, "max": 255, "tooltip": "Canny low threshold (0..255)."}),
"pyra_high": ("INT", {"default": 147, "min": 0, "max": 255, "tooltip": "Canny high threshold (0..255)."}),
"pyra_resolution": ("INT", {"default": 1024, "min": 64, "max": 4096, "step": 64, "tooltip": "Working resolution for edges (min side, keeps aspect)."}),
"edge_thin_iter": ("INT", {"default": 0, "min": 0, "max": 10, "step": 1, "tooltip": "Thinning iterations for edges (skeletonize). 0 = off."}),
"edge_alpha": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Opacity for edges before blending (0..1)."}),
"edge_boost": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Deprecated: internal boost fixed (~0.10); use edge_alpha instead."}),
"smart_tune": ("BOOLEAN", {"default": False, "tooltip": "Auto-adjust thinning/boost from image edge density and sharpness."}),
"smart_boost": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Scale for auto edge boost when Smart Tune is on."}),
"blend_mode": (["normal","max","edge_over_depth"], {"default": "normal", "tooltip": "Depth+edges merge: normal (mix), max (strongest), edge_over_depth (edges overlay)."}),
"blend_factor": ("FLOAT", {"default": 0.02, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Blend strength for edges into depth (depends on mode)."}),
"strength_pos": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, "tooltip": "ControlNet strength for positive branch."}),
"strength_neg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, "tooltip": "ControlNet strength for negative branch."}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Start percentage along the sampling schedule."}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "End percentage along the sampling schedule."}),
"preview_res": ("INT", {"default": 1024, "min": 256, "max": 2048, "step": 64, "tooltip": "Preview minimum side (keeps aspect ratio)."}),
"mask_brightness": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Preview brightness multiplier (visualization only)."}),
"preview_show_strength": ("BOOLEAN", {"default": True, "tooltip": "Multiply preview by ControlNet strength for visualization."}),
"preview_strength_branch": (["positive","negative","max","avg"], {"default": "max", "tooltip": "Which strength to reflect in preview (display only)."}),
"hires_mask_auto": ("BOOLEAN", {"default": True, "tooltip": "High‑res mask: keep aspect ratio, scale by minimal side for depth/edges, and drive DepthAnything with your depth_resolution (no 2K cap)."}),
"apply_to_uncond": ("BOOLEAN", {"default": False, "tooltip": "Apply ControlNet hint to the unconditional branch as well (stronger global hold on very large images)."}),
"stack_prev_control": ("BOOLEAN", {"default": False, "tooltip": "Chain with any previously attached ControlNet in the conditioning (advanced). Off = replace to avoid memory bloat."}),
# Split apply: chain Depth and Edges with separate schedules/strengths (fixed order: depth -> edges)
"split_apply": ("BOOLEAN", {"default": False, "tooltip": "Apply Depth and Edges as two chained ControlNets (fixed order: depth then edges)."}),
"edge_start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Edges start percent (when split is enabled)."}),
"edge_end_percent": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Edges end percent (when split is enabled)."}),
"depth_start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Depth start percent (when split is enabled)."}),
"depth_end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Depth end percent (when split is enabled)."}),
"edge_strength_mul": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 3.0, "step": 0.01, "tooltip": "Multiply global strength for Edges when split is enabled."}),
"depth_strength_mul": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 3.0, "step": 0.01, "tooltip": "Multiply global strength for Depth when split is enabled."}),
# Extra edge controls (bottom)
"edge_width": ("FLOAT", {"default": 0.0, "min": -0.5, "max": 1.5, "step": 0.05, "tooltip": "Edge thickness adjust: negative thins, positive thickens."}),
"edge_smooth": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05, "tooltip": "Small smooth on edges to reduce pixelation (0..1)."}),
"edge_single_line": ("BOOLEAN", {"default": False, "tooltip": "Try to collapse double outlines into a single centerline."}),
"edge_single_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Strength of single-line collapse (0..1). 0 = off, 1 = strong."}),
"edge_depth_gate": ("BOOLEAN", {"default": False, "tooltip": "Weigh edges by depth so distant lines are fainter."}),
"edge_depth_gamma": ("FLOAT", {"default": 1.5, "min": 0.2, "max": 4.0, "step": 0.1, "tooltip": "Gamma for depth gating: edges *= (1−depth)^gamma."}),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING","IMAGE")
RETURN_NAMES = ("positive","negative","mask_preview")
FUNCTION = "apply"
CATEGORY = "MagicNodes"
def apply(self, image, positive, negative, control_net, vae,
enable_depth=True, depth_model_path="", depth_resolution=1024,
enable_pyra=True, pyra_low=109, pyra_high=147, pyra_resolution=1024,
edge_thin_iter=0, edge_alpha=1.0, edge_boost=0.0,
smart_tune=False, smart_boost=0.2,
blend_mode="normal", blend_factor=0.02,
strength_pos=1.0, strength_neg=1.0, start_percent=0.0, end_percent=1.0,
preview_res=1024, mask_brightness=1.0,
preview_show_strength=True, preview_strength_branch="max",
hires_mask_auto=True, apply_to_uncond=False, stack_prev_control=False,
edge_width=0.0, edge_smooth=0.0, edge_single_line=False, edge_single_strength=0.0,
edge_depth_gate=False, edge_depth_gamma=1.5,
split_apply=False, edge_start_percent=0.0, edge_end_percent=0.6,
depth_start_percent=0.0, depth_end_percent=1.0,
edge_strength_mul=1.0, depth_strength_mul=1.0):
dev = image.device
dtype = image.dtype
B,H,W,C = image.shape
# Build depth/edges
depth = None
edges = None
if enable_depth:
model_path = depth_model_path or os.path.join(os.path.dirname(__file__), '..','depth-anything','depth_anything_v2_vitl.pth')
depth = _build_depth_map(image, int(depth_resolution), model_path, bool(hires_mask_auto))
if enable_pyra:
edges = _pyracanny(image,
int(pyra_low), int(pyra_high), int(pyra_resolution),
int(edge_thin_iter), float(edge_boost),
bool(smart_tune), float(smart_boost), bool(hires_mask_auto))
if depth is None and edges is None:
# Nothing to do: return inputs and zero preview
prev = torch.zeros((B, max(H,1), max(W,1), 3), device=dev, dtype=dtype)
return positive, negative, prev
if depth is None:
depth = torch.zeros_like(edges)
if edges is None:
edges = torch.zeros_like(depth)
# Edge post-process: width/single-line/smooth
def _edges_post(acc_t: torch.Tensor) -> torch.Tensor:
try:
import cv2, numpy as _np
acc = acc_t.detach().to('cpu').numpy()
img = (acc*255.0).astype(_np.uint8)
k = _np.ones((3,3), _np.uint8)
# Adjust thickness
w = float(edge_width)
if abs(w) > 1e-6:
it = int(abs(w))
frac = abs(w) - it
op = cv2.dilate if w > 0 else cv2.erode
y = img.copy()
for _ in range(max(0, it)):
y = op(y, k, iterations=1)
if frac > 1e-6:
y2 = op(y, k, iterations=1)
y = ((1.0-frac)*y.astype(_np.float32) + frac*y2.astype(_np.float32)).astype(_np.uint8)
img = y
# Collapse double lines to single centerline
if bool(edge_single_line) and float(edge_single_strength) > 1e-6:
try:
s = float(edge_single_strength)
close = cv2.morphologyEx(img, cv2.MORPH_CLOSE, k, iterations=1)
if hasattr(cv2, 'ximgproc') and hasattr(cv2.ximgproc, 'thinning'):
sk = cv2.ximgproc.thinning(close)
else:
# limited-iteration morphological skeletonization
iters = max(1, int(round(2 + 6*s)))
sk = _np.zeros_like(close)
src = close.copy()
elem = cv2.getStructuringElement(cv2.MORPH_CROSS, (3,3))
for _ in range(iters):
er = cv2.erode(src, elem, iterations=1)
op = cv2.morphologyEx(er, cv2.MORPH_OPEN, elem)
tmp = cv2.subtract(er, op)
sk = cv2.bitwise_or(sk, tmp)
src = er
if not _np.any(src):
break
# Blend skeleton back with original according to strength
img = ((_np.float32(1.0 - s) * img.astype(_np.float32)) + (_np.float32(s) * sk.astype(_np.float32))).astype(_np.uint8)
except Exception:
pass
# Smooth
if float(edge_smooth) > 1e-6:
sigma = max(0.1, min(2.0, float(edge_smooth) * 1.2))
img = cv2.GaussianBlur(img, (0,0), sigmaX=sigma)
out = torch.from_numpy((img.astype(_np.float32)/255.0)).to(device=acc_t.device, dtype=acc_t.dtype)
return out.clamp(0,1)
except Exception:
# Torch fallback: light blur-only
if float(edge_smooth) > 1e-6:
s = max(1, int(round(float(edge_smooth)*2)))
return F.avg_pool2d(acc_t.unsqueeze(0).unsqueeze(0), kernel_size=2*s+1, stride=1, padding=s)[0,0].clamp(0,1)
return acc_t
edges = _edges_post(edges)
# Depth gating of edges
if bool(edge_depth_gate):
# Inverted gating per feedback: use depth^gamma (nearer = stronger if depth is larger)
g = (depth.clamp(0,1)) ** float(edge_depth_gamma)
edges = (edges * g).clamp(0,1)
# Apply edge alpha before blending
edges = (edges * float(edge_alpha)).clamp(0,1)
fused = _blend(depth, edges, str(blend_mode), float(blend_factor))
# Apply as split (Edges then Depth) or single fused hint
if bool(split_apply):
# Fixed order for determinism: Depth first, then Edges
hint_edges = edges.unsqueeze(-1).repeat(1,1,1,3)
hint_depth = depth.unsqueeze(-1).repeat(1,1,1,3)
# Depth first
pos_mid, neg_mid = _apply_controlnet_separate(
positive, negative, control_net, hint_depth,
float(strength_pos) * float(depth_strength_mul),
float(strength_neg) * float(depth_strength_mul),
float(depth_start_percent), float(depth_end_percent), vae,
bool(apply_to_uncond), True
)
# Then edges
pos_out, neg_out = _apply_controlnet_separate(
pos_mid, neg_mid, control_net, hint_edges,
float(strength_pos) * float(edge_strength_mul),
float(strength_neg) * float(edge_strength_mul),
float(edge_start_percent), float(edge_end_percent), vae,
bool(apply_to_uncond), True
)
else:
hint = fused.unsqueeze(-1).repeat(1,1,1,3)
pos_out, neg_out = _apply_controlnet_separate(
positive, negative, control_net, hint,
float(strength_pos), float(strength_neg),
float(start_percent), float(end_percent), vae,
bool(apply_to_uncond), bool(stack_prev_control)
)
# Build preview: keep aspect ratio, set minimal side
prev_res = int(max(256, min(2048, preview_res)))
scale = prev_res / float(min(H, W))
out_h = max(1, int(round(H * scale)))
out_w = max(1, int(round(W * scale)))
prev = F.interpolate(fused.unsqueeze(0).unsqueeze(0), size=(out_h, out_w), mode='bilinear', align_corners=False)[0,0]
# Optionally reflect ControlNet strength in preview (display only)
if bool(preview_show_strength):
br = str(preview_strength_branch)
sp = float(strength_pos)
sn = float(strength_neg)
if br == 'negative':
s_vis = sn
elif br == 'max':
s_vis = max(sp, sn)
elif br == 'avg':
s_vis = 0.5 * (sp + sn)
else:
s_vis = sp
# clamp for display range
s_vis = max(0.0, min(1.0, s_vis))
prev = prev * s_vis
# Apply visualization brightness only for preview
prev = (prev * float(mask_brightness)).clamp(0.0, 1.0)
prev = prev.unsqueeze(-1).repeat(1,1,3).to(device=dev, dtype=dtype).unsqueeze(0)
# Best-effort cleanup of heavy intermediates and caches after node finishes
try:
depth = None
edges = None
fused = None
hint = None
except Exception:
pass
try:
clear_gpu_and_ram_cache()
except Exception:
pass
return (pos_out, neg_out, prev)
|