File size: 12,694 Bytes
9068525 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import os
import gc
import time
import platform
import ctypes
from ctypes import wintypes
import torch
import torch.nn.functional as F
import comfy.model_management as model_management
import comfy.sample as _sample
import comfy.samplers as _samplers
import comfy.utils as _utils
try:
import psutil # type: ignore
except Exception: # pragma: no cover
psutil = None # type: ignore
def _get_ram_mb() -> float:
try:
if psutil is not None:
p = psutil.Process(os.getpid())
rss = float(p.memory_info().rss)
try:
private = getattr(p.memory_full_info(), "private", None)
if isinstance(private, (int, float)) and private > 0:
rss = float(private)
except Exception:
pass
return rss / (1024.0 * 1024.0)
except Exception:
pass
return 0.0
def _get_vram_mb_per_device() -> list[tuple[int, float, float]]:
out = []
try:
if torch.cuda.is_available():
for d in range(torch.cuda.device_count()):
try:
reserved = float(torch.cuda.memory_reserved(d)) / (1024.0 * 1024.0)
allocated = float(torch.cuda.memory_allocated(d)) / (1024.0 * 1024.0)
except Exception:
reserved = 0.0
allocated = 0.0
out.append((d, reserved, allocated))
except Exception:
pass
return out
def _trim_working_set_windows():
try:
if platform.system().lower().startswith("win"):
kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
proc = kernel32.GetCurrentProcess()
kernel32.SetProcessWorkingSetSize(proc, ctypes.c_size_t(-1), ctypes.c_size_t(-1))
except Exception:
pass
def _enable_win_privileges(names):
"""Best-effort enable a set of Windows privileges for the current process."""
try:
if not platform.system().lower().startswith('win'):
return False
advapi32 = ctypes.windll.advapi32 # type: ignore[attr-defined]
kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
token = wintypes.HANDLE()
TOKEN_ADJUST_PRIVILEGES = 0x20
TOKEN_QUERY = 0x8
if not advapi32.OpenProcessToken(kernel32.GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, ctypes.byref(token)):
return False
class LUID(ctypes.Structure):
_fields_ = [("LowPart", wintypes.DWORD), ("HighPart", wintypes.LONG)]
class LUID_AND_ATTRIBUTES(ctypes.Structure):
_fields_ = [("Luid", LUID), ("Attributes", wintypes.DWORD)]
class TOKEN_PRIVILEGES(ctypes.Structure):
_fields_ = [("PrivilegeCount", wintypes.DWORD), ("Privileges", LUID_AND_ATTRIBUTES * 1)]
SE_PRIVILEGE_ENABLED = 0x2
success = False
for name in names:
luid = LUID()
if not advapi32.LookupPrivilegeValueW(None, ctypes.c_wchar_p(name), ctypes.byref(luid)):
continue
tp = TOKEN_PRIVILEGES()
tp.PrivilegeCount = 1
tp.Privileges[0].Luid = luid
tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED
if advapi32.AdjustTokenPrivileges(token, False, ctypes.byref(tp), 0, None, None):
success = True
return success
except Exception:
return False
def _system_cache_trim_windows():
"""Attempt to purge standby/file caches on Windows (requires privileges)."""
try:
if not platform.system().lower().startswith('win'):
return False
_enable_win_privileges([
'SeIncreaseQuotaPrivilege',
'SeProfileSingleProcessPrivilege',
'SeDebugPrivilege',
])
try:
kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
SIZE_T = ctypes.c_size_t
kernel32.SetSystemFileCacheSize(SIZE_T(-1), SIZE_T(-1), wintypes.DWORD(0))
except Exception:
pass
try:
ntdll = ctypes.windll.ntdll # type: ignore[attr-defined]
SystemMemoryListInformation = 0x50
MemoryPurgeStandbyList = ctypes.c_ulong(4)
ntdll.NtSetSystemInformation(wintypes.ULONG(SystemMemoryListInformation), ctypes.byref(MemoryPurgeStandbyList), ctypes.sizeof(MemoryPurgeStandbyList))
except Exception:
pass
return True
except Exception:
return False
def cleanup_memory(sync_cuda: bool = True, hard_trim: bool = True) -> dict:
"""Run a best-effort cleanup of RAM/VRAM. Returns stats dict with before/after deltas."""
stats: dict = {"ram_before_mb": 0.0, "ram_after_mb": 0.0, "ram_freed_mb": 0.0, "gpu": []}
stats["ram_before_mb"] = _get_ram_mb()
gpu_before = _get_vram_mb_per_device()
try:
if sync_cuda and torch.cuda.is_available():
torch.cuda.synchronize()
except Exception:
pass
try:
import comfy.model_management as mm
if hasattr(mm, 'soft_empty_cache'):
mm.soft_empty_cache()
except Exception:
pass
try:
gc.collect()
except Exception:
pass
try:
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
except Exception:
pass
try:
time.sleep(0)
except Exception:
pass
if hard_trim:
try:
import comfy.model_management as mm
if hasattr(mm, 'unload_all_models'):
mm.unload_all_models()
except Exception:
pass
try:
for _ in range(2):
time.sleep(0)
gc.collect()
except Exception:
pass
try:
if hasattr(_utils, 'cleanup_lru_caches'):
_utils.cleanup_lru_caches()
except Exception:
pass
try:
_trim_working_set_windows()
psapi = ctypes.windll.psapi # type: ignore[attr-defined]
kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
psapi.EmptyWorkingSet(kernel32.GetCurrentProcess())
except Exception:
pass
try:
if platform.system().lower().startswith('linux'):
libc = ctypes.CDLL('libc.so.6')
libc.malloc_trim(0)
except Exception:
pass
try:
_system_cache_trim_windows()
except Exception:
pass
stats["ram_after_mb"] = _get_ram_mb()
stats["ram_freed_mb"] = max(0.0, stats["ram_before_mb"] - stats["ram_after_mb"])
gpu_after = _get_vram_mb_per_device()
device_map = {d: (r, a) for d, r, a in gpu_before}
gpu_stats = []
for d, r_after, a_after in gpu_after:
r_before, a_before = device_map.get(d, (0.0, 0.0))
gpu_stats.append({
"device": d,
"reserved_before_mb": r_before,
"reserved_after_mb": r_after,
"reserved_freed_mb": max(0.0, r_before - r_after),
"allocated_before_mb": a_before,
"allocated_after_mb": a_after,
"allocated_freed_mb": max(0.0, a_before - a_after),
})
stats["gpu"] = gpu_stats
return stats
class MG_CleanUp:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"samples": ("LATENT", {}),
},
"optional": {
"hard_trim": ("BOOLEAN", {"default": True, "tooltip": "Aggressively free RAM/VRAM and ask OS to return pages to the system."}),
"sync_cuda": ("BOOLEAN", {"default": True, "tooltip": "Synchronize CUDA before cleanup to flush pending kernels."}),
"hires_only_threshold": ("INT", {"default": 0, "min": 0, "max": 16384, "step": 64, "tooltip": "Apply only when latent longest side >= threshold (0 == always)."}),
}
}
RETURN_TYPES = ("LATENT", "IMAGE")
RETURN_NAMES = ("samples", "Preview")
FUNCTION = "apply"
CATEGORY = "MagicNodes"
def apply(self, samples, hard_trim=True, sync_cuda=True, hires_only_threshold=0,
model=None, positive=None, negative=None, vae=None):
img_prev = None
try:
if (model is not None) and (positive is not None) and (negative is not None) and (vae is not None):
lat = samples.get("samples", None)
if lat is not None and isinstance(lat, torch.Tensor) and lat.ndim == 4:
z = lat
B, C, H, W = z.shape
target = 32
z_ds = z if (H == target and W == target) else F.interpolate(z, size=(target, target), mode='bilinear', align_corners=False)
lat_img = _sample.fix_empty_latent_channels(model, z_ds) if hasattr(_sample, 'fix_empty_latent_channels') else z_ds
batch_inds = samples.get("batch_index", None)
noise = _sample.prepare_noise(lat_img, int(0), batch_inds)
steps = 1
out = _sample.sample(
model, noise, int(steps), float(1.0), "ddim", "normal",
positive, negative, lat_img,
denoise=float(0.10), disable_noise=False, start_step=None, last_step=None,
force_full_denoise=False, noise_mask=None, callback=None,
disable_pbar=not _utils.PROGRESS_BAR_ENABLED, seed=int(0)
)
try:
img_prev = vae.decode(out)
if len(img_prev.shape) == 5:
img_prev = img_prev.reshape(-1, img_prev.shape[-3], img_prev.shape[-2], img_prev.shape[-1])
except Exception:
img_prev = None
except Exception:
img_prev = None
try:
do_cleanup = True
try:
if int(hires_only_threshold) > 0:
z = samples.get("samples", None)
if z is not None and hasattr(z, "shape") and len(z.shape) >= 4:
_, _, H, W = z.shape
if max(int(H), int(W)) < int(hires_only_threshold):
do_cleanup = False
except Exception:
pass
if do_cleanup:
print("=== CleanUP RAM and GPU ===")
stats = cleanup_memory(sync_cuda=bool(sync_cuda), hard_trim=bool(hard_trim))
try:
print(f"RAM freed: {stats['ram_freed_mb']:.1f} MB (before {stats['ram_before_mb']:.1f} -> after {stats['ram_after_mb']:.1f})")
except Exception:
pass
try:
for g in stats.get("gpu", []):
print(
f"GPU{g['device']}: reserved freed {g['reserved_freed_mb']:.1f} MB ( {g['reserved_before_mb']:.1f} -> {g['reserved_after_mb']:.1f} ), "
f"allocated freed {g['allocated_freed_mb']:.1f} MB ( {g['allocated_before_mb']:.1f} -> {g['allocated_after_mb']:.1f} )"
)
except Exception:
pass
# Second pass after short delay to catch late releasers
try:
time.sleep(0.150)
stats2 = cleanup_memory(sync_cuda=False, hard_trim=bool(hard_trim))
if stats2 and float(stats2.get('ram_freed_mb', 0.0)) > 0.0:
print(f"2nd pass: RAM freed +{stats2['ram_freed_mb']:.1f} MB")
try:
for g in stats2.get('gpu', []):
if float(g.get('reserved_freed_mb', 0.0)) > 0.0 or float(g.get('allocated_freed_mb', 0.0)) > 0.0:
print(f"2nd pass GPU{g['device']}: reserved +{g['reserved_freed_mb']:.1f} MB, allocated +{g['allocated_freed_mb']:.1f} MB")
except Exception:
pass
except Exception:
pass
print("done.")
except Exception:
pass
if img_prev is None:
try:
device = model_management.intermediate_device() if hasattr(model_management, 'intermediate_device') else 'cpu'
img_prev = torch.zeros((1, 32, 32, 3), dtype=torch.float32, device=device)
except Exception:
img_prev = torch.zeros((1, 32, 32, 3))
return (samples, img_prev)
|