File size: 23,091 Bytes
695fbf0 dc64aaa 695fbf0 dc64aaa 695fbf0 dc64aaa 695fbf0 dc64aaa 695fbf0 dc64aaa 695fbf0 dc64aaa 695fbf0 dc64aaa 695fbf0 478379a 695fbf0 0f11662 dc64aaa 0f11662 dc64aaa 0f11662 dc64aaa 0f11662 dc64aaa 695fbf0 478379a 695fbf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import comfy.sd
import comfy.clip_vision
import folder_paths
import comfy.utils
import torch
import random
from datetime import datetime
import random
import gc
import os
import json
import re
from .hard.mg_upscale_module import clear_gpu_and_ram_cache
# Module level caches to reuse loaded models and LoRAs between invocations
_checkpoint_cache = {}
_loaded_checkpoint = None
_lora_cache = {}
_active_lora_names = set()
def _clear_unused_loras(active_names):
"""Remove unused LoRAs from cache and clear GPU memory."""
unused = [n for n in _lora_cache if n not in active_names]
for n in unused:
del _lora_cache[n]
if unused:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def _load_checkpoint(path):
"""Load checkpoint from cache or disk."""
if path in _checkpoint_cache:
return _checkpoint_cache[path]
model, clip, vae = comfy.sd.load_checkpoint_guess_config(
path,
output_vae=True,
output_clip=True,
embedding_directory=folder_paths.get_folder_paths("embeddings"),
)[:3]
_checkpoint_cache[path] = (model, clip, vae)
return model, clip, vae
def _unload_old_checkpoint(current_path):
"""Unload checkpoint if it's different from the current one."""
global _loaded_checkpoint
if _loaded_checkpoint and _loaded_checkpoint != current_path:
_checkpoint_cache.pop(_loaded_checkpoint, None)
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
_loaded_checkpoint = current_path
class MagicNodesCombiNode:
@classmethod
def INPUT_TYPES(cls):
def _loras_with_none():
try:
return ["None"] + list(folder_paths.get_filename_list("loras"))
except Exception:
return ["None"]
return {
"required": {
# --- Checkpoint ---
"use_checkpoint": ("BOOLEAN", {"default": True}),
"checkpoint": (folder_paths.get_filename_list("checkpoints"), {}),
"clear_cache": ("BOOLEAN", {"default": False}),
# --- LoRA 1 ---
"use_lora_1": ("BOOLEAN", {"default": True}),
"lora_1": (_loras_with_none(), {}),
"strength_model_1": ("FLOAT", {"default": 1.0, "min": -1.5, "max": 1.5, "step": 0.01,}),
"strength_clip_1": ("FLOAT", {"default": 1.0, "min": -1.5, "max": 1.5, "step": 0.01,}),
# --- LoRA 2 ---
"use_lora_2": ("BOOLEAN", {"default": False}),
"lora_2": (_loras_with_none(), {}),
"strength_model_2": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}),
"strength_clip_2": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}),
# --- LoRA 3 ---
"use_lora_3": ("BOOLEAN", {"default": False}),
"lora_3": (_loras_with_none(), {}),
"strength_model_3": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}),
"strength_clip_3": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}),
# --- LoRA 4 ---
"use_lora_4": ("BOOLEAN", {"default": False}),
"lora_4": (_loras_with_none(), {}),
"strength_model_4": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}),
"strength_clip_4": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}),
# --- LoRA 5 ---
"use_lora_5": ("BOOLEAN", {"default": False}),
"lora_5": (_loras_with_none(), {}),
"strength_model_5": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}),
"strength_clip_5": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}),
# --- LoRA 6 ---
"use_lora_6": ("BOOLEAN", {"default": False}),
"lora_6": (_loras_with_none(), {}),
"strength_model_6": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}),
"strength_clip_6": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}),
},
"optional": {
"model_in": ("MODEL", {}),
"clip_in": ("CLIP", {}),
"vae_in": ("VAE", {}),
# --- Prompts --- (controlled dynamic expansion inside node for determinism)
"positive_prompt": ("STRING", {"multiline": True, "default": "", "dynamicPrompts": False}),
"negative_prompt": ("STRING", {"multiline": True, "default": "", "dynamicPrompts": False}),
# Optional external conditioning (bypass internal text encode)
"positive_in": ("CONDITIONING", {}),
"negative_in": ("CONDITIONING", {}),
# --- CLIP Layers ---
"clip_set_last_layer_positive": ("INT", {"default": -2, "min": -20, "max": 0}),
"clip_set_last_layer_negative": ("INT", {"default": -2, "min": -20, "max": 0}),
# --- Recipes ---
"recipe_slot": (["Off", "Slot 1", "Slot 2", "Slot 3", "Slot 4"], {"default": "Off", "tooltip": "Choose slot to save/load assembled setup."}),
"recipe_save": ("BOOLEAN", {"default": False, "tooltip": "Save current setup into the selected slot."}),
"recipe_use": ("BOOLEAN", {"default": False, "tooltip": "Load and apply setup from the selected slot for this run."}),
# --- Standard pipeline (match classic node order for CLIP) ---
"standard_pipeline": ("BOOLEAN", {"default": False, "tooltip": "Use vanilla order for CLIP: Set Last Layer -> Load LoRA -> Encode (same CLIP logic as standard ComfyUI)."}),
# CLIP LoRA gains per branch (effective only when standard_pipeline=true)
"clip_lora_pos_gain": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 3.0, "step": 0.01, "tooltip": "Multiplier for CLIP-LoRA strength on positive branch (standard pipeline)."}),
"clip_lora_neg_gain": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 3.0, "step": 0.01, "tooltip": "Multiplier for CLIP-LoRA strength on negative branch (standard pipeline)."}),
# Deterministic dynamic prompts
"dynamic_pos": ("BOOLEAN", {"default": False, "tooltip": "Deterministically expand choices in positive prompt (uses dyn_seed)."}),
"dynamic_neg": ("BOOLEAN", {"default": False, "tooltip": "Deterministically expand choices in negative prompt (uses dyn_seed)."}),
"dyn_seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFF, "tooltip": "Seed for dynamic prompt expansion (same seed used for both prompts)."}),
"dynamic_break_freeze": ("BOOLEAN", {"default": True, "tooltip": "If enabled, do not expand choices before the first |BREAK| marker; dynamic applies only after it."}),
"show_expanded_prompts": ("BOOLEAN", {"default": False, "tooltip": "Print expanded Positive/Negative prompts to console when dynamic is enabled."}),
"save_expanded_prompts": ("BOOLEAN", {"default": False, "tooltip": "Save expanded prompts to mod/dynPrompt/SEED_dd_mm_yyyy.txt when dynamic is enabled."}),
}
}
RETURN_TYPES = ("MODEL", "CLIP", "CONDITIONING", "CONDITIONING", "VAE")
RETURN_NAMES = ("MODEL", "CLIP", "Positive", "Negative", "VAE")
#RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING", "VAE")
#RETURN_NAMES = ("MODEL", "Positive", "Negative", "VAE")
FUNCTION = "apply_magic_node"
CATEGORY = "MagicNodes"
def apply_magic_node(self, model_in=None, clip_in=None, checkpoint=None,
use_checkpoint=True, clear_cache=False,
use_lora_1=True, lora_1=None, strength_model_1=1.0, strength_clip_1=1.0,
use_lora_2=False, lora_2=None, strength_model_2=0.0, strength_clip_2=0.0,
use_lora_3=False, lora_3=None, strength_model_3=0.0, strength_clip_3=0.0,
use_lora_4=False, lora_4=None, strength_model_4=0.0, strength_clip_4=0.0,
use_lora_5=False, lora_5=None, strength_model_5=0.0, strength_clip_5=0.0,
use_lora_6=False, lora_6=None, strength_model_6=0.0, strength_clip_6=0.0,
positive_prompt="", negative_prompt="",
clip_set_last_layer_positive=-2, clip_set_last_layer_negative=-2,
vae_in=None,
recipe_slot="Off", recipe_save=False, recipe_use=False,
standard_pipeline=False,
clip_lora_pos_gain=1.0, clip_lora_neg_gain=1.0,
positive_in=None, negative_in=None,
dynamic_pos=False, dynamic_neg=False, dyn_seed=0, dynamic_break_freeze=True,
show_expanded_prompts=False, save_expanded_prompts=False):
global _loaded_checkpoint
# hard scrub of checkpoint cache each call (prevent hidden state)
_checkpoint_cache.clear()
if clear_cache:
_lora_cache.clear()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Recipe helpers
def _recipes_path():
base = os.path.join(os.path.dirname(__file__), "state")
os.makedirs(base, exist_ok=True)
return os.path.join(base, "combinode_recipes.json")
def _recipes_load():
try:
with open(_recipes_path(), "r", encoding="utf-8") as f:
return json.load(f)
except Exception:
return {}
def _recipes_save(data: dict):
try:
with open(_recipes_path(), "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
except Exception:
pass
# Apply recipe if requested
slot_idx = {"Off": 0, "Slot 1": 1, "Slot 2": 2, "Slot 3": 3, "Slot 4": 4}.get(str(recipe_slot), 0)
if slot_idx and bool(recipe_use):
rec = _recipes_load().get(str(slot_idx), None)
if rec is not None:
try:
use_checkpoint = rec.get("use_checkpoint", use_checkpoint)
checkpoint = rec.get("checkpoint", checkpoint)
clip_set_last_layer_positive = rec.get("clip_pos", clip_set_last_layer_positive)
clip_set_last_layer_negative = rec.get("clip_neg", clip_set_last_layer_negative)
positive_prompt = rec.get("pos_text", positive_prompt)
negative_prompt = rec.get("neg_text", negative_prompt)
rls = rec.get("loras", [])
if len(rls) >= 4:
(use_lora_1, lora_1, strength_model_1, strength_clip_1) = rls[0]
(use_lora_2, lora_2, strength_model_2, strength_clip_2) = rls[1]
(use_lora_3, lora_3, strength_model_3, strength_clip_3) = rls[2]
(use_lora_4, lora_4, strength_model_4, strength_clip_4) = rls[3]
if len(rls) >= 5:
(use_lora_5, lora_5, strength_model_5, strength_clip_5) = rls[4]
if len(rls) >= 6:
(use_lora_6, lora_6, strength_model_6, strength_clip_6) = rls[5]
print(f"[CombiNode] Loaded recipe Slot {slot_idx}.")
except Exception:
print(f"[CombiNode] Failed to apply recipe Slot {slot_idx}.")
# Prompt normalization helper (keeps '|' intact)
def _norm_prompt(s: str) -> str:
if not isinstance(s, str) or not s:
return s or ""
s2 = s.replace("\r", " ").replace("\n", " ")
s2 = re.sub(r"\s+", " ", s2)
s2 = re.sub(r"\s*,\s*", ", ", s2)
s2 = re.sub(r"(,\s*){2,}", ", ", s2)
return s2.strip()
# Deterministic dynamic prompt expansion: supports {...}, (...), [...] with '|' choices
def _expand_dynamic(text: str, seed_val: int, freeze_before_break: bool = True) -> str:
if not isinstance(text, str) or (text.find('|') < 0):
return text
# Honor |BREAK|: keep first segment intact when requested
if freeze_before_break and ('|BREAK|' in text):
pre, post = text.split('|BREAK|', 1)
return pre + '|BREAK|' + _expand_dynamic(post, seed_val, freeze_before_break=False)
rng = random.Random(int(seed_val) & 0xFFFFFFFF)
def _expand_pattern(t: str, pat: re.Pattern) -> str:
prev = None
cur = t
while prev != cur:
prev = cur
def repl(m):
body = m.group(1)
choices = [c.strip() for c in body.split('|') if c.strip()]
if not choices:
return m.group(0)
return rng.choice(choices)
cur = pat.sub(repl, cur)
return cur
for rx in (
re.compile(r"\{([^{}]+)\}"),
re.compile(r"\(([^()]+)\)"),
re.compile(r"\[([^\[\]]+)\]"),
):
text = _expand_pattern(text, rx)
return text
# Precompute expanded (or original) texts once
pos_text_expanded = _norm_prompt(_expand_dynamic(positive_prompt, int(dyn_seed), bool(dynamic_break_freeze)) if bool(dynamic_pos) else positive_prompt)
neg_text_expanded = _norm_prompt(_expand_dynamic(negative_prompt, int(dyn_seed), bool(dynamic_break_freeze)) if bool(dynamic_neg) else negative_prompt)
if use_checkpoint and checkpoint:
checkpoint_path = folder_paths.get_full_path_or_raise("checkpoints", checkpoint)
_unload_old_checkpoint(checkpoint_path)
base_model, base_clip, vae = _load_checkpoint(checkpoint_path)
model = base_model.clone()
clip = base_clip.clone()
clip_clean = base_clip.clone() # keep pristine CLIP for standard pipeline path
elif model_in and clip_in:
_unload_old_checkpoint(None)
model = model_in.clone()
clip = clip_in.clone()
clip_clean = clip_in.clone()
vae = vae_in
else:
raise Exception("No model selected!")
# single clear at start is enough; avoid double-clearing here
# Apply LoRA chain
loras = [
(use_lora_1, lora_1, strength_model_1, strength_clip_1),
(use_lora_2, lora_2, strength_model_2, strength_clip_2),
(use_lora_3, lora_3, strength_model_3, strength_clip_3),
(use_lora_4, lora_4, strength_model_4, strength_clip_4),
(use_lora_5, lora_5, strength_model_5, strength_clip_5),
(use_lora_6, lora_6, strength_model_6, strength_clip_6),
]
active_lora_paths = []
lora_stack = [] # list of (lora_file, sc, sm)
defer_clip = bool(standard_pipeline)
for use_lora, lora_name, sm, sc in loras:
# Strict gating: ignore slot when toggle is off OR name is None/empty/"None"
name = str(lora_name).strip() if lora_name is not None else ""
if (not bool(use_lora)) or (name == "") or (name.lower() in ("none", "null", "off")):
continue
# Resolve path safely (do not raise if missing). Missing behaves like disabled.
try:
lora_path = folder_paths.get_full_path("loras", name)
except Exception:
lora_path = None
if (not lora_path) or (not os.path.exists(lora_path)):
continue
active_lora_paths.append(lora_path)
# keep lora object to avoid reloading
if lora_path in _lora_cache:
lora_file = _lora_cache[lora_path]
else:
lora_file = comfy.utils.load_torch_file(lora_path, safe_load=True)
_lora_cache[lora_path] = lora_file
lora_stack.append((lora_file, float(sc), float(sm)))
sc_apply = 0.0 if defer_clip else sc
model, clip = comfy.sd.load_lora_for_models(model, clip, lora_file, sm, sc_apply)
_clear_unused_loras(active_lora_paths)
# Warn about duplicate LoRA selections across slots
try:
counts = {}
for p in active_lora_paths:
counts[p] = counts.get(p, 0) + 1
dups = [p for p, c in counts.items() if c > 1]
if dups:
print(f"[CombiNode] Duplicate LoRA detected across slots: {len(dups)} file(s).")
except Exception:
pass
# Embeddings: Positive and Negative
# Standard pipeline: optionally use a shared CLIP after clip_layer + CLIP-LoRA
# Select CLIP source for encoding: pristine when standard pipeline is enabled
src_clip = clip_clean if bool(standard_pipeline) else clip
pos_gain = float(clip_lora_pos_gain)
neg_gain = float(clip_lora_neg_gain)
skips_equal = int(clip_set_last_layer_positive) == int(clip_set_last_layer_negative)
# Use shared CLIP only if gains are equal and skips equal
use_shared = bool(standard_pipeline) and skips_equal and (abs(pos_gain - neg_gain) < 1e-6)
if (positive_in is None) and (negative_in is None) and use_shared:
shared_clip = src_clip.clone()
shared_clip.clip_layer(clip_set_last_layer_positive)
for lora_file, sc, sm in lora_stack:
try:
_m_unused, shared_clip = comfy.sd.load_lora_for_models(model, shared_clip, lora_file, 0.0, sc * pos_gain)
except Exception:
pass
tokens_pos = shared_clip.tokenize(pos_text_expanded)
cond_pos = shared_clip.encode_from_tokens_scheduled(tokens_pos)
tokens_neg = shared_clip.tokenize(neg_text_expanded)
cond_neg = shared_clip.encode_from_tokens_scheduled(tokens_neg)
else:
# CLIP Set Last Layer + Positive conditioning
clip_pos = src_clip.clone()
clip_pos.clip_layer(clip_set_last_layer_positive)
if bool(standard_pipeline):
for lora_file, sc, sm in lora_stack:
try:
_m_unused, clip_pos = comfy.sd.load_lora_for_models(model, clip_pos, lora_file, 0.0, sc * pos_gain)
except Exception:
pass
if positive_in is not None:
cond_pos = positive_in
else:
tokens_pos = clip_pos.tokenize(pos_text_expanded)
cond_pos = clip_pos.encode_from_tokens_scheduled(tokens_pos)
# CLIP Set Last Layer + Negative conditioning
clip_neg = src_clip.clone()
clip_neg.clip_layer(clip_set_last_layer_negative)
if bool(standard_pipeline):
for lora_file, sc, sm in lora_stack:
try:
_m_unused, clip_neg = comfy.sd.load_lora_for_models(model, clip_neg, lora_file, 0.0, sc * neg_gain)
except Exception:
pass
if negative_in is not None:
cond_neg = negative_in
else:
tokens_neg = clip_neg.tokenize(neg_text_expanded)
cond_neg = clip_neg.encode_from_tokens_scheduled(tokens_neg)
# Optional: show/save expanded prompts if dynamic used anywhere
dyn_used = bool(dynamic_pos) or bool(dynamic_neg)
if dyn_used and (bool(show_expanded_prompts) or bool(save_expanded_prompts)):
# Console print
if bool(show_expanded_prompts):
try:
print(f"[CombiNode] Expanded prompts (dyn_seed={int(dyn_seed)}):")
def _print_block(name, src, expanded):
print(name + ":")
if bool(dynamic_break_freeze) and ('|BREAK|' in src) and ((name=="Positive" and bool(dynamic_pos)) or (name=="Negative" and bool(dynamic_neg))):
print(" static")
print(" " + expanded)
_print_block("Positive", positive_prompt, pos_text_expanded)
_print_block("Negative", negative_prompt, neg_text_expanded)
except Exception:
pass
# File save
if bool(save_expanded_prompts):
try:
base = os.path.join(os.path.dirname(__file__), "dynPrompt")
os.makedirs(base, exist_ok=True)
now = datetime.now()
fname = f"{int(dyn_seed)}_{now.day:02d}_{now.month:02d}_{now.year}.txt"
path = os.path.join(base, fname)
lines = []
def _append_block(name, src, expanded):
lines.append(name + ":\n")
if bool(dynamic_break_freeze) and ('|BREAK|' in src) and ((name=="Positive" and bool(dynamic_pos)) or (name=="Negative" and bool(dynamic_neg))):
lines.append("static\n")
lines.append(expanded + "\n\n")
_append_block("Positive", positive_prompt, pos_text_expanded)
_append_block("Negative", negative_prompt, neg_text_expanded)
with open(path, 'w', encoding='utf-8') as f:
f.writelines(lines)
except Exception:
pass
# Save recipe if requested
if slot_idx and bool(recipe_save):
data = _recipes_load()
data[str(slot_idx)] = {
"use_checkpoint": bool(use_checkpoint),
"checkpoint": checkpoint,
"clip_pos": int(clip_set_last_layer_positive),
"clip_neg": int(clip_set_last_layer_negative),
"pos_text": str(positive_prompt),
"neg_text": str(negative_prompt),
"loras": [
[bool(use_lora_1), lora_1, float(strength_model_1), float(strength_clip_1)],
[bool(use_lora_2), lora_2, float(strength_model_2), float(strength_clip_2)],
[bool(use_lora_3), lora_3, float(strength_model_3), float(strength_clip_3)],
[bool(use_lora_4), lora_4, float(strength_model_4), float(strength_clip_4)],
[bool(use_lora_5), lora_5, float(strength_model_5), float(strength_clip_5)],
[bool(use_lora_6), lora_6, float(strength_model_6), float(strength_clip_6)],
],
}
_recipes_save(data)
print(f"[CombiNode] Saved recipe Slot {slot_idx}.")
# Return the CLIP instance consistent with encoding path
return (model, src_clip if bool(standard_pipeline) else clip, cond_pos, cond_neg, vae)
|