|
|
import comfy.sd |
|
|
import comfy.clip_vision |
|
|
import folder_paths |
|
|
import comfy.utils |
|
|
import torch |
|
|
import random |
|
|
from datetime import datetime |
|
|
import random |
|
|
import gc |
|
|
import os |
|
|
import json |
|
|
import re |
|
|
|
|
|
from .hard.mg_upscale_module import clear_gpu_and_ram_cache |
|
|
|
|
|
|
|
|
_checkpoint_cache = {} |
|
|
_loaded_checkpoint = None |
|
|
_lora_cache = {} |
|
|
_active_lora_names = set() |
|
|
|
|
|
|
|
|
def _clear_unused_loras(active_names): |
|
|
"""Remove unused LoRAs from cache and clear GPU memory.""" |
|
|
unused = [n for n in _lora_cache if n not in active_names] |
|
|
for n in unused: |
|
|
del _lora_cache[n] |
|
|
if unused: |
|
|
gc.collect() |
|
|
if torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
def _load_checkpoint(path): |
|
|
"""Load checkpoint from cache or disk.""" |
|
|
if path in _checkpoint_cache: |
|
|
return _checkpoint_cache[path] |
|
|
model, clip, vae = comfy.sd.load_checkpoint_guess_config( |
|
|
path, |
|
|
output_vae=True, |
|
|
output_clip=True, |
|
|
embedding_directory=folder_paths.get_folder_paths("embeddings"), |
|
|
)[:3] |
|
|
_checkpoint_cache[path] = (model, clip, vae) |
|
|
return model, clip, vae |
|
|
|
|
|
|
|
|
def _unload_old_checkpoint(current_path): |
|
|
"""Unload checkpoint if it's different from the current one.""" |
|
|
global _loaded_checkpoint |
|
|
if _loaded_checkpoint and _loaded_checkpoint != current_path: |
|
|
_checkpoint_cache.pop(_loaded_checkpoint, None) |
|
|
gc.collect() |
|
|
if torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
_loaded_checkpoint = current_path |
|
|
|
|
|
|
|
|
|
|
|
class MagicNodesCombiNode: |
|
|
@classmethod |
|
|
def INPUT_TYPES(cls): |
|
|
def _loras_with_none(): |
|
|
try: |
|
|
return ["None"] + list(folder_paths.get_filename_list("loras")) |
|
|
except Exception: |
|
|
return ["None"] |
|
|
|
|
|
return { |
|
|
"required": { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"use_checkpoint": ("BOOLEAN", {"default": True}), |
|
|
"checkpoint": (folder_paths.get_filename_list("checkpoints"), {}), |
|
|
"clear_cache": ("BOOLEAN", {"default": False}), |
|
|
|
|
|
|
|
|
"use_lora_1": ("BOOLEAN", {"default": True}), |
|
|
"lora_1": (_loras_with_none(), {}), |
|
|
"strength_model_1": ("FLOAT", {"default": 1.0, "min": -1.5, "max": 1.5, "step": 0.01,}), |
|
|
"strength_clip_1": ("FLOAT", {"default": 1.0, "min": -1.5, "max": 1.5, "step": 0.01,}), |
|
|
|
|
|
|
|
|
"use_lora_2": ("BOOLEAN", {"default": False}), |
|
|
"lora_2": (_loras_with_none(), {}), |
|
|
"strength_model_2": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}), |
|
|
"strength_clip_2": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}), |
|
|
|
|
|
|
|
|
"use_lora_3": ("BOOLEAN", {"default": False}), |
|
|
"lora_3": (_loras_with_none(), {}), |
|
|
"strength_model_3": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}), |
|
|
"strength_clip_3": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}), |
|
|
|
|
|
|
|
|
"use_lora_4": ("BOOLEAN", {"default": False}), |
|
|
"lora_4": (_loras_with_none(), {}), |
|
|
"strength_model_4": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}), |
|
|
"strength_clip_4": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}), |
|
|
|
|
|
|
|
|
"use_lora_5": ("BOOLEAN", {"default": False}), |
|
|
"lora_5": (_loras_with_none(), {}), |
|
|
"strength_model_5": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}), |
|
|
"strength_clip_5": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}), |
|
|
|
|
|
|
|
|
"use_lora_6": ("BOOLEAN", {"default": False}), |
|
|
"lora_6": (_loras_with_none(), {}), |
|
|
"strength_model_6": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}), |
|
|
"strength_clip_6": ("FLOAT", {"default": 0.0, "min": -1.5, "max": 1.5, "step": 0.01,}), |
|
|
}, |
|
|
"optional": { |
|
|
"model_in": ("MODEL", {}), |
|
|
"clip_in": ("CLIP", {}), |
|
|
"vae_in": ("VAE", {}), |
|
|
|
|
|
|
|
|
"positive_prompt": ("STRING", {"multiline": True, "default": "", "dynamicPrompts": False}), |
|
|
"negative_prompt": ("STRING", {"multiline": True, "default": "", "dynamicPrompts": False}), |
|
|
|
|
|
|
|
|
"positive_in": ("CONDITIONING", {}), |
|
|
"negative_in": ("CONDITIONING", {}), |
|
|
|
|
|
|
|
|
"clip_set_last_layer_positive": ("INT", {"default": -2, "min": -20, "max": 0}), |
|
|
"clip_set_last_layer_negative": ("INT", {"default": -2, "min": -20, "max": 0}), |
|
|
|
|
|
|
|
|
"recipe_slot": (["Off", "Slot 1", "Slot 2", "Slot 3", "Slot 4"], {"default": "Off", "tooltip": "Choose slot to save/load assembled setup."}), |
|
|
"recipe_save": ("BOOLEAN", {"default": False, "tooltip": "Save current setup into the selected slot."}), |
|
|
"recipe_use": ("BOOLEAN", {"default": False, "tooltip": "Load and apply setup from the selected slot for this run."}), |
|
|
|
|
|
|
|
|
"standard_pipeline": ("BOOLEAN", {"default": False, "tooltip": "Use vanilla order for CLIP: Set Last Layer -> Load LoRA -> Encode (same CLIP logic as standard ComfyUI)."}), |
|
|
|
|
|
|
|
|
"clip_lora_pos_gain": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 3.0, "step": 0.01, "tooltip": "Multiplier for CLIP-LoRA strength on positive branch (standard pipeline)."}), |
|
|
"clip_lora_neg_gain": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 3.0, "step": 0.01, "tooltip": "Multiplier for CLIP-LoRA strength on negative branch (standard pipeline)."}), |
|
|
|
|
|
|
|
|
"dynamic_pos": ("BOOLEAN", {"default": False, "tooltip": "Deterministically expand choices in positive prompt (uses dyn_seed)."}), |
|
|
"dynamic_neg": ("BOOLEAN", {"default": False, "tooltip": "Deterministically expand choices in negative prompt (uses dyn_seed)."}), |
|
|
"dyn_seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFF, "tooltip": "Seed for dynamic prompt expansion (same seed used for both prompts)."}), |
|
|
"dynamic_break_freeze": ("BOOLEAN", {"default": True, "tooltip": "If enabled, do not expand choices before the first |BREAK| marker; dynamic applies only after it."}), |
|
|
"show_expanded_prompts": ("BOOLEAN", {"default": False, "tooltip": "Print expanded Positive/Negative prompts to console when dynamic is enabled."}), |
|
|
"save_expanded_prompts": ("BOOLEAN", {"default": False, "tooltip": "Save expanded prompts to mod/dynPrompt/SEED_dd_mm_yyyy.txt when dynamic is enabled."}), |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
RETURN_TYPES = ("MODEL", "CLIP", "CONDITIONING", "CONDITIONING", "VAE") |
|
|
RETURN_NAMES = ("MODEL", "CLIP", "Positive", "Negative", "VAE") |
|
|
|
|
|
|
|
|
FUNCTION = "apply_magic_node" |
|
|
CATEGORY = "MagicNodes" |
|
|
|
|
|
def apply_magic_node(self, model_in=None, clip_in=None, checkpoint=None, |
|
|
use_checkpoint=True, clear_cache=False, |
|
|
use_lora_1=True, lora_1=None, strength_model_1=1.0, strength_clip_1=1.0, |
|
|
use_lora_2=False, lora_2=None, strength_model_2=0.0, strength_clip_2=0.0, |
|
|
use_lora_3=False, lora_3=None, strength_model_3=0.0, strength_clip_3=0.0, |
|
|
use_lora_4=False, lora_4=None, strength_model_4=0.0, strength_clip_4=0.0, |
|
|
use_lora_5=False, lora_5=None, strength_model_5=0.0, strength_clip_5=0.0, |
|
|
use_lora_6=False, lora_6=None, strength_model_6=0.0, strength_clip_6=0.0, |
|
|
positive_prompt="", negative_prompt="", |
|
|
clip_set_last_layer_positive=-2, clip_set_last_layer_negative=-2, |
|
|
vae_in=None, |
|
|
recipe_slot="Off", recipe_save=False, recipe_use=False, |
|
|
standard_pipeline=False, |
|
|
clip_lora_pos_gain=1.0, clip_lora_neg_gain=1.0, |
|
|
positive_in=None, negative_in=None, |
|
|
dynamic_pos=False, dynamic_neg=False, dyn_seed=0, dynamic_break_freeze=True, |
|
|
show_expanded_prompts=False, save_expanded_prompts=False): |
|
|
|
|
|
global _loaded_checkpoint |
|
|
|
|
|
|
|
|
_checkpoint_cache.clear() |
|
|
if clear_cache: |
|
|
_lora_cache.clear() |
|
|
gc.collect() |
|
|
if torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
def _recipes_path(): |
|
|
base = os.path.join(os.path.dirname(__file__), "state") |
|
|
os.makedirs(base, exist_ok=True) |
|
|
return os.path.join(base, "combinode_recipes.json") |
|
|
def _recipes_load(): |
|
|
try: |
|
|
with open(_recipes_path(), "r", encoding="utf-8") as f: |
|
|
return json.load(f) |
|
|
except Exception: |
|
|
return {} |
|
|
def _recipes_save(data: dict): |
|
|
try: |
|
|
with open(_recipes_path(), "w", encoding="utf-8") as f: |
|
|
json.dump(data, f, ensure_ascii=False, indent=2) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
slot_idx = {"Off": 0, "Slot 1": 1, "Slot 2": 2, "Slot 3": 3, "Slot 4": 4}.get(str(recipe_slot), 0) |
|
|
if slot_idx and bool(recipe_use): |
|
|
rec = _recipes_load().get(str(slot_idx), None) |
|
|
if rec is not None: |
|
|
try: |
|
|
use_checkpoint = rec.get("use_checkpoint", use_checkpoint) |
|
|
checkpoint = rec.get("checkpoint", checkpoint) |
|
|
clip_set_last_layer_positive = rec.get("clip_pos", clip_set_last_layer_positive) |
|
|
clip_set_last_layer_negative = rec.get("clip_neg", clip_set_last_layer_negative) |
|
|
positive_prompt = rec.get("pos_text", positive_prompt) |
|
|
negative_prompt = rec.get("neg_text", negative_prompt) |
|
|
rls = rec.get("loras", []) |
|
|
if len(rls) >= 4: |
|
|
(use_lora_1, lora_1, strength_model_1, strength_clip_1) = rls[0] |
|
|
(use_lora_2, lora_2, strength_model_2, strength_clip_2) = rls[1] |
|
|
(use_lora_3, lora_3, strength_model_3, strength_clip_3) = rls[2] |
|
|
(use_lora_4, lora_4, strength_model_4, strength_clip_4) = rls[3] |
|
|
if len(rls) >= 5: |
|
|
(use_lora_5, lora_5, strength_model_5, strength_clip_5) = rls[4] |
|
|
if len(rls) >= 6: |
|
|
(use_lora_6, lora_6, strength_model_6, strength_clip_6) = rls[5] |
|
|
print(f"[CombiNode] Loaded recipe Slot {slot_idx}.") |
|
|
except Exception: |
|
|
print(f"[CombiNode] Failed to apply recipe Slot {slot_idx}.") |
|
|
|
|
|
|
|
|
def _norm_prompt(s: str) -> str: |
|
|
if not isinstance(s, str) or not s: |
|
|
return s or "" |
|
|
s2 = s.replace("\r", " ").replace("\n", " ") |
|
|
s2 = re.sub(r"\s+", " ", s2) |
|
|
s2 = re.sub(r"\s*,\s*", ", ", s2) |
|
|
s2 = re.sub(r"(,\s*){2,}", ", ", s2) |
|
|
return s2.strip() |
|
|
|
|
|
|
|
|
def _expand_dynamic(text: str, seed_val: int, freeze_before_break: bool = True) -> str: |
|
|
if not isinstance(text, str) or (text.find('|') < 0): |
|
|
return text |
|
|
|
|
|
if freeze_before_break and ('|BREAK|' in text): |
|
|
pre, post = text.split('|BREAK|', 1) |
|
|
return pre + '|BREAK|' + _expand_dynamic(post, seed_val, freeze_before_break=False) |
|
|
rng = random.Random(int(seed_val) & 0xFFFFFFFF) |
|
|
def _expand_pattern(t: str, pat: re.Pattern) -> str: |
|
|
prev = None |
|
|
cur = t |
|
|
while prev != cur: |
|
|
prev = cur |
|
|
def repl(m): |
|
|
body = m.group(1) |
|
|
choices = [c.strip() for c in body.split('|') if c.strip()] |
|
|
if not choices: |
|
|
return m.group(0) |
|
|
return rng.choice(choices) |
|
|
cur = pat.sub(repl, cur) |
|
|
return cur |
|
|
for rx in ( |
|
|
re.compile(r"\{([^{}]+)\}"), |
|
|
re.compile(r"\(([^()]+)\)"), |
|
|
re.compile(r"\[([^\[\]]+)\]"), |
|
|
): |
|
|
text = _expand_pattern(text, rx) |
|
|
return text |
|
|
|
|
|
|
|
|
pos_text_expanded = _norm_prompt(_expand_dynamic(positive_prompt, int(dyn_seed), bool(dynamic_break_freeze)) if bool(dynamic_pos) else positive_prompt) |
|
|
neg_text_expanded = _norm_prompt(_expand_dynamic(negative_prompt, int(dyn_seed), bool(dynamic_break_freeze)) if bool(dynamic_neg) else negative_prompt) |
|
|
|
|
|
if use_checkpoint and checkpoint: |
|
|
checkpoint_path = folder_paths.get_full_path_or_raise("checkpoints", checkpoint) |
|
|
_unload_old_checkpoint(checkpoint_path) |
|
|
base_model, base_clip, vae = _load_checkpoint(checkpoint_path) |
|
|
model = base_model.clone() |
|
|
clip = base_clip.clone() |
|
|
clip_clean = base_clip.clone() |
|
|
|
|
|
elif model_in and clip_in: |
|
|
_unload_old_checkpoint(None) |
|
|
model = model_in.clone() |
|
|
clip = clip_in.clone() |
|
|
clip_clean = clip_in.clone() |
|
|
vae = vae_in |
|
|
else: |
|
|
raise Exception("No model selected!") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loras = [ |
|
|
(use_lora_1, lora_1, strength_model_1, strength_clip_1), |
|
|
(use_lora_2, lora_2, strength_model_2, strength_clip_2), |
|
|
(use_lora_3, lora_3, strength_model_3, strength_clip_3), |
|
|
(use_lora_4, lora_4, strength_model_4, strength_clip_4), |
|
|
(use_lora_5, lora_5, strength_model_5, strength_clip_5), |
|
|
(use_lora_6, lora_6, strength_model_6, strength_clip_6), |
|
|
] |
|
|
|
|
|
active_lora_paths = [] |
|
|
lora_stack = [] |
|
|
defer_clip = bool(standard_pipeline) |
|
|
for use_lora, lora_name, sm, sc in loras: |
|
|
|
|
|
name = str(lora_name).strip() if lora_name is not None else "" |
|
|
if (not bool(use_lora)) or (name == "") or (name.lower() in ("none", "null", "off")): |
|
|
continue |
|
|
|
|
|
try: |
|
|
lora_path = folder_paths.get_full_path("loras", name) |
|
|
except Exception: |
|
|
lora_path = None |
|
|
if (not lora_path) or (not os.path.exists(lora_path)): |
|
|
continue |
|
|
active_lora_paths.append(lora_path) |
|
|
|
|
|
if lora_path in _lora_cache: |
|
|
lora_file = _lora_cache[lora_path] |
|
|
else: |
|
|
lora_file = comfy.utils.load_torch_file(lora_path, safe_load=True) |
|
|
_lora_cache[lora_path] = lora_file |
|
|
lora_stack.append((lora_file, float(sc), float(sm))) |
|
|
sc_apply = 0.0 if defer_clip else sc |
|
|
model, clip = comfy.sd.load_lora_for_models(model, clip, lora_file, sm, sc_apply) |
|
|
|
|
|
_clear_unused_loras(active_lora_paths) |
|
|
|
|
|
try: |
|
|
counts = {} |
|
|
for p in active_lora_paths: |
|
|
counts[p] = counts.get(p, 0) + 1 |
|
|
dups = [p for p, c in counts.items() if c > 1] |
|
|
if dups: |
|
|
print(f"[CombiNode] Duplicate LoRA detected across slots: {len(dups)} file(s).") |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src_clip = clip_clean if bool(standard_pipeline) else clip |
|
|
|
|
|
pos_gain = float(clip_lora_pos_gain) |
|
|
neg_gain = float(clip_lora_neg_gain) |
|
|
skips_equal = int(clip_set_last_layer_positive) == int(clip_set_last_layer_negative) |
|
|
|
|
|
use_shared = bool(standard_pipeline) and skips_equal and (abs(pos_gain - neg_gain) < 1e-6) |
|
|
|
|
|
if (positive_in is None) and (negative_in is None) and use_shared: |
|
|
shared_clip = src_clip.clone() |
|
|
shared_clip.clip_layer(clip_set_last_layer_positive) |
|
|
for lora_file, sc, sm in lora_stack: |
|
|
try: |
|
|
_m_unused, shared_clip = comfy.sd.load_lora_for_models(model, shared_clip, lora_file, 0.0, sc * pos_gain) |
|
|
except Exception: |
|
|
pass |
|
|
tokens_pos = shared_clip.tokenize(pos_text_expanded) |
|
|
cond_pos = shared_clip.encode_from_tokens_scheduled(tokens_pos) |
|
|
tokens_neg = shared_clip.tokenize(neg_text_expanded) |
|
|
cond_neg = shared_clip.encode_from_tokens_scheduled(tokens_neg) |
|
|
else: |
|
|
|
|
|
clip_pos = src_clip.clone() |
|
|
clip_pos.clip_layer(clip_set_last_layer_positive) |
|
|
if bool(standard_pipeline): |
|
|
for lora_file, sc, sm in lora_stack: |
|
|
try: |
|
|
_m_unused, clip_pos = comfy.sd.load_lora_for_models(model, clip_pos, lora_file, 0.0, sc * pos_gain) |
|
|
except Exception: |
|
|
pass |
|
|
if positive_in is not None: |
|
|
cond_pos = positive_in |
|
|
else: |
|
|
tokens_pos = clip_pos.tokenize(pos_text_expanded) |
|
|
cond_pos = clip_pos.encode_from_tokens_scheduled(tokens_pos) |
|
|
|
|
|
|
|
|
clip_neg = src_clip.clone() |
|
|
clip_neg.clip_layer(clip_set_last_layer_negative) |
|
|
if bool(standard_pipeline): |
|
|
for lora_file, sc, sm in lora_stack: |
|
|
try: |
|
|
_m_unused, clip_neg = comfy.sd.load_lora_for_models(model, clip_neg, lora_file, 0.0, sc * neg_gain) |
|
|
except Exception: |
|
|
pass |
|
|
if negative_in is not None: |
|
|
cond_neg = negative_in |
|
|
else: |
|
|
tokens_neg = clip_neg.tokenize(neg_text_expanded) |
|
|
cond_neg = clip_neg.encode_from_tokens_scheduled(tokens_neg) |
|
|
|
|
|
|
|
|
dyn_used = bool(dynamic_pos) or bool(dynamic_neg) |
|
|
if dyn_used and (bool(show_expanded_prompts) or bool(save_expanded_prompts)): |
|
|
|
|
|
if bool(show_expanded_prompts): |
|
|
try: |
|
|
print(f"[CombiNode] Expanded prompts (dyn_seed={int(dyn_seed)}):") |
|
|
def _print_block(name, src, expanded): |
|
|
print(name + ":") |
|
|
if bool(dynamic_break_freeze) and ('|BREAK|' in src) and ((name=="Positive" and bool(dynamic_pos)) or (name=="Negative" and bool(dynamic_neg))): |
|
|
print(" static") |
|
|
print(" " + expanded) |
|
|
_print_block("Positive", positive_prompt, pos_text_expanded) |
|
|
_print_block("Negative", negative_prompt, neg_text_expanded) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
if bool(save_expanded_prompts): |
|
|
try: |
|
|
base = os.path.join(os.path.dirname(__file__), "dynPrompt") |
|
|
os.makedirs(base, exist_ok=True) |
|
|
now = datetime.now() |
|
|
fname = f"{int(dyn_seed)}_{now.day:02d}_{now.month:02d}_{now.year}.txt" |
|
|
path = os.path.join(base, fname) |
|
|
lines = [] |
|
|
def _append_block(name, src, expanded): |
|
|
lines.append(name + ":\n") |
|
|
if bool(dynamic_break_freeze) and ('|BREAK|' in src) and ((name=="Positive" and bool(dynamic_pos)) or (name=="Negative" and bool(dynamic_neg))): |
|
|
lines.append("static\n") |
|
|
lines.append(expanded + "\n\n") |
|
|
_append_block("Positive", positive_prompt, pos_text_expanded) |
|
|
_append_block("Negative", negative_prompt, neg_text_expanded) |
|
|
with open(path, 'w', encoding='utf-8') as f: |
|
|
f.writelines(lines) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
if slot_idx and bool(recipe_save): |
|
|
data = _recipes_load() |
|
|
data[str(slot_idx)] = { |
|
|
"use_checkpoint": bool(use_checkpoint), |
|
|
"checkpoint": checkpoint, |
|
|
"clip_pos": int(clip_set_last_layer_positive), |
|
|
"clip_neg": int(clip_set_last_layer_negative), |
|
|
"pos_text": str(positive_prompt), |
|
|
"neg_text": str(negative_prompt), |
|
|
"loras": [ |
|
|
[bool(use_lora_1), lora_1, float(strength_model_1), float(strength_clip_1)], |
|
|
[bool(use_lora_2), lora_2, float(strength_model_2), float(strength_clip_2)], |
|
|
[bool(use_lora_3), lora_3, float(strength_model_3), float(strength_clip_3)], |
|
|
[bool(use_lora_4), lora_4, float(strength_model_4), float(strength_clip_4)], |
|
|
[bool(use_lora_5), lora_5, float(strength_model_5), float(strength_clip_5)], |
|
|
[bool(use_lora_6), lora_6, float(strength_model_6), float(strength_clip_6)], |
|
|
], |
|
|
} |
|
|
_recipes_save(data) |
|
|
print(f"[CombiNode] Saved recipe Slot {slot_idx}.") |
|
|
|
|
|
|
|
|
return (model, src_clip if bool(standard_pipeline) else clip, cond_pos, cond_neg, vae) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|