| import numpy as np | |
| import networkx as nx | |
| from networkx.utils import UnionFind | |
| from typing import Optional | |
| import torch | |
| from torch import Tensor | |
| from torch_sparse import SparseTensor | |
| from scipy.sparse import csr_matrix | |
| from math import pi as PI | |
| import torch.nn.functional as F | |
| def unique(sequence): | |
| seen = set() | |
| return [x for x in sequence if not (x in seen or seen.add(x))] | |
| def pos2key(pos): | |
| pos=pos.reshape(-1) | |
| key="{:08.4f}".format(pos[0])+'_'+"{:08.4f}".format(pos[1]) | |
| return key | |
| def get_angle(v1: Tensor, v2: Tensor): | |
| if v1.shape[1]==2: | |
| v1=F.pad(v1, (0, 1)) | |
| if v2.shape[1]==2: | |
| v2= F.pad(v2, (0, 1)) | |
| return torch.atan2( | |
| torch.cross(v1, v2, dim=1).norm(p=2, dim=1), (v1 * v2).sum(dim=1)) | |
| class GaussianSmearing(torch.nn.Module): | |
| def __init__(self, start=-PI, stop=PI, num_gaussians=12): | |
| super(GaussianSmearing, self).__init__() | |
| offset = torch.linspace(start, stop, num_gaussians) | |
| self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2 | |
| self.register_buffer("offset", offset) | |
| def forward(self, dist): | |
| dist = dist.view(-1, 1) - self.offset.view(1, -1) | |
| return torch.exp(self.coeff * torch.pow(dist, 2)) | |
| def triplets(edge_index, num_nodes): | |
| row, col = edge_index | |
| value = torch.arange(row.size(0), device=row.device) | |
| adj_t = SparseTensor(row=row, col=col, value=value, | |
| sparse_sizes=(num_nodes, num_nodes)) | |
| adj_t_row = adj_t[col] | |
| num_triplets = adj_t_row.set_value(None).sum(dim=1).to(torch.long) | |
| idx_i = row.repeat_interleave(num_triplets) | |
| idx_j = col.repeat_interleave(num_triplets) | |
| edx_1st = value.repeat_interleave(num_triplets) | |
| idx_k = adj_t_row.storage.col() | |
| edx_2nd = adj_t_row.storage.value() | |
| mask1 = (idx_i == idx_k) & (idx_j != idx_i) | |
| mask2 = (idx_i == idx_j) & (idx_j != idx_k) | |
| mask3 = (idx_j == idx_k) & (idx_i != idx_k) | |
| mask = ~(mask1 | mask2 | mask3) | |
| idx_i, idx_j, idx_k, edx_1st, edx_2nd = idx_i[mask], idx_j[mask], idx_k[mask], edx_1st[mask], edx_2nd[mask] | |
| num_triplets_real = torch.cumsum(num_triplets, dim=0) - torch.cumsum(~mask, dim=0)[torch.cumsum(num_triplets, dim=0)-1] | |
| return torch.stack([idx_i, idx_j, idx_k]), num_triplets_real.to(torch.long), edx_1st, edx_2nd | |
| if __name__ == '__main__': | |
| 1 | |