File size: 9,627 Bytes
a9c0339 d8134e8 a9c0339 80caf3e 8e17bbd 80caf3e 8e17bbd 80caf3e c69c4eb 80caf3e c69c4eb 80caf3e 0b9a97c 80caf3e 65354a8 c75e9f1 80caf3e 24ff49f e27ab31 24ff49f 80caf3e 8e17bbd 80caf3e f89e03c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
license: apache-2.0
datasets:
- Fortytwo-Network/Strandset-Rust-v1
base_model:
- Qwen/Qwen2.5-Coder-14B-Instruct
pipeline_tag: text-generation
library_name: transformers
---

# Strand-Rust-Coder-14B-v1
## Overview
**Strand-Rust-Coder-14B-v1** is the first domain-specialized Rust language model created through **Fortytwo’s Swarm Inference**, a decentralized AI architecture where multiple models collaboratively generate, validate, and rank outputs through peer consensus.
The model fine-tunes **Qwen2.5-Coder-14B** for Rust-specific programming tasks using a **191K-example synthetic dataset** built via multi-model generation and peer-reviewed validation.
It achieves **43–48% accuracy** on Rust-specific benchmarks – surpassing much larger proprietary models like GPT-5 Codex on Rust tasks – while maintaining competitive general coding performance.
## Key Features
- **Rust-specialized fine-tuning** on 15 diverse programming task categories
- **Peer-validated synthetic dataset** (191,008 verified examples, 94.3% compile rate)
- **LoRA-based fine-tuning** for efficient adaptation
- **Benchmarked across Rust-specific suites:**
- **RustEvo^2**
- **Evaluation on Hold-Out Set**
- **Deployed in the Fortytwo decentralized inference network** for collective AI reasoning
---
## Performance Summary
| **Model** | **Hold-Out Set** | **RustEvo^2** |
|------------|------------------|---------------|
| **Fortytwo-Rust-One-14B (Ours)** | **48.00%** | **43.00%** |
| openai/gpt-5-codex | 47.00% | 28.00% |
| anthropic/claude-sonnet-4.5 | 46.00% | 21.00% |
| anthropic/claude-3.7-sonnet | 42.00% | 31.00% |
| qwen/qwen3-max | 42.00% | 40.00% |
| qwen/qwen3-coder-plus | 41.00% | 22.00% |
| x-ai/grok-4 | 39.00% | 37.00% |
| deepseek/deepseek-v3.1-terminus | 37.00% | 33.00% |
| Qwen3-Coder-30B-A3B-Instruct | 36.00% | 20.00% |
| openai/gpt-4o-latest | 34.00% | 39.00% |
| deepseek/deepseek-chat | 34.00% | 41.00% |
| google/gemini-2.5-flash | 33.00% | 7.00% |
| Qwen2.5-Coder-14B-Instruct (Base) | 29.00% | 30.00% |
| Qwen2.5-Coder-32B-Instruct | 29.00% | 31.00% |
| google/gemini-2.5-pro | 28.00% | 22.00% |
| qwen/qwen-2.5-72b | 28.00% | 32.00% |
| Tesslate/Tessa-Rust-T1-7B | 23.00% | 19.00% |
*Benchmarks on code tasks measured using unit-test pass rate@1 in Docker-isolated Rust 1.86.0 environment.*
---
## Task Breakdown
| Task | Base | Strand-14B |
|------|------|-------------|
| test_generation | 0.00 | 0.51 |
| api_usage_prediction | 0.27 | 0.71 |
| function_naming | 0.53 | 0.87 |
| code_refactoring | 0.04 | 0.19–0.20 |
| variable_naming | 0.87 | 1.00 |
| code_generation | 0.40 | 0.49 |
Largest improvements appear in *test generation*, *API usage prediction*, and *refactoring* – areas demanding strong semantic reasoning about Rust’s ownership and lifetime rules.
---
## Dataset
**Fortytwo-Network/Strandset-Rust-v1 (191,008 examples, 15 categories)**
Built through Fortytwo’s *Swarm Inference* pipeline, where multiple SLMs generate and cross-validate examples with peer review consensus and output aggregation.
- 94.3% compile success rate
- 73.2% consensus acceptance
- Coverage of 89% of Rust language features
- Tasks include:
- `code_generation`, `code_completion`, `bug_detection`, `refactoring`, `optimization`
- `docstring_generation`, `code_review`, `summarization`, `test_generation`
- `naming`, `API usage prediction`, `search`
Dataset construction involved 2,383 crates from crates.io, automatic compilation tests, and semantic validation of ownership and lifetime correctness.
Dataset: [Fortytwo-Network/Strandset-Rust-v1](https://huggingface.co/datasets/Fortytwo-Network/Strandset-Rust-v1)
---
## Training Configuration
| Setting | Value |
|----------|-------|
| Base model | Qwen2.5-Coder-14B-Instruct |
| Method | LoRA (r=64, α=16) |
| Learning rate | 5e-5 |
| Batch size | 128 |
| Epochs | 3 |
| Optimizer | AdamW |
| Precision | bfloat16 |
| Objective | Completion-only loss |
| Context length | 32,768 |
| Framework | PyTorch + FSDP + Flash Attention 2 |
| Hardware | 8× H200 GPUs |
---
## Model Architecture
- **Base:** Qwen2.5-Coder (14 B parameters, GQA attention, extended RoPE embeddings)
- **Tokenizer:** 151 k vocabulary optimized for Rust syntax
- **Context:** 32 k tokens
- **Fine-tuning:** Parameter-efficient LoRA adapters (≈1% of parameters updated)
- **Deployment:** Compatible with local deployment and Fortytwo Capsule runtime for distributed swarm inference
---
## Evaluation Protocol
- All evaluations executed in Docker-isolated Rust 1.86.0 environment
- **Code tasks:** measured via unit test pass rate
- **Documentation & naming tasks:** scored via LLM-based correctness (Claude Sonnet 4 judge)
- **Code completion & API tasks:** syntax-weighted Levenshtein similarity
- **Comment generation:** compilation success metric
---
## Why It Matters
Rust is a high-safety, low-level language with complex ownership semantics that make it uniquely challenging for general-purpose LLMs.
At the same time, there is simply **not enough high-quality training data on Rust**, as it remains a relatively modern and rapidly evolving language.
This scarcity of large, reliable Rust datasets – combined with the language’s intricate borrow checker and type system – makes it an ideal benchmark for evaluating true model understanding and reasoning precision.
**Strand-Rust-Coder** demonstrates how **specialized models** can outperform giant centralized models – achieving domain mastery with a fraction of the compute.
Through **Fortytwo’s Swarm Inference**, the network was able to generate an **extremely accurate synthetic dataset**, enabling a **state-of-the-art Rust model** to be built through an efficient **LoRA fine-tune** rather than full retraining.
This work validates Fortytwo’s thesis: **intelligence can scale horizontally through networked specialization rather than centralized scale.**
---
## 🔬 Research & References
- [Fortytwo: Swarm Inference with Peer-Ranked Consensus (arXiv)](https://arxiv.org/abs/2510.24801) - *Fortytwo Swarm Inference – Technical Report*
- [Self-Supervised Inference of Agents in Trustless Environments (arXiv)](https://arxiv.org/abs/2409.08386) – *High-level overview of Fortytwo architecture*
---
## Intended Use
- Rust code generation, completion, and documentation
- Automated refactoring and test generation
- Integration into code copilots and multi-agent frameworks
- Research on domain-specialized model training and evaluation
### Limitations
- May underperform on purely algorithmic or multi-language tasks (e.g., HumanEval-style puzzles).
- Not suitable for generating unverified production code without compilation and test validation.
---
## Integration with Fortytwo Network
Strand-Rust-Coder models are integrated into **Fortytwo’s decentralized Swarm Inference Network**, where specialized models collaborate and rank each other’s outputs.
This structure enables **peer-reviewed inference**, improving reliability while reducing hallucinations and cost.
To run a Fortytwo node or contribute your own models and fine-tunes, visit: [fortytwo.network](https://fortytwo.network)
---
## Inference Examples
### Using `pipeline`
```python
from transformers import pipeline
pipe = pipeline("text-generation", model="Fortytwo-Network/Strand-Rust-Coder-14B-v1")
messages = [
{"role": "user", "content": "Write a Rust function that finds the first string longer than 10 characters in a vector."},
]
pipe(messages)
```
### Using Transformers Directly
```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Fortytwo-Network/Strand-Rust-Coder-14B-v1")
model = AutoModelForCausalLM.from_pretrained("Fortytwo-Network/Strand-Rust-Coder-14B-v1")
messages = [
{"role": "user", "content": "Write a Rust function that finds the first string longer than 10 characters in a vector."},
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=40)
print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:]))
```
---
## Quantized Versions
Optimized GGUF quantizations of **Strand-Rust-Coder-14B-v1** are available for local and Fortytwo Node deployment, offering reduced memory footprint with minimal performance trade-off.
These builds are compatible with **llama.cpp**, **Jan**, **LM Studio**, **Ollama**, and other runtimes supporting the GGUF format.
| **Quantization** | **Size** | **Bit Precision** | **Description** |
|------------------|-----------|------------------|----------------|
| **Q8_0** | 15.7 GB | **8-bit** | Near-full precision, for most demanding local inference |
| **Q6_K** | 12.1 GB | **6-bit** | Balanced performance and efficiency |
| **Q5_K_M** | 10.5 GB | **5-bit** | Lightweight deployment with strong accuracy retention |
| **Q4_K_M** | 8.99 GB | **4-bit** | Ultra-fast, compact variant for consumer GPUs and laptops |
Quant versions: [Fortytwo-Network/Strand-Rust-Coder-14B-v1-GGUF](https://huggingface.co/Fortytwo-Network/Strand-Rust-Coder-14B-v1-GGUF)
---
**Fortytwo – An open, networked intelligence shaped collectively by its participants**
Join the swarm: [fortytwo.network](https://fortytwo.network)
X: [@fortytwo](https://x.com/fortytwo) |