Text Generation
Transformers
Safetensors
qwen2
conversational
text-generation-inference
File size: 9,627 Bytes
a9c0339
 
 
 
 
d8134e8
a9c0339
 
80caf3e
 
 
 
 
 
 
 
8e17bbd
80caf3e
8e17bbd
 
80caf3e
 
 
 
 
 
 
c69c4eb
80caf3e
 
 
 
 
 
 
c69c4eb
80caf3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b9a97c
80caf3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65354a8
c75e9f1
80caf3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24ff49f
 
 
 
 
 
 
 
 
e27ab31
 
 
24ff49f
 
 
 
 
80caf3e
8e17bbd
80caf3e
 
f89e03c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
license: apache-2.0
datasets:
- Fortytwo-Network/Strandset-Rust-v1
base_model:
- Qwen/Qwen2.5-Coder-14B-Instruct
pipeline_tag: text-generation
library_name: transformers
---

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63aeda3a2314b93f9e706a68/I6WwY8U7I5V8lc138UmGt.jpeg)

# Strand-Rust-Coder-14B-v1

## Overview

**Strand-Rust-Coder-14B-v1** is the first domain-specialized Rust language model created through **Fortytwo’s Swarm Inference**, a decentralized AI architecture where multiple models collaboratively generate, validate, and rank outputs through peer consensus.

The model fine-tunes **Qwen2.5-Coder-14B** for Rust-specific programming tasks using a **191K-example synthetic dataset** built via multi-model generation and peer-reviewed validation.  
It achieves **43–48% accuracy** on Rust-specific benchmarks – surpassing much larger proprietary models like GPT-5 Codex on Rust tasks – while maintaining competitive general coding performance.

## Key Features

- **Rust-specialized fine-tuning** on 15 diverse programming task categories  
- **Peer-validated synthetic dataset** (191,008 verified examples, 94.3% compile rate)  
- **LoRA-based fine-tuning** for efficient adaptation  
- **Benchmarked across Rust-specific suites:**
  - **RustEvo^2**  
  - **Evaluation on Hold-Out Set**
- **Deployed in the Fortytwo decentralized inference network** for collective AI reasoning  

---

## Performance Summary

| **Model** | **Hold-Out Set** | **RustEvo^2** |
|------------|------------------|---------------|
| **Fortytwo-Rust-One-14B (Ours)** | **48.00%** | **43.00%** |
| openai/gpt-5-codex | 47.00% | 28.00% |
| anthropic/claude-sonnet-4.5 | 46.00% | 21.00% |
| anthropic/claude-3.7-sonnet | 42.00% | 31.00% |
| qwen/qwen3-max | 42.00% | 40.00% |
| qwen/qwen3-coder-plus | 41.00% | 22.00% |
| x-ai/grok-4 | 39.00% | 37.00% |
| deepseek/deepseek-v3.1-terminus | 37.00% | 33.00% |
| Qwen3-Coder-30B-A3B-Instruct | 36.00% | 20.00% |
| openai/gpt-4o-latest | 34.00% | 39.00% |
| deepseek/deepseek-chat | 34.00% | 41.00% |
| google/gemini-2.5-flash | 33.00% | 7.00% |
| Qwen2.5-Coder-14B-Instruct (Base) | 29.00% | 30.00% |
| Qwen2.5-Coder-32B-Instruct | 29.00% | 31.00% |
| google/gemini-2.5-pro | 28.00% | 22.00% |
| qwen/qwen-2.5-72b | 28.00% | 32.00% |
| Tesslate/Tessa-Rust-T1-7B | 23.00% | 19.00% |

*Benchmarks on code tasks measured using unit-test pass rate@1 in Docker-isolated Rust 1.86.0 environment.*

---

## Task Breakdown

| Task | Base | Strand-14B |
|------|------|-------------|
| test_generation | 0.00 | 0.51 |
| api_usage_prediction | 0.27 | 0.71 |
| function_naming | 0.53 | 0.87 |
| code_refactoring | 0.04 | 0.19–0.20 |
| variable_naming | 0.87 | 1.00 |
| code_generation | 0.40 | 0.49 |

Largest improvements appear in *test generation*, *API usage prediction*, and *refactoring* – areas demanding strong semantic reasoning about Rust’s ownership and lifetime rules.

---

## Dataset

**Fortytwo-Network/Strandset-Rust-v1 (191,008 examples, 15 categories)**  
Built through Fortytwo’s *Swarm Inference* pipeline, where multiple SLMs generate and cross-validate examples with peer review consensus and output aggregation.

- 94.3% compile success rate  
- 73.2% consensus acceptance  
- Coverage of 89% of Rust language features  
- Tasks include:
  - `code_generation`, `code_completion`, `bug_detection`, `refactoring`, `optimization`
  - `docstring_generation`, `code_review`, `summarization`, `test_generation`
  - `naming`, `API usage prediction`, `search`  

Dataset construction involved 2,383 crates from crates.io, automatic compilation tests, and semantic validation of ownership and lifetime correctness.

Dataset: [Fortytwo-Network/Strandset-Rust-v1](https://huggingface.co/datasets/Fortytwo-Network/Strandset-Rust-v1)

---

## Training Configuration

| Setting | Value |
|----------|-------|
| Base model | Qwen2.5-Coder-14B-Instruct |
| Method | LoRA (r=64, α=16) |
| Learning rate | 5e-5 |
| Batch size | 128 |
| Epochs | 3 |
| Optimizer | AdamW |
| Precision | bfloat16 |
| Objective | Completion-only loss |
| Context length | 32,768 |
| Framework | PyTorch + FSDP + Flash Attention 2 |
| Hardware | 8× H200 GPUs |

---

## Model Architecture

- **Base:** Qwen2.5-Coder (14 B parameters, GQA attention, extended RoPE embeddings)  
- **Tokenizer:** 151 k vocabulary optimized for Rust syntax  
- **Context:** 32 k tokens  
- **Fine-tuning:** Parameter-efficient LoRA adapters (≈1% of parameters updated)  
- **Deployment:** Compatible with local deployment and Fortytwo Capsule runtime for distributed swarm inference  

---

## Evaluation Protocol

- All evaluations executed in Docker-isolated Rust 1.86.0 environment  
- **Code tasks:** measured via unit test pass rate  
- **Documentation & naming tasks:** scored via LLM-based correctness (Claude Sonnet 4 judge)  
- **Code completion & API tasks:** syntax-weighted Levenshtein similarity  
- **Comment generation:** compilation success metric  

---

## Why It Matters

Rust is a high-safety, low-level language with complex ownership semantics that make it uniquely challenging for general-purpose LLMs.  
At the same time, there is simply **not enough high-quality training data on Rust**, as it remains a relatively modern and rapidly evolving language.  
This scarcity of large, reliable Rust datasets – combined with the language’s intricate borrow checker and type system – makes it an ideal benchmark for evaluating true model understanding and reasoning precision.

**Strand-Rust-Coder** demonstrates how **specialized models** can outperform giant centralized models – achieving domain mastery with a fraction of the compute.  
Through **Fortytwo’s Swarm Inference**, the network was able to generate an **extremely accurate synthetic dataset**, enabling a **state-of-the-art Rust model** to be built through an efficient **LoRA fine-tune** rather than full retraining.

This work validates Fortytwo’s thesis: **intelligence can scale horizontally through networked specialization rather than centralized scale.**

---

## 🔬 Research & References

- [Fortytwo: Swarm Inference with Peer-Ranked Consensus (arXiv)](https://arxiv.org/abs/2510.24801) - *Fortytwo Swarm Inference – Technical Report*  
- [Self-Supervised Inference of Agents in Trustless Environments (arXiv)](https://arxiv.org/abs/2409.08386) – *High-level overview of Fortytwo architecture*  

---

## Intended Use

- Rust code generation, completion, and documentation  
- Automated refactoring and test generation  
- Integration into code copilots and multi-agent frameworks  
- Research on domain-specialized model training and evaluation  

### Limitations
- May underperform on purely algorithmic or multi-language tasks (e.g., HumanEval-style puzzles).  
- Not suitable for generating unverified production code without compilation and test validation.  

---

## Integration with Fortytwo Network

Strand-Rust-Coder models are integrated into **Fortytwo’s decentralized Swarm Inference Network**, where specialized models collaborate and rank each other’s outputs.  
This structure enables **peer-reviewed inference**, improving reliability while reducing hallucinations and cost.

To run a Fortytwo node or contribute your own models and fine-tunes, visit: [fortytwo.network](https://fortytwo.network)

---

## Inference Examples

### Using `pipeline`

```python
from transformers import pipeline

pipe = pipeline("text-generation", model="Fortytwo-Network/Strand-Rust-Coder-14B-v1")
messages = [
    {"role": "user", "content": "Write a Rust function that finds the first string longer than 10 characters in a vector."},
]
pipe(messages)
```

### Using Transformers Directly

```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Fortytwo-Network/Strand-Rust-Coder-14B-v1")
model = AutoModelForCausalLM.from_pretrained("Fortytwo-Network/Strand-Rust-Coder-14B-v1")

messages = [
    {"role": "user", "content": "Write a Rust function that finds the first string longer than 10 characters in a vector."},
]

inputs = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt",
).to(model.device)

outputs = model.generate(**inputs, max_new_tokens=40)
print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:]))
```

---

## Quantized Versions

Optimized GGUF quantizations of **Strand-Rust-Coder-14B-v1** are available for local and Fortytwo Node deployment, offering reduced memory footprint with minimal performance trade-off.

These builds are compatible with **llama.cpp**, **Jan**, **LM Studio**, **Ollama**, and other runtimes supporting the GGUF format.

| **Quantization** | **Size** | **Bit Precision** | **Description** |
|------------------|-----------|------------------|----------------|
| **Q8_0** | 15.7 GB | **8-bit** | Near-full precision, for most demanding local inference |
| **Q6_K** | 12.1 GB | **6-bit** | Balanced performance and efficiency |
| **Q5_K_M** | 10.5 GB | **5-bit** | Lightweight deployment with strong accuracy retention |
| **Q4_K_M** | 8.99 GB | **4-bit** | Ultra-fast, compact variant for consumer GPUs and laptops |

Quant versions: [Fortytwo-Network/Strand-Rust-Coder-14B-v1-GGUF](https://huggingface.co/Fortytwo-Network/Strand-Rust-Coder-14B-v1-GGUF)

---

**Fortytwo – An open, networked intelligence shaped collectively by its participants**  

Join the swarm: [fortytwo.network](https://fortytwo.network)

X: [@fortytwo](https://x.com/fortytwo)