update model card README.md
Browse files
    	
        README.md
    ADDED
    
    | 
         @@ -0,0 +1,76 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            license: mit
         
     | 
| 3 | 
         
            +
            tags:
         
     | 
| 4 | 
         
            +
            - summarization
         
     | 
| 5 | 
         
            +
            - generated_from_trainer
         
     | 
| 6 | 
         
            +
            metrics:
         
     | 
| 7 | 
         
            +
            - rouge
         
     | 
| 8 | 
         
            +
            model-index:
         
     | 
| 9 | 
         
            +
            - name: bart-base-cnn-xsum-wiki-swe
         
     | 
| 10 | 
         
            +
              results: []
         
     | 
| 11 | 
         
            +
            ---
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            <!-- This model card has been generated automatically according to the information the Trainer had access to. You
         
     | 
| 14 | 
         
            +
            should probably proofread and complete it, then remove this comment. -->
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            # bart-base-cnn-xsum-wiki-swe
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            This model is a fine-tuned version of [Gabriel/bart-base-cnn-xsum-swe](https://huggingface.co/Gabriel/bart-base-cnn-xsum-swe) on the None dataset.
         
     | 
| 19 | 
         
            +
            It achieves the following results on the evaluation set:
         
     | 
| 20 | 
         
            +
            - Loss: 2.3884
         
     | 
| 21 | 
         
            +
            - Rouge1: 26.8917
         
     | 
| 22 | 
         
            +
            - Rouge2: 11.8254
         
     | 
| 23 | 
         
            +
            - Rougel: 22.6089
         
     | 
| 24 | 
         
            +
            - Rougelsum: 26.1492
         
     | 
| 25 | 
         
            +
            - Gen Len: 19.3468
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            ## Model description
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            More information needed
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            ## Intended uses & limitations
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            More information needed
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            ## Training and evaluation data
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            More information needed
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            ## Training procedure
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            ### Training hyperparameters
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            The following hyperparameters were used during training:
         
     | 
| 44 | 
         
            +
            - learning_rate: 5e-05
         
     | 
| 45 | 
         
            +
            - train_batch_size: 16
         
     | 
| 46 | 
         
            +
            - eval_batch_size: 16
         
     | 
| 47 | 
         
            +
            - seed: 42
         
     | 
| 48 | 
         
            +
            - gradient_accumulation_steps: 2
         
     | 
| 49 | 
         
            +
            - total_train_batch_size: 32
         
     | 
| 50 | 
         
            +
            - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
         
     | 
| 51 | 
         
            +
            - lr_scheduler_type: linear
         
     | 
| 52 | 
         
            +
            - lr_scheduler_warmup_steps: 500
         
     | 
| 53 | 
         
            +
            - num_epochs: 9
         
     | 
| 54 | 
         
            +
            - mixed_precision_training: Native AMP
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            ### Training results
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            | Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
         
     | 
| 59 | 
         
            +
            |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
         
     | 
| 60 | 
         
            +
            | 2.4993        | 1.0   | 2985  | 2.3834          | 25.8959 | 10.9373 | 21.8329 | 25.2002   | 19.1416 |
         
     | 
| 61 | 
         
            +
            | 2.2397        | 2.0   | 5970  | 2.2939          | 26.1166 | 11.4087 | 22.2444 | 25.4752   | 19.2351 |
         
     | 
| 62 | 
         
            +
            | 2.0318        | 3.0   | 8955  | 2.2687          | 26.5222 | 11.6512 | 22.567  | 25.851    | 19.2384 |
         
     | 
| 63 | 
         
            +
            | 1.879         | 4.0   | 11940 | 2.2750          | 26.7637 | 11.7676 | 22.6674 | 26.0753   | 19.2622 |
         
     | 
| 64 | 
         
            +
            | 1.7532        | 5.0   | 14925 | 2.2923          | 26.8104 | 11.8724 | 22.6794 | 26.0907   | 19.3063 |
         
     | 
| 65 | 
         
            +
            | 1.6315        | 6.0   | 17910 | 2.3190          | 26.7758 | 11.7989 | 22.5925 | 26.032    | 19.3136 |
         
     | 
| 66 | 
         
            +
            | 1.5409        | 7.0   | 20895 | 2.3517          | 26.8762 | 11.8552 | 22.6694 | 26.1329   | 19.3275 |
         
     | 
| 67 | 
         
            +
            | 1.4711        | 8.0   | 23880 | 2.3679          | 26.899  | 11.9185 | 22.6764 | 26.1574   | 19.2994 |
         
     | 
| 68 | 
         
            +
            | 1.4105        | 9.0   | 26865 | 2.3884          | 26.8917 | 11.8254 | 22.6089 | 26.1492   | 19.3468 |
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            ### Framework versions
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            - Transformers 4.22.2
         
     | 
| 74 | 
         
            +
            - Pytorch 1.12.1+cu113
         
     | 
| 75 | 
         
            +
            - Datasets 2.5.1
         
     | 
| 76 | 
         
            +
            - Tokenizers 0.12.1
         
     |