Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""app.py
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1QIEwA7FDPNIgdUKfLyRF4K3Im9CjkadN
|
| 8 |
+
|
| 9 |
+
Logistic Map Equation: x
|
| 10 |
+
n+1
|
| 11 |
+
|
| 12 |
+
=r⋅x
|
| 13 |
+
n
|
| 14 |
+
|
| 15 |
+
⋅(1−x
|
| 16 |
+
n
|
| 17 |
+
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
- x_n is the current state (a number between 0 and 1).
|
| 21 |
+
|
| 22 |
+
- x_{n+1} is the next value in the sequence.
|
| 23 |
+
|
| 24 |
+
- r is the growth rate parameter.
|
| 25 |
+
|
| 26 |
+
This block:
|
| 27 |
+
|
| 28 |
+
- Introduces the logistic map function
|
| 29 |
+
|
| 30 |
+
- Lets us generate sequences with different r values
|
| 31 |
+
|
| 32 |
+
- Plots them to visually understand convergence, cycles, and chaos
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
import numpy as np
|
| 36 |
+
import matplotlib.pyplot as plt
|
| 37 |
+
import random
|
| 38 |
+
|
| 39 |
+
# Define the logistic map function
|
| 40 |
+
def logistic_map(x0: float, r: float, n: int = 100) -> np.ndarray:
|
| 41 |
+
"""
|
| 42 |
+
Generates a logistic map sequence.
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
x0 (float): Initial value (between 0 and 1).
|
| 46 |
+
r (float): Growth rate parameter (between 0 and 4).
|
| 47 |
+
n (int): Number of time steps.
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
np.ndarray: Sequence of logistic map values.
|
| 51 |
+
"""
|
| 52 |
+
seq = np.zeros(n)
|
| 53 |
+
seq[0] = x0
|
| 54 |
+
for i in range(1, n):
|
| 55 |
+
seq[i] = r * seq[i - 1] * (1 - seq[i - 1])
|
| 56 |
+
return seq
|
| 57 |
+
|
| 58 |
+
# Plot logistic map sequences for different r values
|
| 59 |
+
def plot_logistic_map_examples(x0: float = 0.51, n: int = 100):
|
| 60 |
+
"""
|
| 61 |
+
Plots logistic map sequences for several r values to visualize behavior.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
x0 (float): Initial value.
|
| 65 |
+
n (int): Number of iterations.
|
| 66 |
+
"""
|
| 67 |
+
r_values = [2.5, 3.2, 3.5, 3.9, 4.0]
|
| 68 |
+
plt.figure(figsize=(12, 8))
|
| 69 |
+
|
| 70 |
+
for i, r in enumerate(r_values, 1):
|
| 71 |
+
x0_safe = random.uniform(0.11, 0.89)
|
| 72 |
+
seq = logistic_map(x0, r, n)
|
| 73 |
+
plt.subplot(3, 2, i)
|
| 74 |
+
plt.plot(seq, label=f"r = {r}")
|
| 75 |
+
plt.title(f"Logistic Map (r = {r})")
|
| 76 |
+
plt.xlabel("Time Step")
|
| 77 |
+
plt.ylabel("x")
|
| 78 |
+
plt.grid(True)
|
| 79 |
+
plt.legend()
|
| 80 |
+
|
| 81 |
+
plt.tight_layout()
|
| 82 |
+
plt.show()
|
| 83 |
+
|
| 84 |
+
# 🔍 Run the plot function to see different behaviors
|
| 85 |
+
plot_logistic_map_examples()
|
| 86 |
+
|
| 87 |
+
"""- Low r (e.g., 2.5) = stable
|
| 88 |
+
|
| 89 |
+
- Mid r (e.g., 3.3) = periodic
|
| 90 |
+
|
| 91 |
+
- High r (e.g., 3.8 – 4.0) = chaotic
|
| 92 |
+
|
| 93 |
+
Generate synthetic sequences using random r values
|
| 94 |
+
|
| 95 |
+
Label each sequence as:
|
| 96 |
+
|
| 97 |
+
- 0 = stable (low r)
|
| 98 |
+
|
| 99 |
+
- 1 = periodic (mid r)
|
| 100 |
+
|
| 101 |
+
- 2 = chaotic (high r)
|
| 102 |
+
|
| 103 |
+
Create a full dataset we can later feed into a classifier
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
import random
|
| 107 |
+
from typing import Tuple, List
|
| 108 |
+
|
| 109 |
+
# Label assignment based on r value
|
| 110 |
+
def label_from_r(r: float) -> int:
|
| 111 |
+
"""
|
| 112 |
+
Assigns a regime label based on the value of r.
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
r (float): Growth rate.
|
| 116 |
+
|
| 117 |
+
Returns:
|
| 118 |
+
int: Label (0 = stable, 1 = periodic, 2 = chaotic)
|
| 119 |
+
"""
|
| 120 |
+
if r < 3.0:
|
| 121 |
+
return 0 # Stable regime
|
| 122 |
+
elif 3.0 <= r < 3.57:
|
| 123 |
+
return 1 # Periodic regime
|
| 124 |
+
else:
|
| 125 |
+
return 2 # Chaotic regime
|
| 126 |
+
|
| 127 |
+
# Create one labeled sequence
|
| 128 |
+
def generate_labeled_sequence(n: int = 100) -> Tuple[np.ndarray, int]:
|
| 129 |
+
"""
|
| 130 |
+
Generates a single logistic map sequence and its regime label.
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
n (int): Sequence length.
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
Tuple: (sequence, label)
|
| 137 |
+
"""
|
| 138 |
+
r = round(random.uniform(2.5, 4.0), 4)
|
| 139 |
+
x0 = random.uniform(0.1, 0.9)
|
| 140 |
+
sequence = logistic_map(x0, r, n)
|
| 141 |
+
label = label_from_r(r)
|
| 142 |
+
return sequence, label
|
| 143 |
+
|
| 144 |
+
# Generate a full dataset
|
| 145 |
+
def generate_dataset(num_samples: int = 1000, n: int = 100) -> Tuple[np.ndarray, np.ndarray]:
|
| 146 |
+
"""
|
| 147 |
+
Generates a dataset of logistic sequences with regime labels.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
num_samples (int): Number of sequences to generate.
|
| 151 |
+
n (int): Length of each sequence.
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
Tuple[np.ndarray, np.ndarray]: X (sequences), y (labels)
|
| 155 |
+
"""
|
| 156 |
+
X, y = [], []
|
| 157 |
+
|
| 158 |
+
for _ in range(num_samples):
|
| 159 |
+
sequence, label = generate_labeled_sequence(n)
|
| 160 |
+
X.append(sequence)
|
| 161 |
+
y.append(label)
|
| 162 |
+
|
| 163 |
+
return np.array(X), np.array(y)
|
| 164 |
+
|
| 165 |
+
# Example: Generate small dataset and view label counts
|
| 166 |
+
X, y = generate_dataset(num_samples=500, n=100)
|
| 167 |
+
|
| 168 |
+
# Check class distribution
|
| 169 |
+
import collections
|
| 170 |
+
print("Label distribution:", collections.Counter(y))
|
| 171 |
+
|
| 172 |
+
"""Used controlled r ranges to simulate different market regimes
|
| 173 |
+
|
| 174 |
+
Created 500 synthetic sequences (X) and regime labels (y)
|
| 175 |
+
|
| 176 |
+
Now we can visualize, split, and train on this dataset
|
| 177 |
+
|
| 178 |
+
Visualize:
|
| 179 |
+
|
| 180 |
+
- Randomly samples from X, y
|
| 181 |
+
|
| 182 |
+
- Plots sequences grouped by class (0 = stable, 1 = periodic, 2 = chaotic)
|
| 183 |
+
|
| 184 |
+
Helps us verify that the labels match the visual behavior
|
| 185 |
+
"""
|
| 186 |
+
|
| 187 |
+
import matplotlib.pyplot as plt
|
| 188 |
+
import numpy as np
|
| 189 |
+
|
| 190 |
+
# Helper: Plot N random sequences for a given class
|
| 191 |
+
def plot_class_samples(X: np.ndarray, y: np.ndarray, target_label: int, n_samples: int = 5):
|
| 192 |
+
"""
|
| 193 |
+
Plots sample sequences from a specified class.
|
| 194 |
+
|
| 195 |
+
Args:
|
| 196 |
+
X (np.ndarray): Dataset of sequences.
|
| 197 |
+
y (np.ndarray): Labels (0=stable, 1=periodic, 2=chaotic).
|
| 198 |
+
target_label (int): Class to visualize.
|
| 199 |
+
n_samples (int): Number of sequences to plot.
|
| 200 |
+
"""
|
| 201 |
+
indices = np.where(y == target_label)[0]
|
| 202 |
+
chosen = np.random.choice(indices, n_samples, replace=False)
|
| 203 |
+
|
| 204 |
+
plt.figure(figsize=(12, 6))
|
| 205 |
+
for i, idx in enumerate(chosen):
|
| 206 |
+
plt.plot(X[idx], label=f"Sample {i+1}")
|
| 207 |
+
|
| 208 |
+
regime_name = ["Stable", "Periodic", "Chaotic"][target_label]
|
| 209 |
+
plt.title(f"{regime_name} Regime Samples (Label = {target_label})")
|
| 210 |
+
plt.xlabel("Time Step")
|
| 211 |
+
plt.ylabel("x")
|
| 212 |
+
plt.grid(True)
|
| 213 |
+
plt.legend()
|
| 214 |
+
plt.show()
|
| 215 |
+
|
| 216 |
+
# View class 0 (stable)
|
| 217 |
+
plot_class_samples(X, y, target_label=0)
|
| 218 |
+
|
| 219 |
+
# View class 1 (periodic)
|
| 220 |
+
plot_class_samples(X, y, target_label=1)
|
| 221 |
+
|
| 222 |
+
# View class 2 (chaotic)
|
| 223 |
+
plot_class_samples(X, y, target_label=2)
|
| 224 |
+
|
| 225 |
+
"""Stable: Sequences that flatten out
|
| 226 |
+
|
| 227 |
+
Periodic: Repeating waveforms (2, 4, 8 points)
|
| 228 |
+
|
| 229 |
+
Chaotic: No repeating pattern, jittery
|
| 230 |
+
|
| 231 |
+
Each of these sequences looks completely different — even though they're all generated by the same equation.
|
| 232 |
+
|
| 233 |
+
No fixed pattern. No periodic rhythm. Just deterministic unpredictability.
|
| 234 |
+
|
| 235 |
+
But it's not random — it's chaotic: sensitive to initial conditions, governed by internal structure (nonlinear dynamics).
|
| 236 |
+
|
| 237 |
+
Split X, y into training and testing sets
|
| 238 |
+
|
| 239 |
+
Normalize (optional, but improves convergence)
|
| 240 |
+
|
| 241 |
+
Convert to PyTorch tensors
|
| 242 |
+
|
| 243 |
+
Create DataLoaders for training
|
| 244 |
+
"""
|
| 245 |
+
|
| 246 |
+
import torch
|
| 247 |
+
from torch.utils.data import TensorDataset, DataLoader
|
| 248 |
+
from sklearn.model_selection import train_test_split
|
| 249 |
+
from sklearn.preprocessing import StandardScaler
|
| 250 |
+
|
| 251 |
+
# Step 1: Split the dataset
|
| 252 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 253 |
+
X, y, test_size=0.2, stratify=y, random_state=42
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
# Step 2: Normalize sequences (standardization: mean=0, std=1)
|
| 257 |
+
scaler = StandardScaler()
|
| 258 |
+
X_train_scaled = scaler.fit_transform(X_train) # Fit only on train
|
| 259 |
+
X_test_scaled = scaler.transform(X_test)
|
| 260 |
+
|
| 261 |
+
# Step 3: Convert to PyTorch tensors
|
| 262 |
+
X_train_tensor = torch.tensor(X_train_scaled, dtype=torch.float32)
|
| 263 |
+
y_train_tensor = torch.tensor(y_train, dtype=torch.long)
|
| 264 |
+
|
| 265 |
+
X_test_tensor = torch.tensor(X_test_scaled, dtype=torch.float32)
|
| 266 |
+
y_test_tensor = torch.tensor(y_test, dtype=torch.long)
|
| 267 |
+
|
| 268 |
+
# Step 4: Create TensorDatasets and DataLoaders
|
| 269 |
+
batch_size = 64
|
| 270 |
+
|
| 271 |
+
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
|
| 272 |
+
test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
|
| 273 |
+
|
| 274 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
| 275 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size)
|
| 276 |
+
|
| 277 |
+
"""This CNN will:
|
| 278 |
+
|
| 279 |
+
- Take a 1D time series (length 100)
|
| 280 |
+
|
| 281 |
+
- Apply temporal convolutions to learn patterns
|
| 282 |
+
|
| 283 |
+
- Use global pooling to summarize features
|
| 284 |
+
|
| 285 |
+
- Output one of 3 regime classes
|
| 286 |
+
"""
|
| 287 |
+
|
| 288 |
+
import torch.nn as nn
|
| 289 |
+
import torch.nn.functional as F
|
| 290 |
+
|
| 291 |
+
# 1D CNN model for sequence classification
|
| 292 |
+
class ChaosCNN(nn.Module):
|
| 293 |
+
def __init__(self, input_length=100, num_classes=3):
|
| 294 |
+
super(ChaosCNN, self).__init__()
|
| 295 |
+
|
| 296 |
+
# Feature extractors
|
| 297 |
+
self.conv1 = nn.Conv1d(in_channels=1, out_channels=32, kernel_size=5, padding=2)
|
| 298 |
+
self.bn1 = nn.BatchNorm1d(32)
|
| 299 |
+
|
| 300 |
+
self.conv2 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=5, padding=2)
|
| 301 |
+
self.bn2 = nn.BatchNorm1d(64)
|
| 302 |
+
|
| 303 |
+
# Global average pooling
|
| 304 |
+
self.global_pool = nn.AdaptiveAvgPool1d(1) # Outputs shape: (batch_size, channels, 1)
|
| 305 |
+
|
| 306 |
+
# Final classifier
|
| 307 |
+
self.fc = nn.Linear(64, num_classes)
|
| 308 |
+
|
| 309 |
+
def forward(self, x):
|
| 310 |
+
# x shape: (batch_size, sequence_length)
|
| 311 |
+
x = x.unsqueeze(1) # Add channel dim (batch_size, 1, sequence_length)
|
| 312 |
+
|
| 313 |
+
x = F.relu(self.bn1(self.conv1(x))) # (batch_size, 32, seq_len)
|
| 314 |
+
x = F.relu(self.bn2(self.conv2(x))) # (batch_size, 64, seq_len)
|
| 315 |
+
|
| 316 |
+
x = self.global_pool(x).squeeze(2) # (batch_size, 64)
|
| 317 |
+
out = self.fc(x) # (batch_size, num_classes)
|
| 318 |
+
return out
|
| 319 |
+
|
| 320 |
+
"""Conv1d: Extracts local patterns across the time dimension
|
| 321 |
+
|
| 322 |
+
BatchNorm1d: Stabilizes training and speeds up convergence
|
| 323 |
+
|
| 324 |
+
AdaptiveAvgPool1d: Summarizes the sequence into global stats
|
| 325 |
+
|
| 326 |
+
Linear: Final decision layer for 3-class classification
|
| 327 |
+
"""
|
| 328 |
+
|
| 329 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 330 |
+
model = ChaosCNN().to(device)
|
| 331 |
+
|
| 332 |
+
# Define loss and optimizer
|
| 333 |
+
criterion = nn.CrossEntropyLoss()
|
| 334 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
| 335 |
+
|
| 336 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 337 |
+
import seaborn as sns
|
| 338 |
+
import matplotlib.pyplot as plt
|
| 339 |
+
|
| 340 |
+
# Training function
|
| 341 |
+
def train_model(model, train_loader, test_loader, criterion, optimizer, device, epochs=15):
|
| 342 |
+
train_losses, test_accuracies = [], []
|
| 343 |
+
|
| 344 |
+
for epoch in range(epochs):
|
| 345 |
+
model.train()
|
| 346 |
+
running_loss = 0.0
|
| 347 |
+
|
| 348 |
+
for X_batch, y_batch in train_loader:
|
| 349 |
+
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
|
| 350 |
+
|
| 351 |
+
optimizer.zero_grad()
|
| 352 |
+
outputs = model(X_batch)
|
| 353 |
+
loss = criterion(outputs, y_batch)
|
| 354 |
+
loss.backward()
|
| 355 |
+
optimizer.step()
|
| 356 |
+
|
| 357 |
+
running_loss += loss.item() * X_batch.size(0)
|
| 358 |
+
|
| 359 |
+
avg_loss = running_loss / len(train_loader.dataset)
|
| 360 |
+
train_losses.append(avg_loss)
|
| 361 |
+
|
| 362 |
+
# Evaluation after each epoch
|
| 363 |
+
model.eval()
|
| 364 |
+
all_preds, all_labels = [], []
|
| 365 |
+
|
| 366 |
+
with torch.no_grad():
|
| 367 |
+
for X_batch, y_batch in test_loader:
|
| 368 |
+
X_batch = X_batch.to(device)
|
| 369 |
+
outputs = model(X_batch)
|
| 370 |
+
preds = outputs.argmax(dim=1).cpu().numpy()
|
| 371 |
+
all_preds.extend(preds)
|
| 372 |
+
all_labels.extend(y_batch.numpy())
|
| 373 |
+
|
| 374 |
+
acc = accuracy_score(all_labels, all_preds)
|
| 375 |
+
test_accuracies.append(acc)
|
| 376 |
+
|
| 377 |
+
print(f"Epoch {epoch+1}/{epochs} - Loss: {avg_loss:.4f} - Test Accuracy: {acc:.4f}")
|
| 378 |
+
|
| 379 |
+
return train_losses, test_accuracies
|
| 380 |
+
|
| 381 |
+
# Train the model
|
| 382 |
+
train_losses, test_accuracies = train_model(
|
| 383 |
+
model, train_loader, test_loader, criterion, optimizer, device, epochs=15
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
plt.figure(figsize=(12, 4))
|
| 387 |
+
|
| 388 |
+
plt.subplot(1, 2, 1)
|
| 389 |
+
plt.plot(train_losses, label="Train Loss")
|
| 390 |
+
plt.xlabel("Epoch")
|
| 391 |
+
plt.ylabel("Loss")
|
| 392 |
+
plt.title("Training Loss Over Time")
|
| 393 |
+
plt.grid(True)
|
| 394 |
+
|
| 395 |
+
plt.subplot(1, 2, 2)
|
| 396 |
+
plt.plot(test_accuracies, label="Test Accuracy", color='green')
|
| 397 |
+
plt.xlabel("Epoch")
|
| 398 |
+
plt.ylabel("Accuracy")
|
| 399 |
+
plt.title("Test Accuracy Over Time")
|
| 400 |
+
plt.grid(True)
|
| 401 |
+
|
| 402 |
+
plt.tight_layout()
|
| 403 |
+
plt.show()
|
| 404 |
+
|
| 405 |
+
# Final performance evaluation
|
| 406 |
+
model.eval()
|
| 407 |
+
y_true, y_pred = [], []
|
| 408 |
+
|
| 409 |
+
with torch.no_grad():
|
| 410 |
+
for X_batch, y_batch in test_loader:
|
| 411 |
+
X_batch = X_batch.to(device)
|
| 412 |
+
outputs = model(X_batch)
|
| 413 |
+
preds = outputs.argmax(dim=1).cpu().numpy()
|
| 414 |
+
y_pred.extend(preds)
|
| 415 |
+
y_true.extend(y_batch.numpy())
|
| 416 |
+
|
| 417 |
+
# Confusion matrix
|
| 418 |
+
cm = confusion_matrix(y_true, y_pred)
|
| 419 |
+
labels = ["Stable", "Periodic", "Chaotic"]
|
| 420 |
+
|
| 421 |
+
plt.figure(figsize=(6, 5))
|
| 422 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=labels, yticklabels=labels)
|
| 423 |
+
plt.title("Confusion Matrix")
|
| 424 |
+
plt.xlabel("Predicted")
|
| 425 |
+
plt.ylabel("Actual")
|
| 426 |
+
plt.show()
|
| 427 |
+
|
| 428 |
+
# Classification report
|
| 429 |
+
print(classification_report(y_true, y_pred, target_names=labels))
|
| 430 |
+
|
| 431 |
+
"""Input an r value (between 2.5 and 4.0)
|
| 432 |
+
|
| 433 |
+
Generate a logistic map sequence
|
| 434 |
+
|
| 435 |
+
Feed it to your trained model
|
| 436 |
+
|
| 437 |
+
Predict the regime
|
| 438 |
+
|
| 439 |
+
Plot the sequence and overlay the prediction
|
| 440 |
+
"""
|
| 441 |
+
|
| 442 |
+
# Label map for decoding
|
| 443 |
+
label_map = {0: "Stable", 1: "Periodic", 2: "Chaotic"}
|
| 444 |
+
|
| 445 |
+
def predict_regime(r_value: float, model, scaler, device, sequence_length=100):
|
| 446 |
+
"""
|
| 447 |
+
Generates a logistic sequence for a given r, feeds to model, and predicts regime.
|
| 448 |
+
"""
|
| 449 |
+
assert 2.5 <= r_value <= 4.0, "r must be between 2.5 and 4.0"
|
| 450 |
+
|
| 451 |
+
# Generate sequence
|
| 452 |
+
x0 = np.random.uniform(0.1, 0.9)
|
| 453 |
+
sequence = logistic_map(x0, r_value, sequence_length).reshape(1, -1)
|
| 454 |
+
|
| 455 |
+
# Standardize using training scaler
|
| 456 |
+
sequence_scaled = scaler.transform(sequence)
|
| 457 |
+
|
| 458 |
+
# Convert to tensor
|
| 459 |
+
sequence_tensor = torch.tensor(sequence_scaled, dtype=torch.float32).to(device)
|
| 460 |
+
|
| 461 |
+
# Model inference
|
| 462 |
+
model.eval()
|
| 463 |
+
with torch.no_grad():
|
| 464 |
+
output = model(sequence_tensor)
|
| 465 |
+
pred_class = torch.argmax(output, dim=1).item()
|
| 466 |
+
|
| 467 |
+
# Plot
|
| 468 |
+
plt.figure(figsize=(10, 4))
|
| 469 |
+
plt.plot(sequence.flatten(), label=f"r = {r_value}")
|
| 470 |
+
plt.title(f"Predicted Regime: {label_map[pred_class]} (Class {pred_class})")
|
| 471 |
+
plt.xlabel("Time Step")
|
| 472 |
+
plt.ylabel("x")
|
| 473 |
+
plt.grid(True)
|
| 474 |
+
plt.legend()
|
| 475 |
+
plt.show()
|
| 476 |
+
|
| 477 |
+
return label_map[pred_class]
|
| 478 |
+
|
| 479 |
+
predict_regime(2.6, model, scaler, device)
|
| 480 |
+
predict_regime(3.3, model, scaler, device)
|
| 481 |
+
predict_regime(3.95, model, scaler, device)
|
| 482 |
+
|
| 483 |
+
import gradio as gr
|
| 484 |
+
|
| 485 |
+
# Prediction function for Gradio
|
| 486 |
+
def classify_sequence(r_value):
|
| 487 |
+
x0 = np.random.uniform(0.1, 0.9)
|
| 488 |
+
sequence = logistic_map(x0, r_value, 100).reshape(1, -1)
|
| 489 |
+
sequence_scaled = scaler.transform(sequence)
|
| 490 |
+
sequence_tensor = torch.tensor(sequence_scaled, dtype=torch.float32).to(device)
|
| 491 |
+
|
| 492 |
+
model.eval()
|
| 493 |
+
with torch.no_grad():
|
| 494 |
+
output = model(sequence_tensor)
|
| 495 |
+
pred_class = torch.argmax(output, dim=1).item()
|
| 496 |
+
|
| 497 |
+
# Plot the sequence
|
| 498 |
+
fig, ax = plt.subplots(figsize=(6, 3))
|
| 499 |
+
ax.plot(sequence.flatten())
|
| 500 |
+
ax.set_title(f"Logistic Map Sequence (r = {r_value})")
|
| 501 |
+
ax.set_xlabel("Time Step")
|
| 502 |
+
ax.set_ylabel("x")
|
| 503 |
+
ax.grid(True)
|
| 504 |
+
|
| 505 |
+
return fig, label_map[pred_class]
|
| 506 |
+
|
| 507 |
+
# Gradio UI
|
| 508 |
+
interface = gr.Interface(
|
| 509 |
+
fn=classify_sequence,
|
| 510 |
+
inputs=gr.Slider(2.5, 4.0, step=0.01, label="r (growth parameter)"),
|
| 511 |
+
outputs=[
|
| 512 |
+
gr.Plot(label="Sequence Plot"),
|
| 513 |
+
gr.Label(label="Predicted Regime")
|
| 514 |
+
],
|
| 515 |
+
title="🌀 Chaos Classifier: Logistic Map Regime Detector",
|
| 516 |
+
description="Move the slider to choose an r-value and visualize the predicted regime: Stable, Periodic, or Chaotic."
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
# Launch locally or in HF Space
|
| 520 |
+
interface.launch(share=True)
|