Upload inference_example.ipynb
Browse files- inference_example.ipynb +140 -0
inference_example.ipynb
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"from typing import List, Union\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"import torch\n",
|
| 12 |
+
"from transformers import AutoModel"
|
| 13 |
+
]
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"cell_type": "markdown",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"source": [
|
| 19 |
+
"# Load model"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"cell_type": "code",
|
| 24 |
+
"execution_count": null,
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"outputs": [],
|
| 27 |
+
"source": [
|
| 28 |
+
"model = AutoModel.from_pretrained(\"InstaDeepAI/segment_borzoi\", trust_remote_code=True)"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "markdown",
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"source": [
|
| 35 |
+
"# Define useful functions"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": 3,
|
| 41 |
+
"metadata": {},
|
| 42 |
+
"outputs": [],
|
| 43 |
+
"source": [
|
| 44 |
+
"def encode_sequences(sequences: Union[str, List[str]]) -> torch.Tensor:\n",
|
| 45 |
+
" \"\"\"\n",
|
| 46 |
+
" One-hot encode a DNA sequence or a batch of DNA sequences.\n",
|
| 47 |
+
"\n",
|
| 48 |
+
" Args:\n",
|
| 49 |
+
" sequences (Union[str, List[str]]): Either a DNA sequence or a list of DNA sequences\n",
|
| 50 |
+
"\n",
|
| 51 |
+
" Returns:\n",
|
| 52 |
+
" torch.Tensor: One-hot encoded\n",
|
| 53 |
+
" - If `sequences` is just one sequence (str), output shape is (196608, 4)\n",
|
| 54 |
+
" - If `sequences` is a list of sequences, output shape is (num_sequences, 196608, 4)\n",
|
| 55 |
+
" \n",
|
| 56 |
+
" \"\"\"\n",
|
| 57 |
+
" one_hot_map = {\n",
|
| 58 |
+
" 'a': torch.tensor([1., 0., 0., 0.]),\n",
|
| 59 |
+
" 'c': torch.tensor([0., 1., 0., 0.]),\n",
|
| 60 |
+
" 'g': torch.tensor([0., 0., 1., 0.]),\n",
|
| 61 |
+
" 't': torch.tensor([0., 0., 0., 1.]),\n",
|
| 62 |
+
" 'n': torch.tensor([0., 0., 0., 0.]),\n",
|
| 63 |
+
" 'A': torch.tensor([1., 0., 0., 0.]),\n",
|
| 64 |
+
" 'C': torch.tensor([0., 1., 0., 0.]),\n",
|
| 65 |
+
" 'G': torch.tensor([0., 0., 1., 0.]),\n",
|
| 66 |
+
" 'T': torch.tensor([0., 0., 0., 1.]),\n",
|
| 67 |
+
" 'N': torch.tensor([0., 0., 0., 0.])\n",
|
| 68 |
+
" }\n",
|
| 69 |
+
"\n",
|
| 70 |
+
" def encode_sequence(seq_str):\n",
|
| 71 |
+
" one_hot_list = []\n",
|
| 72 |
+
" for char in seq_str:\n",
|
| 73 |
+
" one_hot_vector = one_hot_map.get(char, torch.tensor([0.25, 0.25, 0.25, 0.25]))\n",
|
| 74 |
+
" one_hot_list.append(one_hot_vector)\n",
|
| 75 |
+
" return torch.stack(one_hot_list)\n",
|
| 76 |
+
"\n",
|
| 77 |
+
" if isinstance(sequences, list):\n",
|
| 78 |
+
" return torch.stack([encode_sequence(seq) for seq in sequences])\n",
|
| 79 |
+
" else:\n",
|
| 80 |
+
" return encode_sequence(sequences)"
|
| 81 |
+
]
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"cell_type": "markdown",
|
| 85 |
+
"metadata": {},
|
| 86 |
+
"source": [
|
| 87 |
+
"# Inference example"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "code",
|
| 92 |
+
"execution_count": 4,
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"outputs": [],
|
| 95 |
+
"source": [
|
| 96 |
+
"sequences = [\"A\"*524_288, \"G\"*524_288]\n",
|
| 97 |
+
"one_hot_encoding = encode_sequences(sequences)"
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"cell_type": "code",
|
| 102 |
+
"execution_count": 5,
|
| 103 |
+
"metadata": {},
|
| 104 |
+
"outputs": [],
|
| 105 |
+
"source": [
|
| 106 |
+
"preds = model(one_hot_encoding)"
|
| 107 |
+
]
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"cell_type": "code",
|
| 111 |
+
"execution_count": null,
|
| 112 |
+
"metadata": {},
|
| 113 |
+
"outputs": [],
|
| 114 |
+
"source": [
|
| 115 |
+
"print(preds['logits'])"
|
| 116 |
+
]
|
| 117 |
+
}
|
| 118 |
+
],
|
| 119 |
+
"metadata": {
|
| 120 |
+
"kernelspec": {
|
| 121 |
+
"display_name": "genomics-research-env",
|
| 122 |
+
"language": "python",
|
| 123 |
+
"name": "python3"
|
| 124 |
+
},
|
| 125 |
+
"language_info": {
|
| 126 |
+
"codemirror_mode": {
|
| 127 |
+
"name": "ipython",
|
| 128 |
+
"version": 3
|
| 129 |
+
},
|
| 130 |
+
"file_extension": ".py",
|
| 131 |
+
"mimetype": "text/x-python",
|
| 132 |
+
"name": "python",
|
| 133 |
+
"nbconvert_exporter": "python",
|
| 134 |
+
"pygments_lexer": "ipython3",
|
| 135 |
+
"version": "3.11.10"
|
| 136 |
+
}
|
| 137 |
+
},
|
| 138 |
+
"nbformat": 4,
|
| 139 |
+
"nbformat_minor": 2
|
| 140 |
+
}
|