|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import Any, Dict, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  |  | 
					
						
						|  | from diffusers.configuration_utils import ConfigMixin, register_to_config | 
					
						
						|  | from diffusers.loaders import PeftAdapterMixin, FromOriginalModelMixin | 
					
						
						|  | from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers | 
					
						
						|  | from diffusers.models.attention_processor import AttentionProcessor | 
					
						
						|  | from diffusers.models.cache_utils import CacheMixin | 
					
						
						|  | from diffusers.models.controlnets.controlnet import zero_module | 
					
						
						|  | from diffusers.models.modeling_outputs import Transformer2DModelOutput | 
					
						
						|  | from diffusers.models.modeling_utils import ModelMixin | 
					
						
						|  |  | 
					
						
						|  | from transformer_qwenimage import QwenImageTransformerBlock, QwenTimestepProjEmbeddings, QwenEmbedRope, RMSNorm | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class QwenImageControlNetOutput(BaseOutput): | 
					
						
						|  | controlnet_block_samples: Tuple[torch.Tensor] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QwenImageControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin): | 
					
						
						|  | _supports_gradient_checkpointing = True | 
					
						
						|  |  | 
					
						
						|  | @register_to_config | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | patch_size: int = 2, | 
					
						
						|  | in_channels: int = 64, | 
					
						
						|  | out_channels: Optional[int] = 16, | 
					
						
						|  | num_layers: int = 60, | 
					
						
						|  | attention_head_dim: int = 128, | 
					
						
						|  | num_attention_heads: int = 24, | 
					
						
						|  | joint_attention_dim: int = 3584, | 
					
						
						|  | axes_dims_rope: Tuple[int, int, int] = (16, 56, 56), | 
					
						
						|  | extra_condition_channels: int = 0, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.out_channels = out_channels or in_channels | 
					
						
						|  | self.inner_dim = num_attention_heads * attention_head_dim | 
					
						
						|  |  | 
					
						
						|  | self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True) | 
					
						
						|  |  | 
					
						
						|  | self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim) | 
					
						
						|  |  | 
					
						
						|  | self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6) | 
					
						
						|  |  | 
					
						
						|  | self.img_in = nn.Linear(in_channels, self.inner_dim) | 
					
						
						|  | self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim) | 
					
						
						|  |  | 
					
						
						|  | self.transformer_blocks = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | QwenImageTransformerBlock( | 
					
						
						|  | dim=self.inner_dim, | 
					
						
						|  | num_attention_heads=num_attention_heads, | 
					
						
						|  | attention_head_dim=attention_head_dim, | 
					
						
						|  | ) | 
					
						
						|  | for _ in range(num_layers) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.controlnet_blocks = nn.ModuleList([]) | 
					
						
						|  | for _ in range(len(self.transformer_blocks)): | 
					
						
						|  | self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim))) | 
					
						
						|  | self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim)) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  |  | 
					
						
						|  | def attn_processors(self): | 
					
						
						|  | r""" | 
					
						
						|  | Returns: | 
					
						
						|  | `dict` of attention processors: A dictionary containing all attention processors used in the model with | 
					
						
						|  | indexed by its weight name. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | processors = {} | 
					
						
						|  |  | 
					
						
						|  | def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | 
					
						
						|  | if hasattr(module, "get_processor"): | 
					
						
						|  | processors[f"{name}.processor"] = module.get_processor() | 
					
						
						|  |  | 
					
						
						|  | for sub_name, child in module.named_children(): | 
					
						
						|  | fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | 
					
						
						|  |  | 
					
						
						|  | return processors | 
					
						
						|  |  | 
					
						
						|  | for name, module in self.named_children(): | 
					
						
						|  | fn_recursive_add_processors(name, module, processors) | 
					
						
						|  |  | 
					
						
						|  | return processors | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_attn_processor(self, processor): | 
					
						
						|  | r""" | 
					
						
						|  | Sets the attention processor to use to compute attention. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | 
					
						
						|  | The instantiated processor class or a dictionary of processor classes that will be set as the processor | 
					
						
						|  | for **all** `Attention` layers. | 
					
						
						|  |  | 
					
						
						|  | If `processor` is a dict, the key needs to define the path to the corresponding cross attention | 
					
						
						|  | processor. This is strongly recommended when setting trainable attention processors. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | count = len(self.attn_processors.keys()) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(processor, dict) and len(processor) != count: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | 
					
						
						|  | f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | 
					
						
						|  | if hasattr(module, "set_processor"): | 
					
						
						|  | if not isinstance(processor, dict): | 
					
						
						|  | module.set_processor(processor) | 
					
						
						|  | else: | 
					
						
						|  | module.set_processor(processor.pop(f"{name}.processor")) | 
					
						
						|  |  | 
					
						
						|  | for sub_name, child in module.named_children(): | 
					
						
						|  | fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | 
					
						
						|  |  | 
					
						
						|  | for name, module in self.named_children(): | 
					
						
						|  | fn_recursive_attn_processor(name, module, processor) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def from_transformer( | 
					
						
						|  | cls, | 
					
						
						|  | transformer, | 
					
						
						|  | num_layers: int = 5, | 
					
						
						|  | attention_head_dim: int = 128, | 
					
						
						|  | num_attention_heads: int = 24, | 
					
						
						|  | load_weights_from_transformer=True, | 
					
						
						|  | extra_condition_channels: int = 0, | 
					
						
						|  | ): | 
					
						
						|  | config = dict(transformer.config) | 
					
						
						|  | config["num_layers"] = num_layers | 
					
						
						|  | config["attention_head_dim"] = attention_head_dim | 
					
						
						|  | config["num_attention_heads"] = num_attention_heads | 
					
						
						|  | config["extra_condition_channels"] = extra_condition_channels | 
					
						
						|  |  | 
					
						
						|  | controlnet = cls.from_config(config) | 
					
						
						|  |  | 
					
						
						|  | if load_weights_from_transformer: | 
					
						
						|  | controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict()) | 
					
						
						|  | controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict()) | 
					
						
						|  | controlnet.img_in.load_state_dict(transformer.img_in.state_dict()) | 
					
						
						|  | controlnet.txt_in.load_state_dict(transformer.txt_in.state_dict()) | 
					
						
						|  | controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False) | 
					
						
						|  | controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder) | 
					
						
						|  |  | 
					
						
						|  | return controlnet | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | controlnet_cond: torch.Tensor, | 
					
						
						|  | conditioning_scale: float = 1.0, | 
					
						
						|  | encoder_hidden_states: torch.Tensor = None, | 
					
						
						|  | encoder_hidden_states_mask: torch.Tensor = None, | 
					
						
						|  | timestep: torch.LongTensor = None, | 
					
						
						|  | img_shapes: Optional[List[Tuple[int, int, int]]] = None, | 
					
						
						|  | txt_seq_lens: Optional[List[int]] = None, | 
					
						
						|  | joint_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | 
					
						
						|  | """ | 
					
						
						|  | The [`FluxTransformer2DModel`] forward method. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): | 
					
						
						|  | Input `hidden_states`. | 
					
						
						|  | controlnet_cond (`torch.Tensor`): | 
					
						
						|  | The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  | conditioning_scale (`float`, defaults to `1.0`): | 
					
						
						|  | The scale factor for ControlNet outputs. | 
					
						
						|  | encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): | 
					
						
						|  | Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | 
					
						
						|  | pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected | 
					
						
						|  | from the embeddings of input conditions. | 
					
						
						|  | timestep ( `torch.LongTensor`): | 
					
						
						|  | Used to indicate denoising step. | 
					
						
						|  | block_controlnet_hidden_states: (`list` of `torch.Tensor`): | 
					
						
						|  | A list of tensors that if specified are added to the residuals of transformer blocks. | 
					
						
						|  | joint_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | 
					
						
						|  | `self.processor` in | 
					
						
						|  | [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | 
					
						
						|  | tuple. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | 
					
						
						|  | `tuple` where the first element is the sample tensor. | 
					
						
						|  | """ | 
					
						
						|  | if joint_attention_kwargs is not None: | 
					
						
						|  | joint_attention_kwargs = joint_attention_kwargs.copy() | 
					
						
						|  | lora_scale = joint_attention_kwargs.pop("scale", 1.0) | 
					
						
						|  | else: | 
					
						
						|  | lora_scale = 1.0 | 
					
						
						|  |  | 
					
						
						|  | if USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | scale_lora_layers(self, lora_scale) | 
					
						
						|  | else: | 
					
						
						|  | if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: | 
					
						
						|  | logger.warning( | 
					
						
						|  | "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = self.img_in(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond) | 
					
						
						|  |  | 
					
						
						|  | temb = self.time_text_embed(timestep, hidden_states) | 
					
						
						|  |  | 
					
						
						|  | image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device) | 
					
						
						|  |  | 
					
						
						|  | timestep = timestep.to(hidden_states.dtype) | 
					
						
						|  | encoder_hidden_states = self.txt_norm(encoder_hidden_states) | 
					
						
						|  | encoder_hidden_states = self.txt_in(encoder_hidden_states) | 
					
						
						|  |  | 
					
						
						|  | block_samples = () | 
					
						
						|  | for index_block, block in enumerate(self.transformer_blocks): | 
					
						
						|  | if torch.is_grad_enabled() and self.gradient_checkpointing: | 
					
						
						|  | encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( | 
					
						
						|  | block, | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_hidden_states_mask, | 
					
						
						|  | temb, | 
					
						
						|  | image_rotary_emb, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | encoder_hidden_states, hidden_states = block( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_hidden_states_mask=encoder_hidden_states_mask, | 
					
						
						|  | temb=temb, | 
					
						
						|  | image_rotary_emb=image_rotary_emb, | 
					
						
						|  | joint_attention_kwargs=joint_attention_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | block_samples = block_samples + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | controlnet_block_samples = () | 
					
						
						|  | for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks): | 
					
						
						|  | block_sample = controlnet_block(block_sample) | 
					
						
						|  | controlnet_block_samples = controlnet_block_samples + (block_sample,) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples] | 
					
						
						|  | controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples | 
					
						
						|  |  | 
					
						
						|  | if USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | unscale_lora_layers(self, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (controlnet_block_samples) | 
					
						
						|  |  | 
					
						
						|  | return QwenImageControlNetOutput( | 
					
						
						|  | controlnet_block_samples=controlnet_block_samples, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QwenImageMultiControlNetModel(ModelMixin): | 
					
						
						|  | r""" | 
					
						
						|  | `QwenImageMultiControlNetModel` wrapper class for Multi-QwenImageControlNetModel | 
					
						
						|  |  | 
					
						
						|  | This module is a wrapper for multiple instances of the `QwenImageControlNetModel`. The `forward()` API is designed to be | 
					
						
						|  | compatible with `QwenImageControlNetModel`. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | controlnets (`List[QwenImageControlNetModel]`): | 
					
						
						|  | Provides additional conditioning to the unet during the denoising process. You must set multiple | 
					
						
						|  | `QwenImageControlNetModel` as a list. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, controlnets): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.nets = nn.ModuleList(controlnets) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | controlnet_cond: List[torch.tensor], | 
					
						
						|  | conditioning_scale: List[float], | 
					
						
						|  | encoder_hidden_states: torch.Tensor = None, | 
					
						
						|  | encoder_hidden_states_mask: torch.Tensor = None, | 
					
						
						|  | timestep: torch.LongTensor = None, | 
					
						
						|  | img_shapes: Optional[List[Tuple[int, int, int]]] = None, | 
					
						
						|  | txt_seq_lens: Optional[List[int]] = None, | 
					
						
						|  | joint_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ) -> Union[QwenImageControlNetOutput, Tuple]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(self.nets) == 1: | 
					
						
						|  | controlnet = self.nets[0] | 
					
						
						|  |  | 
					
						
						|  | for i, (image, scale) in enumerate(zip(controlnet_cond, conditioning_scale)): | 
					
						
						|  | block_samples = controlnet( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | controlnet_cond=image, | 
					
						
						|  | conditioning_scale=scale, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_hidden_states_mask=encoder_hidden_states_mask, | 
					
						
						|  | timestep=timestep, | 
					
						
						|  | img_shapes=img_shapes, | 
					
						
						|  | txt_seq_lens=txt_seq_lens, | 
					
						
						|  | joint_attention_kwargs=joint_attention_kwargs, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == 0: | 
					
						
						|  | control_block_samples = block_samples | 
					
						
						|  | else: | 
					
						
						|  | if block_samples is not None and control_block_samples is not None: | 
					
						
						|  | control_block_samples = [ | 
					
						
						|  | control_block_sample + block_sample | 
					
						
						|  | for control_block_sample, block_sample in zip(control_block_samples, block_samples) | 
					
						
						|  | ] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("QwenImageMultiControlNetModel only supports controlnet-union now.") | 
					
						
						|  |  | 
					
						
						|  | return control_block_samples |