|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | import numpy as np | 
					
						
						|  | from typing import Any, Dict, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  |  | 
					
						
						|  | from diffusers.configuration_utils import ConfigMixin, register_to_config | 
					
						
						|  | from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin | 
					
						
						|  | from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | 
					
						
						|  | from diffusers.utils.torch_utils import maybe_allow_in_graph | 
					
						
						|  | from diffusers.models.attention import FeedForward | 
					
						
						|  | from diffusers.models.attention_dispatch import dispatch_attention_fn | 
					
						
						|  | from diffusers.models.attention_processor import Attention | 
					
						
						|  | from diffusers.models.cache_utils import CacheMixin | 
					
						
						|  | from diffusers.models.embeddings import TimestepEmbedding, Timesteps | 
					
						
						|  | from diffusers.models.modeling_outputs import Transformer2DModelOutput | 
					
						
						|  | from diffusers.models.modeling_utils import ModelMixin | 
					
						
						|  | from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_timestep_embedding( | 
					
						
						|  | timesteps: torch.Tensor, | 
					
						
						|  | embedding_dim: int, | 
					
						
						|  | flip_sin_to_cos: bool = False, | 
					
						
						|  | downscale_freq_shift: float = 1, | 
					
						
						|  | scale: float = 1, | 
					
						
						|  | max_period: int = 10000, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. | 
					
						
						|  |  | 
					
						
						|  | Args | 
					
						
						|  | timesteps (torch.Tensor): | 
					
						
						|  | a 1-D Tensor of N indices, one per batch element. These may be fractional. | 
					
						
						|  | embedding_dim (int): | 
					
						
						|  | the dimension of the output. | 
					
						
						|  | flip_sin_to_cos (bool): | 
					
						
						|  | Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False) | 
					
						
						|  | downscale_freq_shift (float): | 
					
						
						|  | Controls the delta between frequencies between dimensions | 
					
						
						|  | scale (float): | 
					
						
						|  | Scaling factor applied to the embeddings. | 
					
						
						|  | max_period (int): | 
					
						
						|  | Controls the maximum frequency of the embeddings | 
					
						
						|  | Returns | 
					
						
						|  | torch.Tensor: an [N x dim] Tensor of positional embeddings. | 
					
						
						|  | """ | 
					
						
						|  | assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" | 
					
						
						|  |  | 
					
						
						|  | half_dim = embedding_dim // 2 | 
					
						
						|  | exponent = -math.log(max_period) * torch.arange( | 
					
						
						|  | start=0, end=half_dim, dtype=torch.float32, device=timesteps.device | 
					
						
						|  | ) | 
					
						
						|  | exponent = exponent / (half_dim - downscale_freq_shift) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.exp(exponent).to(timesteps.dtype) | 
					
						
						|  | emb = timesteps[:, None].float() * emb[None, :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | emb = scale * emb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if flip_sin_to_cos: | 
					
						
						|  | emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if embedding_dim % 2 == 1: | 
					
						
						|  | emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | 
					
						
						|  | return emb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_emb_qwen( | 
					
						
						|  | x: torch.Tensor, | 
					
						
						|  | freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], | 
					
						
						|  | use_real: bool = True, | 
					
						
						|  | use_real_unbind_dim: int = -1, | 
					
						
						|  | ) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  | """ | 
					
						
						|  | Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings | 
					
						
						|  | to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are | 
					
						
						|  | reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting | 
					
						
						|  | tensors contain rotary embeddings and are returned as real tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | x (`torch.Tensor`): | 
					
						
						|  | Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply | 
					
						
						|  | freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. | 
					
						
						|  | """ | 
					
						
						|  | if use_real: | 
					
						
						|  | cos, sin = freqs_cis | 
					
						
						|  | cos = cos[None, None] | 
					
						
						|  | sin = sin[None, None] | 
					
						
						|  | cos, sin = cos.to(x.device), sin.to(x.device) | 
					
						
						|  |  | 
					
						
						|  | if use_real_unbind_dim == -1: | 
					
						
						|  |  | 
					
						
						|  | x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) | 
					
						
						|  | x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) | 
					
						
						|  | elif use_real_unbind_dim == -2: | 
					
						
						|  |  | 
					
						
						|  | x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) | 
					
						
						|  | x_rotated = torch.cat([-x_imag, x_real], dim=-1) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.") | 
					
						
						|  |  | 
					
						
						|  | out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) | 
					
						
						|  |  | 
					
						
						|  | return out | 
					
						
						|  | else: | 
					
						
						|  | x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) | 
					
						
						|  | freqs_cis = freqs_cis.unsqueeze(1) | 
					
						
						|  | x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3) | 
					
						
						|  |  | 
					
						
						|  | return x_out.type_as(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QwenTimestepProjEmbeddings(nn.Module): | 
					
						
						|  | def __init__(self, embedding_dim): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000) | 
					
						
						|  | self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, timestep, hidden_states): | 
					
						
						|  | timesteps_proj = self.time_proj(timestep) | 
					
						
						|  | timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) | 
					
						
						|  |  | 
					
						
						|  | conditioning = timesteps_emb | 
					
						
						|  |  | 
					
						
						|  | return conditioning | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QwenEmbedRope(nn.Module): | 
					
						
						|  | def __init__(self, theta: int, axes_dim: List[int], scale_rope=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.theta = theta | 
					
						
						|  | self.axes_dim = axes_dim | 
					
						
						|  | pos_index = torch.arange(1024) | 
					
						
						|  | neg_index = torch.arange(1024).flip(0) * -1 - 1 | 
					
						
						|  | self.pos_freqs = torch.cat( | 
					
						
						|  | [ | 
					
						
						|  | self.rope_params(pos_index, self.axes_dim[0], self.theta), | 
					
						
						|  | self.rope_params(pos_index, self.axes_dim[1], self.theta), | 
					
						
						|  | self.rope_params(pos_index, self.axes_dim[2], self.theta), | 
					
						
						|  | ], | 
					
						
						|  | dim=1, | 
					
						
						|  | ) | 
					
						
						|  | self.neg_freqs = torch.cat( | 
					
						
						|  | [ | 
					
						
						|  | self.rope_params(neg_index, self.axes_dim[0], self.theta), | 
					
						
						|  | self.rope_params(neg_index, self.axes_dim[1], self.theta), | 
					
						
						|  | self.rope_params(neg_index, self.axes_dim[2], self.theta), | 
					
						
						|  | ], | 
					
						
						|  | dim=1, | 
					
						
						|  | ) | 
					
						
						|  | self.rope_cache = {} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scale_rope = scale_rope | 
					
						
						|  |  | 
					
						
						|  | def rope_params(self, index, dim, theta=10000): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | index: [0, 1, 2, 3] 1D Tensor representing the position index of the token | 
					
						
						|  | """ | 
					
						
						|  | assert dim % 2 == 0 | 
					
						
						|  | freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim))) | 
					
						
						|  | freqs = torch.polar(torch.ones_like(freqs), freqs) | 
					
						
						|  | return freqs | 
					
						
						|  |  | 
					
						
						|  | def forward(self, video_fhw, txt_seq_lens, device): | 
					
						
						|  | """ | 
					
						
						|  | Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args: | 
					
						
						|  | txt_length: [bs] a list of 1 integers representing the length of the text | 
					
						
						|  | """ | 
					
						
						|  | if self.pos_freqs.device != device: | 
					
						
						|  | self.pos_freqs = self.pos_freqs.to(device) | 
					
						
						|  | self.neg_freqs = self.neg_freqs.to(device) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(video_fhw, list): | 
					
						
						|  | video_fhw = video_fhw[0] | 
					
						
						|  | frame, height, width = video_fhw | 
					
						
						|  | rope_key = f"{frame}_{height}_{width}" | 
					
						
						|  |  | 
					
						
						|  | if rope_key not in self.rope_cache: | 
					
						
						|  | seq_lens = frame * height * width | 
					
						
						|  | freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1) | 
					
						
						|  | freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1) | 
					
						
						|  | freqs_frame = freqs_pos[0][:frame].view(frame, 1, 1, -1).expand(frame, height, width, -1) | 
					
						
						|  | if self.scale_rope: | 
					
						
						|  | freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0) | 
					
						
						|  | freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1) | 
					
						
						|  | freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0) | 
					
						
						|  | freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1) | 
					
						
						|  | freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1) | 
					
						
						|  | self.rope_cache[rope_key] = freqs.clone().contiguous() | 
					
						
						|  | vid_freqs = self.rope_cache[rope_key] | 
					
						
						|  |  | 
					
						
						|  | if self.scale_rope: | 
					
						
						|  | max_vid_index = max(height // 2, width // 2) | 
					
						
						|  | else: | 
					
						
						|  | max_vid_index = max(height, width) | 
					
						
						|  |  | 
					
						
						|  | max_len = max(txt_seq_lens) | 
					
						
						|  | txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...] | 
					
						
						|  |  | 
					
						
						|  | return vid_freqs, txt_freqs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QwenDoubleStreamAttnProcessor2_0: | 
					
						
						|  | """ | 
					
						
						|  | Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor | 
					
						
						|  | implements joint attention computation where text and image streams are processed together. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _attention_backend = None | 
					
						
						|  |  | 
					
						
						|  | def __init__(self): | 
					
						
						|  | if not hasattr(F, "scaled_dot_product_attention"): | 
					
						
						|  | raise ImportError( | 
					
						
						|  | "QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | attn: Attention, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | encoder_hidden_states: torch.FloatTensor = None, | 
					
						
						|  | encoder_hidden_states_mask: torch.FloatTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | image_rotary_emb: Optional[torch.Tensor] = None, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | if encoder_hidden_states is None: | 
					
						
						|  | raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)") | 
					
						
						|  |  | 
					
						
						|  | seq_txt = encoder_hidden_states.shape[1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_query = attn.to_q(hidden_states) | 
					
						
						|  | img_key = attn.to_k(hidden_states) | 
					
						
						|  | img_value = attn.to_v(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | txt_query = attn.add_q_proj(encoder_hidden_states) | 
					
						
						|  | txt_key = attn.add_k_proj(encoder_hidden_states) | 
					
						
						|  | txt_value = attn.add_v_proj(encoder_hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_query = img_query.unflatten(-1, (attn.heads, -1)) | 
					
						
						|  | img_key = img_key.unflatten(-1, (attn.heads, -1)) | 
					
						
						|  | img_value = img_value.unflatten(-1, (attn.heads, -1)) | 
					
						
						|  |  | 
					
						
						|  | txt_query = txt_query.unflatten(-1, (attn.heads, -1)) | 
					
						
						|  | txt_key = txt_key.unflatten(-1, (attn.heads, -1)) | 
					
						
						|  | txt_value = txt_value.unflatten(-1, (attn.heads, -1)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attn.norm_q is not None: | 
					
						
						|  | img_query = attn.norm_q(img_query) | 
					
						
						|  | if attn.norm_k is not None: | 
					
						
						|  | img_key = attn.norm_k(img_key) | 
					
						
						|  | if attn.norm_added_q is not None: | 
					
						
						|  | txt_query = attn.norm_added_q(txt_query) | 
					
						
						|  | if attn.norm_added_k is not None: | 
					
						
						|  | txt_key = attn.norm_added_k(txt_key) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if image_rotary_emb is not None: | 
					
						
						|  | img_freqs, txt_freqs = image_rotary_emb | 
					
						
						|  | img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False) | 
					
						
						|  | img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False) | 
					
						
						|  | txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False) | 
					
						
						|  | txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | joint_query = torch.cat([txt_query, img_query], dim=1) | 
					
						
						|  | joint_key = torch.cat([txt_key, img_key], dim=1) | 
					
						
						|  | joint_value = torch.cat([txt_value, img_value], dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | joint_hidden_states = dispatch_attention_fn( | 
					
						
						|  | joint_query, | 
					
						
						|  | joint_key, | 
					
						
						|  | joint_value, | 
					
						
						|  | attn_mask=attention_mask, | 
					
						
						|  | dropout_p=0.0, | 
					
						
						|  | is_causal=False, | 
					
						
						|  | backend=self._attention_backend, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | joint_hidden_states = joint_hidden_states.flatten(2, 3) | 
					
						
						|  | joint_hidden_states = joint_hidden_states.to(joint_query.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | txt_attn_output = joint_hidden_states[:, :seq_txt, :] | 
					
						
						|  | img_attn_output = joint_hidden_states[:, seq_txt:, :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_attn_output = attn.to_out[0](img_attn_output) | 
					
						
						|  | if len(attn.to_out) > 1: | 
					
						
						|  | img_attn_output = attn.to_out[1](img_attn_output) | 
					
						
						|  |  | 
					
						
						|  | txt_attn_output = attn.to_add_out(txt_attn_output) | 
					
						
						|  |  | 
					
						
						|  | return img_attn_output, txt_attn_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @maybe_allow_in_graph | 
					
						
						|  | class QwenImageTransformerBlock(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6 | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.attention_head_dim = attention_head_dim | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.img_mod = nn.Sequential( | 
					
						
						|  | nn.SiLU(), | 
					
						
						|  | nn.Linear(dim, 6 * dim, bias=True), | 
					
						
						|  | ) | 
					
						
						|  | self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) | 
					
						
						|  | self.attn = Attention( | 
					
						
						|  | query_dim=dim, | 
					
						
						|  | cross_attention_dim=None, | 
					
						
						|  | added_kv_proj_dim=dim, | 
					
						
						|  | dim_head=attention_head_dim, | 
					
						
						|  | heads=num_attention_heads, | 
					
						
						|  | out_dim=dim, | 
					
						
						|  | context_pre_only=False, | 
					
						
						|  | bias=True, | 
					
						
						|  | processor=QwenDoubleStreamAttnProcessor2_0(), | 
					
						
						|  | qk_norm=qk_norm, | 
					
						
						|  | eps=eps, | 
					
						
						|  | ) | 
					
						
						|  | self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) | 
					
						
						|  | self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.txt_mod = nn.Sequential( | 
					
						
						|  | nn.SiLU(), | 
					
						
						|  | nn.Linear(dim, 6 * dim, bias=True), | 
					
						
						|  | ) | 
					
						
						|  | self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) | 
					
						
						|  |  | 
					
						
						|  | self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) | 
					
						
						|  | self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | 
					
						
						|  |  | 
					
						
						|  | def _modulate(self, x, mod_params): | 
					
						
						|  | """Apply modulation to input tensor""" | 
					
						
						|  | shift, scale, gate = mod_params.chunk(3, dim=-1) | 
					
						
						|  | return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | encoder_hidden_states: torch.Tensor, | 
					
						
						|  | encoder_hidden_states_mask: torch.Tensor, | 
					
						
						|  | temb: torch.Tensor, | 
					
						
						|  | image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | joint_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  |  | 
					
						
						|  | img_mod_params = self.img_mod(temb) | 
					
						
						|  | txt_mod_params = self.txt_mod(temb) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) | 
					
						
						|  | txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_normed = self.img_norm1(hidden_states) | 
					
						
						|  | img_modulated, img_gate1 = self._modulate(img_normed, img_mod1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | txt_normed = self.txt_norm1(encoder_hidden_states) | 
					
						
						|  | txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | joint_attention_kwargs = joint_attention_kwargs or {} | 
					
						
						|  | attn_output = self.attn( | 
					
						
						|  | hidden_states=img_modulated, | 
					
						
						|  | encoder_hidden_states=txt_modulated, | 
					
						
						|  | encoder_hidden_states_mask=encoder_hidden_states_mask, | 
					
						
						|  | image_rotary_emb=image_rotary_emb, | 
					
						
						|  | **joint_attention_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_attn_output, txt_attn_output = attn_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states + img_gate1 * img_attn_output | 
					
						
						|  | encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_normed2 = self.img_norm2(hidden_states) | 
					
						
						|  | img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2) | 
					
						
						|  | img_mlp_output = self.img_mlp(img_modulated2) | 
					
						
						|  | hidden_states = hidden_states + img_gate2 * img_mlp_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | txt_normed2 = self.txt_norm2(encoder_hidden_states) | 
					
						
						|  | txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2) | 
					
						
						|  | txt_mlp_output = self.txt_mlp(txt_modulated2) | 
					
						
						|  | encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if encoder_hidden_states.dtype == torch.float16: | 
					
						
						|  | encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) | 
					
						
						|  | if hidden_states.dtype == torch.float16: | 
					
						
						|  | hidden_states = hidden_states.clip(-65504, 65504) | 
					
						
						|  |  | 
					
						
						|  | return encoder_hidden_states, hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin): | 
					
						
						|  | """ | 
					
						
						|  | The Transformer model introduced in Qwen. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | patch_size (`int`, defaults to `2`): | 
					
						
						|  | Patch size to turn the input data into small patches. | 
					
						
						|  | in_channels (`int`, defaults to `64`): | 
					
						
						|  | The number of channels in the input. | 
					
						
						|  | out_channels (`int`, *optional*, defaults to `None`): | 
					
						
						|  | The number of channels in the output. If not specified, it defaults to `in_channels`. | 
					
						
						|  | num_layers (`int`, defaults to `60`): | 
					
						
						|  | The number of layers of dual stream DiT blocks to use. | 
					
						
						|  | attention_head_dim (`int`, defaults to `128`): | 
					
						
						|  | The number of dimensions to use for each attention head. | 
					
						
						|  | num_attention_heads (`int`, defaults to `24`): | 
					
						
						|  | The number of attention heads to use. | 
					
						
						|  | joint_attention_dim (`int`, defaults to `3584`): | 
					
						
						|  | The number of dimensions to use for the joint attention (embedding/channel dimension of | 
					
						
						|  | `encoder_hidden_states`). | 
					
						
						|  | guidance_embeds (`bool`, defaults to `False`): | 
					
						
						|  | Whether to use guidance embeddings for guidance-distilled variant of the model. | 
					
						
						|  | axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`): | 
					
						
						|  | The dimensions to use for the rotary positional embeddings. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["QwenImageTransformerBlock"] | 
					
						
						|  | _skip_layerwise_casting_patterns = ["pos_embed", "norm"] | 
					
						
						|  |  | 
					
						
						|  | @register_to_config | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | patch_size: int = 2, | 
					
						
						|  | in_channels: int = 64, | 
					
						
						|  | out_channels: Optional[int] = 16, | 
					
						
						|  | num_layers: int = 60, | 
					
						
						|  | attention_head_dim: int = 128, | 
					
						
						|  | num_attention_heads: int = 24, | 
					
						
						|  | joint_attention_dim: int = 3584, | 
					
						
						|  | guidance_embeds: bool = False, | 
					
						
						|  | axes_dims_rope: Tuple[int, int, int] = (16, 56, 56), | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.out_channels = out_channels or in_channels | 
					
						
						|  | self.inner_dim = num_attention_heads * attention_head_dim | 
					
						
						|  |  | 
					
						
						|  | self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True) | 
					
						
						|  |  | 
					
						
						|  | self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim) | 
					
						
						|  |  | 
					
						
						|  | self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6) | 
					
						
						|  |  | 
					
						
						|  | self.img_in = nn.Linear(in_channels, self.inner_dim) | 
					
						
						|  | self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim) | 
					
						
						|  |  | 
					
						
						|  | self.transformer_blocks = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | QwenImageTransformerBlock( | 
					
						
						|  | dim=self.inner_dim, | 
					
						
						|  | num_attention_heads=num_attention_heads, | 
					
						
						|  | attention_head_dim=attention_head_dim, | 
					
						
						|  | ) | 
					
						
						|  | for _ in range(num_layers) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) | 
					
						
						|  | self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | encoder_hidden_states: torch.Tensor = None, | 
					
						
						|  | encoder_hidden_states_mask: torch.Tensor = None, | 
					
						
						|  | timestep: torch.LongTensor = None, | 
					
						
						|  | img_shapes: Optional[List[Tuple[int, int, int]]] = None, | 
					
						
						|  | txt_seq_lens: Optional[List[int]] = None, | 
					
						
						|  | guidance: torch.Tensor = None, | 
					
						
						|  | attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | controlnet_block_samples = None, | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ) -> Union[torch.Tensor, Transformer2DModelOutput]: | 
					
						
						|  | """ | 
					
						
						|  | The [`QwenTransformer2DModel`] forward method. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`): | 
					
						
						|  | Input `hidden_states`. | 
					
						
						|  | encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`): | 
					
						
						|  | Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | 
					
						
						|  | encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`): | 
					
						
						|  | Mask of the input conditions. | 
					
						
						|  | timestep ( `torch.LongTensor`): | 
					
						
						|  | Used to indicate denoising step. | 
					
						
						|  | attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | 
					
						
						|  | `self.processor` in | 
					
						
						|  | [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | 
					
						
						|  | tuple. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | 
					
						
						|  | `tuple` where the first element is the sample tensor. | 
					
						
						|  | """ | 
					
						
						|  | if attention_kwargs is not None: | 
					
						
						|  | attention_kwargs = attention_kwargs.copy() | 
					
						
						|  | lora_scale = attention_kwargs.pop("scale", 1.0) | 
					
						
						|  | else: | 
					
						
						|  | lora_scale = 1.0 | 
					
						
						|  |  | 
					
						
						|  | if USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | scale_lora_layers(self, lora_scale) | 
					
						
						|  | else: | 
					
						
						|  | if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | 
					
						
						|  | logger.warning( | 
					
						
						|  | "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.img_in(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | timestep = timestep.to(hidden_states.dtype) | 
					
						
						|  | encoder_hidden_states = self.txt_norm(encoder_hidden_states) | 
					
						
						|  | encoder_hidden_states = self.txt_in(encoder_hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if guidance is not None: | 
					
						
						|  | guidance = guidance.to(hidden_states.dtype) * 1000 | 
					
						
						|  |  | 
					
						
						|  | temb = ( | 
					
						
						|  | self.time_text_embed(timestep, hidden_states) | 
					
						
						|  | if guidance is None | 
					
						
						|  | else self.time_text_embed(timestep, guidance, hidden_states) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device) | 
					
						
						|  |  | 
					
						
						|  | for index_block, block in enumerate(self.transformer_blocks): | 
					
						
						|  | if torch.is_grad_enabled() and self.gradient_checkpointing: | 
					
						
						|  | encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( | 
					
						
						|  | block, | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_hidden_states_mask, | 
					
						
						|  | temb, | 
					
						
						|  | image_rotary_emb, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | encoder_hidden_states, hidden_states = block( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_hidden_states_mask=encoder_hidden_states_mask, | 
					
						
						|  | temb=temb, | 
					
						
						|  | image_rotary_emb=image_rotary_emb, | 
					
						
						|  | joint_attention_kwargs=attention_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if controlnet_block_samples is not None: | 
					
						
						|  | interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) | 
					
						
						|  | interval_control = int(np.ceil(interval_control)) | 
					
						
						|  | hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm_out(hidden_states, temb) | 
					
						
						|  | output = self.proj_out(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | unscale_lora_layers(self, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (output,) | 
					
						
						|  |  | 
					
						
						|  | return Transformer2DModelOutput(sample=output) | 
					
						
						|  |  |