|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
|
from typing import Any, Callable, Optional, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.integrations import use_kernel_forward_from_hub |
|
|
from transformers.masking_utils import create_causal_mask |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torchdynamo_compiling |
|
|
from transformers.utils.deprecation import deprecate_kwarg |
|
|
from transformers.utils.generic import OutputRecorder, check_model_inputs |
|
|
from transformers.models.qwen3_vl_moe.configuration_qwen3_vl_moe import Qwen3VLMoeConfig, Qwen3VLMoeTextConfig, Qwen3VLMoeVisionConfig |
|
|
|
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
|
class Qwen3VLMoeTextRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
""" |
|
|
Qwen3VLMoeTextRMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
class Qwen3VLMoeTextRouter(nn.Linear): |
|
|
def __init__(self, config): |
|
|
super().__init__(config.hidden_size, config.num_experts, bias=False) |
|
|
self.hidden_size = config.hidden_size |
|
|
self.top_k = config.num_experts_per_tok |
|
|
|
|
|
|
|
|
|
|
|
def forward(self, hidden_states): |
|
|
hidden_states = hidden_states.reshape(-1, self.hidden_size) |
|
|
router_logits = super().forward(hidden_states) |
|
|
routing_weights = torch.nn.functional.softmax(router_logits, dim=-1, dtype=torch.float) |
|
|
routing_weights, router_indices = torch.topk(routing_weights, self.top_k, dim=-1) |
|
|
routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True) |
|
|
routing_weights = routing_weights.to(hidden_states.dtype) |
|
|
router_weights = torch.zeros_like(router_logits).scatter_(1, router_indices, routing_weights) |
|
|
return router_weights, router_logits, router_indices |
|
|
|
|
|
|
|
|
class Qwen3VLMoeTextExperts(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.num_experts = config.num_experts |
|
|
self.intermediate_size = config.moe_intermediate_size |
|
|
self.hidden_size = config.hidden_size |
|
|
self.expert_dim = self.intermediate_size |
|
|
|
|
|
self.gate_up_projs = nn.ModuleList([nn.Linear(self.hidden_size, 2 * self.expert_dim, bias=False) for _ in range(self.num_experts)]) |
|
|
|
|
|
self.down_projs = nn.ModuleList([nn.Linear(self.expert_dim, self.hidden_size, bias=False) for _ in range(self.num_experts)]) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward( |
|
|
self, hidden_states: torch.Tensor, routing_weights: torch.Tensor, router_indices: torch.Tensor |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
When training it is more efficient to just loop over the experts and compute the output for each expert |
|
|
as otherwise the memory would explode. |
|
|
|
|
|
For inference we can sacrifice some memory and compute the output for all experts at once. By repeating the inputs. |
|
|
|
|
|
Args: |
|
|
hidden_states (torch.Tensor): (batch_size * token_num, hidden_size) |
|
|
routing_weights (torch.Tensor): (batch_size * token_num, num_experts) |
|
|
router_indices (torch.Tensor): (batch_size * token_num, top_k) |
|
|
Returns: |
|
|
torch.Tensor |
|
|
""" |
|
|
batch_size = hidden_states.shape[0] |
|
|
hidden_states = hidden_states.reshape(-1, self.hidden_size) |
|
|
if self.training: |
|
|
next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device) |
|
|
with torch.no_grad(): |
|
|
expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=self.num_experts) |
|
|
expert_mask = expert_mask.permute(2, 1, 0) |
|
|
|
|
|
|
|
|
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero() |
|
|
for expert_idx in expert_hit[:]: |
|
|
with torch.no_grad(): |
|
|
_, token_idx = torch.where(expert_mask[expert_idx[0]]) |
|
|
current_state = hidden_states[token_idx] |
|
|
|
|
|
gate_up = self.gate_up_projs[expert_idx](current_state) |
|
|
gate, up = gate_up.chunk(2, dim=-1) |
|
|
gated_output = up * self.act_fn(gate) |
|
|
|
|
|
out = self.down_projs[expert_idx](gated_output) |
|
|
weighted_output = out[0] * routing_weights[token_idx, expert_idx, None] |
|
|
next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype)) |
|
|
next_states = next_states.view(batch_size, -1, self.hidden_size) |
|
|
else: |
|
|
hidden_states = hidden_states.repeat(self.num_experts, 1) |
|
|
hidden_states = hidden_states.view(self.num_experts, -1, self.hidden_size) |
|
|
|
|
|
gate_up = torch.stack([proj(hidden_states[i]) for i, proj in enumerate(self.gate_up_projs)]) |
|
|
gate, up = gate_up.chunk(2, dim=-1) |
|
|
|
|
|
next_states = torch.stack([proj(up[i] * self.act_fn(gate[i])) for i, proj in enumerate(self.down_projs)]) |
|
|
next_states = next_states.reshape(self.num_experts, batch_size, -1, self.hidden_size) |
|
|
next_states = ( |
|
|
next_states * routing_weights.transpose(0, 1).view(self.num_experts, batch_size, -1)[..., None] |
|
|
) |
|
|
next_states = next_states.sum(dim=0) |
|
|
return next_states |
|
|
|
|
|
|
|
|
class Qwen3VLMoeTextSparseMoeBlock(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_experts = config.num_experts |
|
|
self.gate = Qwen3VLMoeTextRouter(config) |
|
|
self.experts = Qwen3VLMoeTextExperts(config) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
router_weights, router_logits, router_indices = self.gate(hidden_states) |
|
|
routed_out = self.experts(hidden_states, router_weights, router_indices) |
|
|
return routed_out, router_logits |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
class Qwen3VLMoeTextAttention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: Qwen3VLMoeTextConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
|
|
|
self.q_proj = nn.Linear( |
|
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.k_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.v_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.o_proj = nn.Linear( |
|
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias |
|
|
) |
|
|
self.q_norm = Qwen3VLMoeTextRMSNorm( |
|
|
self.head_dim, eps=config.rms_norm_eps |
|
|
) |
|
|
self.k_norm = Qwen3VLMoeTextRMSNorm( |
|
|
self.head_dim, eps=config.rms_norm_eps |
|
|
) |
|
|
|
|
|
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") |
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_values: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_values is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class Qwen3VLMoeTextMLP(nn.Module): |
|
|
def __init__(self, config, intermediate_size=None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
return down_proj |
|
|
|
|
|
|
|
|
class Qwen3VLMoeTextDecoderLayer(GradientCheckpointingLayer): |
|
|
def __init__(self, config: Qwen3VLMoeTextConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.self_attn = Qwen3VLMoeTextAttention(config, layer_idx) |
|
|
|
|
|
if (layer_idx not in config.mlp_only_layers) and ( |
|
|
config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0 |
|
|
): |
|
|
self.mlp = Qwen3VLMoeTextSparseMoeBlock(config) |
|
|
else: |
|
|
self.mlp = Qwen3VLMoeTextMLP(config, intermediate_size=config.intermediate_size) |
|
|
|
|
|
self.input_layernorm = Qwen3VLMoeTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = Qwen3VLMoeTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") |
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> torch.FloatTensor: |
|
|
""" |
|
|
Args: |
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
|
output_attentions (`bool`, *optional*): |
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
|
returned tensors for more detail. |
|
|
output_router_logits (`bool`, *optional*): |
|
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, |
|
|
and should not be returned during inference. |
|
|
use_cache (`bool`, *optional*): |
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
|
(see `past_key_values`). |
|
|
past_key_values (`Cache`, *optional*): cached past key and value projection states |
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
|
position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): |
|
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, |
|
|
with `head_dim` being the embedding dimension of each attention head. |
|
|
kwargs (`dict`, *optional*): |
|
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
|
into the model |
|
|
""" |
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states, _ = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
position_embeddings=position_embeddings, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
|
|
|
if isinstance(hidden_states, tuple): |
|
|
hidden_states, _ = hidden_states |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class Qwen3VLMoePreTrainedModel(PreTrainedModel): |
|
|
config: Qwen3VLMoeConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["Qwen3VLMoeTextDecoderLayer", "Qwen3VLMoeVisionBlock"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_can_compile_fullgraph = False |
|
|
_supports_attention_backend = True |
|
|
_can_record_outputs = { |
|
|
"router_logits": OutputRecorder(Qwen3VLMoeTextSparseMoeBlock, index=1), |
|
|
"hidden_states": Qwen3VLMoeTextDecoderLayer, |
|
|
"attentions": Qwen3VLMoeTextAttention, |
|
|
} |
|
|
|
|
|
def _init_weights(self, module): |
|
|
"""Initialize the weights.""" |
|
|
super()._init_weights(module) |
|
|
if hasattr(self.config, "initializer_range"): |
|
|
std = self.config.initializer_range |
|
|
else: |
|
|
std = getattr(self.config.get_text_config(), "initializer_range", 0.02) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Qwen3VLMoeVisionMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.linear_fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) |
|
|
self.linear_fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=True) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, hidden_state): |
|
|
return self.linear_fc2(self.act_fn(self.linear_fc1(hidden_state))) |
|
|
|
|
|
|
|
|
class Qwen3VLMoeVisionPatchEmbed(nn.Module): |
|
|
def __init__(self, config) -> None: |
|
|
super().__init__() |
|
|
self.patch_size = config.patch_size |
|
|
self.temporal_patch_size = config.temporal_patch_size |
|
|
self.in_channels = config.in_channels |
|
|
self.embed_dim = config.hidden_size |
|
|
|
|
|
kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size] |
|
|
self.proj = nn.Conv3d(self.in_channels, self.embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=True) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
target_dtype = self.proj.weight.dtype |
|
|
hidden_states = hidden_states.view( |
|
|
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size |
|
|
) |
|
|
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class Qwen3VLMoeVisionRotaryEmbedding(nn.Module): |
|
|
inv_freq: torch.Tensor |
|
|
|
|
|
def __init__(self, dim: int, theta: float = 10000.0) -> None: |
|
|
super().__init__() |
|
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
def forward(self, seqlen: int) -> torch.Tensor: |
|
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
|
freqs = torch.outer(seq, self.inv_freq) |
|
|
return freqs |
|
|
|
|
|
|
|
|
class Qwen3VLMoeVisionPatchMerger(nn.Module): |
|
|
def __init__(self, config: Qwen3VLMoeVisionConfig, use_postshuffle_norm=False) -> None: |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size * (config.spatial_merge_size**2) |
|
|
self.use_postshuffle_norm = use_postshuffle_norm |
|
|
self.norm = nn.LayerNorm(self.hidden_size if use_postshuffle_norm else config.hidden_size, eps=1e-6) |
|
|
self.linear_fc1 = nn.Linear(self.hidden_size, self.hidden_size) |
|
|
self.act_fn = nn.GELU() |
|
|
self.linear_fc2 = nn.Linear(self.hidden_size, config.out_hidden_size) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
x = self.norm(x.view(-1, self.hidden_size) if self.use_postshuffle_norm else x).view(-1, self.hidden_size) |
|
|
x = self.linear_fc2(self.act_fn(self.linear_fc1(x))) |
|
|
return x |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb_vision( |
|
|
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
orig_q_dtype = q.dtype |
|
|
orig_k_dtype = k.dtype |
|
|
q, k = q.float(), k.float() |
|
|
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float() |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
q_embed = q_embed.to(orig_q_dtype) |
|
|
k_embed = k_embed.to(orig_k_dtype) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
class Qwen3VLMoeVisionAttention(nn.Module): |
|
|
def __init__(self, config: Qwen3VLMoeVisionConfig) -> None: |
|
|
super().__init__() |
|
|
self.dim = config.hidden_size |
|
|
self.num_heads = config.num_heads |
|
|
self.head_dim = self.dim // self.num_heads |
|
|
self.num_key_value_groups = 1 |
|
|
self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True) |
|
|
self.proj = nn.Linear(self.dim, self.dim) |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.config = config |
|
|
self.attention_dropout = 0.0 |
|
|
self.is_causal = False |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
cu_seqlens: torch.Tensor, |
|
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
seq_length = hidden_states.shape[0] |
|
|
query_states, key_states, value_states = ( |
|
|
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
|
) |
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin) |
|
|
|
|
|
query_states = query_states.transpose(0, 1).unsqueeze(0) |
|
|
key_states = key_states.transpose(0, 1).unsqueeze(0) |
|
|
value_states = value_states.transpose(0, 1).unsqueeze(0) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max() |
|
|
attn_output, _ = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask=None, |
|
|
scaling=self.scaling, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
cu_seq_lens_q=cu_seqlens, |
|
|
cu_seq_lens_k=cu_seqlens, |
|
|
max_length_q=max_seqlen, |
|
|
max_length_k=max_seqlen, |
|
|
is_causal=False, |
|
|
**kwargs, |
|
|
) |
|
|
else: |
|
|
|
|
|
lengths = cu_seqlens[1:] - cu_seqlens[:-1] |
|
|
splits = [ |
|
|
torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states) |
|
|
] |
|
|
|
|
|
attn_outputs = [ |
|
|
attention_interface( |
|
|
self, |
|
|
q, |
|
|
k, |
|
|
v, |
|
|
attention_mask=None, |
|
|
scaling=self.scaling, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
is_causal=False, |
|
|
**kwargs, |
|
|
)[0] |
|
|
for q, k, v in zip(*splits) |
|
|
] |
|
|
attn_output = torch.cat(attn_outputs, dim=1) |
|
|
|
|
|
attn_output = attn_output.reshape(seq_length, -1).contiguous() |
|
|
attn_output = self.proj(attn_output) |
|
|
return attn_output |
|
|
|
|
|
|
|
|
class Qwen3VLMoeVisionBlock(GradientCheckpointingLayer): |
|
|
def __init__(self, config, attn_implementation: str = "sdpa") -> None: |
|
|
super().__init__() |
|
|
self.norm1 = nn.LayerNorm(config.hidden_size, eps=1e-6) |
|
|
self.norm2 = nn.LayerNorm(config.hidden_size, eps=1e-6) |
|
|
self.attn = Qwen3VLMoeVisionAttention(config=config) |
|
|
self.mlp = Qwen3VLMoeVisionMLP(config=config) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
cu_seqlens: torch.Tensor, |
|
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
hidden_states = hidden_states + self.attn( |
|
|
self.norm1(hidden_states), |
|
|
cu_seqlens=cu_seqlens, |
|
|
rotary_pos_emb=rotary_pos_emb, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class Qwen3VLMoeVisionModel(Qwen3VLMoePreTrainedModel): |
|
|
config: Qwen3VLMoeVisionConfig |
|
|
_no_split_modules = ["Qwen3VLMoeVisionBlock"] |
|
|
|
|
|
def __init__(self, config, *inputs, **kwargs) -> None: |
|
|
super().__init__(config, *inputs, **kwargs) |
|
|
self.spatial_merge_size = config.spatial_merge_size |
|
|
self.patch_size = config.patch_size |
|
|
self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size |
|
|
|
|
|
self.patch_embed = Qwen3VLMoeVisionPatchEmbed( |
|
|
config=config, |
|
|
) |
|
|
|
|
|
self.pos_embed = nn.Embedding(config.num_position_embeddings, config.hidden_size) |
|
|
self.num_grid_per_side = int(config.num_position_embeddings**0.5) |
|
|
|
|
|
head_dim = config.hidden_size // config.num_heads |
|
|
self.rotary_pos_emb = Qwen3VLMoeVisionRotaryEmbedding(head_dim // 2) |
|
|
|
|
|
self.blocks = nn.ModuleList([Qwen3VLMoeVisionBlock(config) for _ in range(config.depth)]) |
|
|
self.merger = Qwen3VLMoeVisionPatchMerger( |
|
|
config=config, |
|
|
use_postshuffle_norm=False, |
|
|
) |
|
|
|
|
|
self.deepstack_visual_indexes = config.deepstack_visual_indexes |
|
|
self.deepstack_merger_list = nn.ModuleList( |
|
|
[ |
|
|
Qwen3VLMoeVisionPatchMerger( |
|
|
config=config, |
|
|
use_postshuffle_norm=True, |
|
|
) |
|
|
for _ in range(len(config.deepstack_visual_indexes)) |
|
|
] |
|
|
) |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor: |
|
|
merge_size = self.spatial_merge_size |
|
|
|
|
|
max_hw = int(grid_thw[:, 1:].max().item()) |
|
|
freq_table = self.rotary_pos_emb(max_hw) |
|
|
device = freq_table.device |
|
|
|
|
|
total_tokens = int(torch.prod(grid_thw, dim=1).sum().item()) |
|
|
pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device) |
|
|
|
|
|
offset = 0 |
|
|
for num_frames, height, width in grid_thw: |
|
|
merged_h, merged_w = height // merge_size, width // merge_size |
|
|
|
|
|
block_rows = torch.arange(merged_h, device=device) |
|
|
block_cols = torch.arange(merged_w, device=device) |
|
|
intra_row = torch.arange(merge_size, device=device) |
|
|
intra_col = torch.arange(merge_size, device=device) |
|
|
|
|
|
|
|
|
row_idx = block_rows[:, None, None, None] * merge_size + intra_row[None, None, :, None] |
|
|
col_idx = block_cols[None, :, None, None] * merge_size + intra_col[None, None, None, :] |
|
|
|
|
|
row_idx = row_idx.expand(merged_h, merged_w, merge_size, merge_size).reshape(-1) |
|
|
col_idx = col_idx.expand(merged_h, merged_w, merge_size, merge_size).reshape(-1) |
|
|
|
|
|
coords = torch.stack((row_idx, col_idx), dim=-1) |
|
|
|
|
|
if num_frames > 1: |
|
|
coords = coords.repeat(num_frames, 1) |
|
|
|
|
|
num_tokens = coords.shape[0] |
|
|
pos_ids[offset : offset + num_tokens] = coords |
|
|
offset += num_tokens |
|
|
|
|
|
embeddings = freq_table[pos_ids] |
|
|
embeddings = embeddings.flatten(1) |
|
|
return embeddings |
|
|
|
|
|
def fast_pos_embed_interpolate(self, grid_thw): |
|
|
grid_ts, grid_hs, grid_ws = grid_thw[:, 0], grid_thw[:, 1], grid_thw[:, 2] |
|
|
|
|
|
idx_list = [[] for _ in range(4)] |
|
|
weight_list = [[] for _ in range(4)] |
|
|
|
|
|
for t, h, w in zip(grid_ts, grid_hs, grid_ws): |
|
|
h_idxs = torch.linspace(0, self.num_grid_per_side - 1, h) |
|
|
w_idxs = torch.linspace(0, self.num_grid_per_side - 1, w) |
|
|
|
|
|
h_idxs_floor = h_idxs.int() |
|
|
w_idxs_floor = w_idxs.int() |
|
|
h_idxs_ceil = (h_idxs.int() + 1).clip(max=self.num_grid_per_side - 1) |
|
|
w_idxs_ceil = (w_idxs.int() + 1).clip(max=self.num_grid_per_side - 1) |
|
|
|
|
|
dh = h_idxs - h_idxs_floor |
|
|
dw = w_idxs - w_idxs_floor |
|
|
|
|
|
base_h = h_idxs_floor * self.num_grid_per_side |
|
|
base_h_ceil = h_idxs_ceil * self.num_grid_per_side |
|
|
|
|
|
indices = [ |
|
|
(base_h[None].T + w_idxs_floor[None]).flatten(), |
|
|
(base_h[None].T + w_idxs_ceil[None]).flatten(), |
|
|
(base_h_ceil[None].T + w_idxs_floor[None]).flatten(), |
|
|
(base_h_ceil[None].T + w_idxs_ceil[None]).flatten(), |
|
|
] |
|
|
|
|
|
weights = [ |
|
|
((1 - dh)[None].T * (1 - dw)[None]).flatten(), |
|
|
((1 - dh)[None].T * dw[None]).flatten(), |
|
|
(dh[None].T * (1 - dw)[None]).flatten(), |
|
|
(dh[None].T * dw[None]).flatten(), |
|
|
] |
|
|
|
|
|
for i in range(4): |
|
|
idx_list[i].extend(indices[i].tolist()) |
|
|
weight_list[i].extend(weights[i].tolist()) |
|
|
|
|
|
idx_tensor = torch.tensor(idx_list, dtype=torch.long, device=self.pos_embed.weight.device) |
|
|
weight_tensor = torch.tensor( |
|
|
weight_list, dtype=self.pos_embed.weight.dtype, device=self.pos_embed.weight.device |
|
|
) |
|
|
pos_embeds = self.pos_embed(idx_tensor) * weight_tensor[:, :, None] |
|
|
patch_pos_embeds = pos_embeds[0] + pos_embeds[1] + pos_embeds[2] + pos_embeds[3] |
|
|
|
|
|
patch_pos_embeds = patch_pos_embeds.split([h * w for h, w in zip(grid_hs, grid_ws)]) |
|
|
|
|
|
patch_pos_embeds_permute = [] |
|
|
merge_size = self.config.spatial_merge_size |
|
|
for pos_embed, t, h, w in zip(patch_pos_embeds, grid_ts, grid_hs, grid_ws): |
|
|
pos_embed = pos_embed.repeat(t, 1) |
|
|
pos_embed = ( |
|
|
pos_embed.view(t, h // merge_size, merge_size, w // merge_size, merge_size, -1) |
|
|
.permute(0, 1, 3, 2, 4, 5) |
|
|
.flatten(0, 4) |
|
|
) |
|
|
patch_pos_embeds_permute.append(pos_embed) |
|
|
patch_pos_embeds = torch.cat(patch_pos_embeds_permute) |
|
|
return patch_pos_embeds |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`): |
|
|
The final hidden states of the model. |
|
|
grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
|
|
|
Returns: |
|
|
`torch.Tensor`: hidden_states. |
|
|
""" |
|
|
hidden_states = self.patch_embed(hidden_states) |
|
|
|
|
|
pos_embeds = self.fast_pos_embed_interpolate(grid_thw) |
|
|
hidden_states = hidden_states + pos_embeds |
|
|
|
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thw) |
|
|
|
|
|
seq_len, _ = hidden_states.size() |
|
|
hidden_states = hidden_states.reshape(seq_len, -1) |
|
|
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1) |
|
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) |
|
|
position_embeddings = (emb.cos(), emb.sin()) |
|
|
|
|
|
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum( |
|
|
dim=0, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, |
|
|
) |
|
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) |
|
|
|
|
|
deepstack_feature_lists = [] |
|
|
for layer_num, blk in enumerate(self.blocks): |
|
|
hidden_states = blk( |
|
|
hidden_states, |
|
|
cu_seqlens=cu_seqlens, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
if layer_num in self.deepstack_visual_indexes: |
|
|
deepstack_feature = self.deepstack_merger_list[self.deepstack_visual_indexes.index(layer_num)]( |
|
|
hidden_states |
|
|
) |
|
|
deepstack_feature_lists.append(deepstack_feature) |
|
|
|
|
|
hidden_states = self.merger(hidden_states) |
|
|
|
|
|
return hidden_states, deepstack_feature_lists |
|
|
|
|
|
|
|
|
class Qwen3VLMoeTextRotaryEmbedding(nn.Module): |
|
|
inv_freq: torch.Tensor |
|
|
|
|
|
def __init__(self, config: Qwen3VLMoeTextConfig, device=None): |
|
|
super().__init__() |
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
|
self.rope_type = config.rope_scaling.get("rope_type", "default") |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
self.mrope_section = config.rope_scaling.get("mrope_section", [24, 20, 20]) |
|
|
|
|
|
def apply_interleaved_mrope(self, freqs, mrope_section): |
|
|
"""Apply interleaved MRoPE to 3D rotary embeddings. |
|
|
Reorganizes frequency layout from chunked [TTT...HHH...WWW] to |
|
|
interleaved [THTHWHTHW...TT], preserving frequency continuity. |
|
|
args: |
|
|
x: (3, bs, seq_len, head_dim // 2) |
|
|
mrope_section: (3,) |
|
|
returns: |
|
|
x_t: (bs, seq_len, head_dim // 2) |
|
|
""" |
|
|
freqs_t = freqs[0] |
|
|
for dim, offset in enumerate((1, 2), start=1): |
|
|
length = mrope_section[dim] * 3 |
|
|
idx = slice(offset, length, 3) |
|
|
freqs_t[..., idx] = freqs[dim, ..., idx] |
|
|
return freqs_t |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
|
|
|
|
|
|
if position_ids.ndim == 2: |
|
|
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1) |
|
|
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1) |
|
|
position_ids_expanded = position_ids[:, :, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3) |
|
|
freqs = self.apply_interleaved_mrope(freqs, self.mrope_section) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
@auto_docstring( |
|
|
custom_intro=( |
|
|
"Text part of Qwen3VLMoe, " |
|
|
"not a pure text-only model, as DeepStack integrates visual features into the early hidden states." |
|
|
) |
|
|
) |
|
|
class Qwen3VLMoeTextModel(Qwen3VLMoePreTrainedModel): |
|
|
config: Qwen3VLMoeTextConfig |
|
|
_no_split_modules = ["Qwen3VLMoeTextDecoderLayer"] |
|
|
|
|
|
def __init__(self, config: Qwen3VLMoeTextConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[Qwen3VLMoeTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = Qwen3VLMoeTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = Qwen3VLMoeTextRotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@check_model_inputs |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
|
|
|
visual_pos_masks: Optional[torch.Tensor] = None, |
|
|
deepstack_visual_embeds: Optional[list[torch.Tensor]] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Union[tuple, BaseModelOutputWithPast]: |
|
|
r""" |
|
|
visual_pos_masks (`torch.Tensor` of shape `(batch_size, seqlen)`, *optional*): |
|
|
The mask of the visual positions. |
|
|
deepstack_visual_embeds (`list[torch.Tensor]`, *optional*): |
|
|
The deepstack visual embeddings. The shape is (num_layers, visual_seqlen, embed_dim). |
|
|
The feature is extracted from the different visual encoder layers, and fed to the decoder |
|
|
hidden states. It's from the paper DeepStack(https://arxiv.org/abs/2406.04334). |
|
|
""" |
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
|
|
|
if use_cache and past_key_values is None and not torch.jit.is_tracing(): |
|
|
past_key_values = DynamicCache(config=self.config) |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1) |
|
|
elif position_ids.ndim == 2: |
|
|
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1) |
|
|
|
|
|
if position_ids.ndim == 3 and position_ids.shape[0] == 4: |
|
|
text_position_ids = position_ids[0] |
|
|
position_ids = position_ids[1:] |
|
|
else: |
|
|
text_position_ids = position_ids[0] |
|
|
|
|
|
attention_mask = create_causal_mask( |
|
|
config=self.config, |
|
|
input_embeds=inputs_embeds, |
|
|
attention_mask=attention_mask, |
|
|
cache_position=cache_position, |
|
|
past_key_values=past_key_values, |
|
|
position_ids=text_position_ids, |
|
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
for layer_idx, decoder_layer in enumerate(self.layers): |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=text_position_ids, |
|
|
past_key_values=past_key_values, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = layer_outputs |
|
|
|
|
|
|
|
|
if deepstack_visual_embeds is not None and layer_idx in range(len(deepstack_visual_embeds)): |
|
|
hidden_states = self._deepstack_process( |
|
|
hidden_states, |
|
|
visual_pos_masks, |
|
|
deepstack_visual_embeds[layer_idx], |
|
|
) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values, |
|
|
) |
|
|
|
|
|
def _deepstack_process( |
|
|
self, hidden_states: torch.Tensor, visual_pos_masks: torch.Tensor, visual_embeds: torch.Tensor |
|
|
): |
|
|
visual_pos_masks = visual_pos_masks.to(hidden_states.device) |
|
|
visual_embeds = visual_embeds.to(hidden_states.device, hidden_states.dtype) |
|
|
local_this = hidden_states[visual_pos_masks, :].clone() + visual_embeds |
|
|
hidden_states[visual_pos_masks, :] = local_this |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
@dataclass |
|
|
@auto_docstring( |
|
|
custom_intro=""" |
|
|
Base class for Llava outputs, with hidden states and attentions. |
|
|
""" |
|
|
) |
|
|
class Qwen3VLMoeModelOutputWithPast(ModelOutput): |
|
|
r""" |
|
|
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
|
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). |
|
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
|
`past_key_values` input) to speed up sequential decoding. |
|
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): |
|
|
The rope index difference between sequence length and multimodal rope. |
|
|
""" |
|
|
|
|
|
last_hidden_state: Optional[torch.FloatTensor] = None |
|
|
past_key_values: Optional[Cache] = None |
|
|
hidden_states: Optional[tuple[torch.FloatTensor]] = None |
|
|
attentions: Optional[tuple[torch.FloatTensor]] = None |
|
|
rope_deltas: Optional[torch.LongTensor] = None |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class Qwen3VLMoeModel(Qwen3VLMoePreTrainedModel): |
|
|
base_model_prefix = "" |
|
|
_checkpoint_conversion_mapping = {} |
|
|
|
|
|
accepts_loss_kwargs = False |
|
|
config: Qwen3VLMoeConfig |
|
|
_no_split_modules = ["Qwen3VLMoeTextDecoderLayer", "Qwen3VLMoeVisionBlock"] |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.visual = Qwen3VLMoeVisionModel._from_config(config.vision_config) |
|
|
self.language_model = Qwen3VLMoeTextModel._from_config(config.text_config) |
|
|
self.rope_deltas = None |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.language_model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.language_model.set_input_embeddings(value) |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.language_model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.language_model |
|
|
|
|
|
def get_rope_index( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Different from the original implementation, Qwen3VLMoe use timestamps rather than absolute time position ids.""" |
|
|
|
|
|
|
|
|
if video_grid_thw is not None: |
|
|
video_grid_thw = torch.repeat_interleave(video_grid_thw, video_grid_thw[:, 0], dim=0) |
|
|
video_grid_thw[:, 0] = 1 |
|
|
|
|
|
spatial_merge_size = self.config.vision_config.spatial_merge_size |
|
|
image_token_id = self.config.image_token_id |
|
|
video_token_id = self.config.video_token_id |
|
|
vision_start_token_id = self.config.vision_start_token_id |
|
|
mrope_position_deltas = [] |
|
|
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None): |
|
|
total_input_ids = input_ids |
|
|
if attention_mask is None: |
|
|
attention_mask = torch.ones_like(total_input_ids) |
|
|
position_ids = torch.ones( |
|
|
3, |
|
|
input_ids.shape[0], |
|
|
input_ids.shape[1], |
|
|
dtype=input_ids.dtype, |
|
|
device=input_ids.device, |
|
|
) |
|
|
image_index, video_index = 0, 0 |
|
|
attention_mask = attention_mask.to(total_input_ids.device) |
|
|
for i, input_ids in enumerate(total_input_ids): |
|
|
input_ids = input_ids[attention_mask[i] == 1] |
|
|
image_nums, video_nums = 0, 0 |
|
|
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1) |
|
|
vision_tokens = input_ids[vision_start_indices + 1] |
|
|
image_nums = (vision_tokens == image_token_id).sum() |
|
|
video_nums = (vision_tokens == video_token_id).sum() |
|
|
input_tokens = input_ids.tolist() |
|
|
llm_pos_ids_list: list = [] |
|
|
st = 0 |
|
|
remain_images, remain_videos = image_nums, video_nums |
|
|
for _ in range(image_nums + video_nums): |
|
|
if image_token_id in input_tokens and remain_images > 0: |
|
|
ed_image = input_tokens.index(image_token_id, st) |
|
|
else: |
|
|
ed_image = len(input_tokens) + 1 |
|
|
if video_token_id in input_tokens and remain_videos > 0: |
|
|
ed_video = input_tokens.index(video_token_id, st) |
|
|
else: |
|
|
ed_video = len(input_tokens) + 1 |
|
|
if ed_image < ed_video: |
|
|
t, h, w = ( |
|
|
image_grid_thw[image_index][0], |
|
|
image_grid_thw[image_index][1], |
|
|
image_grid_thw[image_index][2], |
|
|
) |
|
|
image_index += 1 |
|
|
remain_images -= 1 |
|
|
ed = ed_image |
|
|
|
|
|
else: |
|
|
t, h, w = ( |
|
|
video_grid_thw[video_index][0], |
|
|
video_grid_thw[video_index][1], |
|
|
video_grid_thw[video_index][2], |
|
|
) |
|
|
video_index += 1 |
|
|
remain_videos -= 1 |
|
|
ed = ed_video |
|
|
llm_grid_t, llm_grid_h, llm_grid_w = ( |
|
|
t.item(), |
|
|
h.item() // spatial_merge_size, |
|
|
w.item() // spatial_merge_size, |
|
|
) |
|
|
text_len = ed - st |
|
|
|
|
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
|
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) |
|
|
|
|
|
|
|
|
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() |
|
|
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() |
|
|
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() |
|
|
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx) |
|
|
st = ed + llm_grid_t * llm_grid_h * llm_grid_w |
|
|
|
|
|
if st < len(input_tokens): |
|
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
|
text_len = len(input_tokens) - st |
|
|
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) |
|
|
|
|
|
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) |
|
|
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) |
|
|
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i])) |
|
|
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1) |
|
|
return position_ids, mrope_position_deltas |
|
|
else: |
|
|
if attention_mask is not None: |
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
|
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device) |
|
|
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0] |
|
|
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] |
|
|
else: |
|
|
position_ids = ( |
|
|
torch.arange(input_ids.shape[1], device=input_ids.device) |
|
|
.view(1, 1, -1) |
|
|
.expand(3, input_ids.shape[0], -1) |
|
|
) |
|
|
mrope_position_deltas = torch.zeros( |
|
|
[input_ids.shape[0], 1], |
|
|
device=input_ids.device, |
|
|
dtype=input_ids.dtype, |
|
|
) |
|
|
|
|
|
return position_ids, mrope_position_deltas |
|
|
|
|
|
def get_video_features( |
|
|
self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None |
|
|
): |
|
|
""" |
|
|
Encodes videos into continuous embeddings that can be forwarded to the language model. The deepstack visual features are also returned. |
|
|
|
|
|
Args: |
|
|
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): |
|
|
The tensors corresponding to the input videos. |
|
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each video in LLM. |
|
|
""" |
|
|
|
|
|
return self.get_image_features(pixel_values_videos, video_grid_thw) |
|
|
|
|
|
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None): |
|
|
""" |
|
|
Encodes images into continuous embeddings that can be forwarded to the language model. The deepstack visual features are also returned. |
|
|
|
|
|
Args: |
|
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): |
|
|
The tensors corresponding to the input images. |
|
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
""" |
|
|
pixel_values = pixel_values.type(self.visual.dtype) |
|
|
image_embeds, deepstack_image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw) |
|
|
split_sizes = (image_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist() |
|
|
image_embeds = torch.split(image_embeds, split_sizes) |
|
|
return image_embeds, deepstack_image_embeds |
|
|
|
|
|
def get_placeholder_mask( |
|
|
self, |
|
|
input_ids: torch.LongTensor, |
|
|
inputs_embeds: torch.FloatTensor, |
|
|
image_features: Optional[torch.FloatTensor] = None, |
|
|
video_features: Optional[torch.FloatTensor] = None, |
|
|
): |
|
|
""" |
|
|
Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is |
|
|
equal to the length of multimodal features. If the lengths are different, an error is raised. |
|
|
""" |
|
|
if input_ids is None: |
|
|
special_image_mask = inputs_embeds == self.get_input_embeddings()( |
|
|
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
special_image_mask = special_image_mask.all(-1) |
|
|
special_video_mask = inputs_embeds == self.get_input_embeddings()( |
|
|
torch.tensor(self.config.video_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
special_video_mask = special_video_mask.all(-1) |
|
|
else: |
|
|
special_image_mask = input_ids == self.config.image_token_id |
|
|
special_video_mask = input_ids == self.config.video_token_id |
|
|
|
|
|
n_image_tokens = special_image_mask.sum() |
|
|
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
if image_features is not None and inputs_embeds[special_image_mask].numel() != image_features.numel(): |
|
|
raise ValueError( |
|
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.shape[0]}" |
|
|
) |
|
|
|
|
|
n_video_tokens = special_video_mask.sum() |
|
|
special_video_mask = special_video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
if video_features is not None and inputs_embeds[special_video_mask].numel() != video_features.numel(): |
|
|
raise ValueError( |
|
|
f"Videos features and video tokens do not match: tokens: {n_video_tokens}, features {video_features.shape[0]}" |
|
|
) |
|
|
|
|
|
return special_image_mask, special_video_mask |
|
|
|
|
|
@auto_docstring |
|
|
@can_return_tuple |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
pixel_values: Optional[torch.Tensor] = None, |
|
|
pixel_values_videos: Optional[torch.FloatTensor] = None, |
|
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> Union[tuple, Qwen3VLMoeModelOutputWithPast]: |
|
|
r""" |
|
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each video in LLM. |
|
|
""" |
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
|
|
|
|
image_mask = None |
|
|
video_mask = None |
|
|
|
|
|
if pixel_values is not None: |
|
|
image_embeds, deepstack_image_embeds = self.get_image_features(pixel_values, image_grid_thw) |
|
|
image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype) |
|
|
image_mask, _ = self.get_placeholder_mask( |
|
|
input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds |
|
|
) |
|
|
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds) |
|
|
|
|
|
if pixel_values_videos is not None: |
|
|
video_embeds, deepstack_video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw) |
|
|
video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype) |
|
|
_, video_mask = self.get_placeholder_mask( |
|
|
input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds |
|
|
) |
|
|
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds) |
|
|
|
|
|
visual_pos_masks = None |
|
|
deepstack_visual_embeds = None |
|
|
if image_mask is not None and video_mask is not None: |
|
|
|
|
|
image_mask = image_mask[..., 0] |
|
|
video_mask = video_mask[..., 0] |
|
|
visual_pos_masks = image_mask | video_mask |
|
|
deepstack_visual_embeds = [] |
|
|
image_mask_joint = image_mask[visual_pos_masks] |
|
|
video_mask_joint = video_mask[visual_pos_masks] |
|
|
for img_embed, vid_embed in zip(deepstack_image_embeds, deepstack_video_embeds): |
|
|
embed_joint = img_embed.new_zeros(visual_pos_masks.sum(), img_embed.shape[-1]).to(img_embed.device) |
|
|
embed_joint[image_mask_joint, :] = img_embed |
|
|
embed_joint[video_mask_joint, :] = vid_embed |
|
|
deepstack_visual_embeds.append(embed_joint) |
|
|
elif image_mask is not None: |
|
|
image_mask = image_mask[..., 0] |
|
|
visual_pos_masks = image_mask |
|
|
deepstack_visual_embeds = deepstack_image_embeds |
|
|
elif video_mask is not None: |
|
|
video_mask = video_mask[..., 0] |
|
|
visual_pos_masks = video_mask |
|
|
deepstack_visual_embeds = deepstack_video_embeds |
|
|
|
|
|
if position_ids is None: |
|
|
attention_mask_tensor = ( |
|
|
attention_mask if not isinstance(attention_mask, dict) else attention_mask["full_attention"] |
|
|
) |
|
|
if attention_mask_tensor is not None and attention_mask_tensor.ndim == 4: |
|
|
attention_mask_tensor = torch.diagonal(attention_mask_tensor[:, 0], dim1=1, dim2=2) |
|
|
|
|
|
if attention_mask_tensor.dtype.is_floating_point: |
|
|
attention_mask_tensor = attention_mask_tensor / torch.finfo(attention_mask_tensor.dtype).min |
|
|
attention_mask_tensor = (1.0 - attention_mask_tensor).int() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prefill_compiled_stage = is_torchdynamo_compiling() and ( |
|
|
(input_ids is not None and input_ids.shape[1] != 1) |
|
|
or (inputs_embeds is not None and inputs_embeds.shape[1] != 1) |
|
|
) |
|
|
prefill_noncompiled_stage = not is_torchdynamo_compiling() and ( |
|
|
(cache_position is not None and cache_position[0] == 0) |
|
|
or (past_key_values is None or past_key_values.get_seq_length() == 0) |
|
|
) |
|
|
if (prefill_compiled_stage or prefill_noncompiled_stage) or self.rope_deltas is None: |
|
|
position_ids, rope_deltas = self.get_rope_index( |
|
|
input_ids, |
|
|
image_grid_thw, |
|
|
video_grid_thw, |
|
|
attention_mask=attention_mask_tensor, |
|
|
) |
|
|
self.rope_deltas = rope_deltas |
|
|
|
|
|
else: |
|
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
|
delta = ( |
|
|
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device) |
|
|
if cache_position is not None |
|
|
else 0 |
|
|
) |
|
|
position_ids = torch.arange(seq_length, device=inputs_embeds.device) |
|
|
position_ids = position_ids.view(1, -1).expand(batch_size, -1) |
|
|
if cache_position is not None: |
|
|
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0) |
|
|
position_ids = position_ids.add(delta) |
|
|
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1) |
|
|
|
|
|
outputs = self.language_model( |
|
|
input_ids=None, |
|
|
position_ids=position_ids, |
|
|
attention_mask=attention_mask, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
cache_position=cache_position, |
|
|
visual_pos_masks=visual_pos_masks, |
|
|
deepstack_visual_embeds=deepstack_visual_embeds, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
return Qwen3VLMoeModelOutputWithPast( |
|
|
last_hidden_state=outputs.last_hidden_state, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
rope_deltas=self.rope_deltas, |
|
|
) |
|
|
|
|
|
|
|
|
@dataclass |
|
|
@auto_docstring( |
|
|
custom_intro=""" |
|
|
Base class for Qwen3VLMoe causal language model (or autoregressive) outputs. |
|
|
""" |
|
|
) |
|
|
class Qwen3VLMoeCausalLMOutputWithPast(ModelOutput): |
|
|
r""" |
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
|
Language modeling loss (for next-token prediction). |
|
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
|
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
|
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). |
|
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
|
`past_key_values` input) to speed up sequential decoding. |
|
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): |
|
|
The rope index difference between sequence length and multimodal rope. |
|
|
""" |
|
|
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
|
logits: Optional[torch.FloatTensor] = None |
|
|
past_key_values: Optional[Cache] = None |
|
|
hidden_states: Optional[tuple[torch.FloatTensor]] = None |
|
|
attentions: Optional[tuple[torch.FloatTensor]] = None |
|
|
rope_deltas: Optional[torch.LongTensor] = None |
|
|
|
|
|
|
|
|
class Qwen3VLMoeForConditionalGeneration(Qwen3VLMoePreTrainedModel, GenerationMixin): |
|
|
_checkpoint_conversion_mapping = {} |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
accepts_loss_kwargs = False |
|
|
config: Qwen3VLMoeConfig |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = Qwen3VLMoeModel(config) |
|
|
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.set_input_embeddings(value) |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model.set_decoder(decoder) |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model.get_decoder() |
|
|
|
|
|
def get_video_features( |
|
|
self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None |
|
|
): |
|
|
return self.model.get_video_features(pixel_values_videos, video_grid_thw) |
|
|
|
|
|
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None): |
|
|
return self.model.get_image_features(pixel_values, image_grid_thw) |
|
|
|
|
|
|
|
|
@property |
|
|
def language_model(self): |
|
|
return self.model.language_model |
|
|
|
|
|
@property |
|
|
def visual(self): |
|
|
return self.model.visual |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
pixel_values: Optional[torch.Tensor] = None, |
|
|
pixel_values_videos: Optional[torch.FloatTensor] = None, |
|
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> Union[tuple, Qwen3VLMoeCausalLMOutputWithPast]: |
|
|
r""" |
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each video in LLM. |
|
|
|
|
|
Example: |
|
|
TODO: Add example |
|
|
""" |
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
pixel_values=pixel_values, |
|
|
pixel_values_videos=pixel_values_videos, |
|
|
image_grid_thw=image_grid_thw, |
|
|
video_grid_thw=video_grid_thw, |
|
|
position_ids=position_ids, |
|
|
attention_mask=attention_mask, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
|
|
|
|
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size) |
|
|
|
|
|
return Qwen3VLMoeCausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
rope_deltas=outputs.rope_deltas, |
|
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
|
self, |
|
|
input_ids, |
|
|
past_key_values=None, |
|
|
attention_mask=None, |
|
|
inputs_embeds=None, |
|
|
cache_position=None, |
|
|
position_ids=None, |
|
|
use_cache=True, |
|
|
pixel_values=None, |
|
|
pixel_values_videos=None, |
|
|
image_grid_thw=None, |
|
|
video_grid_thw=None, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
|
|
|
model_inputs = super().prepare_inputs_for_generation( |
|
|
input_ids, |
|
|
past_key_values=past_key_values, |
|
|
attention_mask=attention_mask, |
|
|
inputs_embeds=inputs_embeds, |
|
|
cache_position=cache_position, |
|
|
position_ids=position_ids, |
|
|
pixel_values=pixel_values, |
|
|
pixel_values_videos=pixel_values_videos, |
|
|
image_grid_thw=image_grid_thw, |
|
|
video_grid_thw=video_grid_thw, |
|
|
use_cache=use_cache, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
model_inputs["position_ids"] = None |
|
|
|
|
|
if cache_position[0] != 0: |
|
|
model_inputs["pixel_values"] = None |
|
|
model_inputs["pixel_values_videos"] = None |
|
|
|
|
|
return model_inputs |
|
|
|
|
|
def _get_image_nums_and_video_nums( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor], |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Get the number of images and videos for each sample to calculate the separation length of the sample tensor. |
|
|
These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications. |
|
|
|
|
|
Args: |
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
|
|
Returns: |
|
|
image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`) |
|
|
video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`) |
|
|
""" |
|
|
image_token_id = self.config.image_token_id |
|
|
video_token_id = self.config.video_token_id |
|
|
vision_start_token_id = self.config.vision_start_token_id |
|
|
|
|
|
if inputs_embeds is not None: |
|
|
vision_start_mask = ( |
|
|
inputs_embeds |
|
|
== self.get_input_embeddings()( |
|
|
torch.tensor(vision_start_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
)[..., 0] |
|
|
image_mask = ( |
|
|
inputs_embeds |
|
|
== self.get_input_embeddings()( |
|
|
torch.tensor(image_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
)[..., 0] |
|
|
video_mask = ( |
|
|
inputs_embeds |
|
|
== self.get_input_embeddings()( |
|
|
torch.tensor(video_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
)[..., 0] |
|
|
else: |
|
|
vision_start_mask = input_ids == vision_start_token_id |
|
|
image_mask = input_ids == image_token_id |
|
|
video_mask = input_ids == video_token_id |
|
|
|
|
|
vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1) |
|
|
image_nums = torch.sum(vision_first_mask & image_mask, dim=1) |
|
|
video_nums = torch.sum(vision_first_mask & video_mask, dim=1) |
|
|
|
|
|
return image_nums, video_nums |
|
|
|
|
|
def _expand_inputs_for_generation( |
|
|
self, |
|
|
expand_size: int = 1, |
|
|
is_encoder_decoder: bool = False, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
**model_kwargs, |
|
|
) -> tuple[torch.LongTensor, dict[str, Any]]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if expand_size == 1: |
|
|
return input_ids, model_kwargs |
|
|
|
|
|
visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"] |
|
|
|
|
|
def _expand_dict_for_generation_visual(dict_to_expand): |
|
|
image_grid_thw = model_kwargs.get("image_grid_thw", None) |
|
|
video_grid_thw = model_kwargs.get("video_grid_thw", None) |
|
|
image_nums, video_nums = self._get_image_nums_and_video_nums( |
|
|
input_ids, inputs_embeds=model_kwargs.get("inputs_embeds", None) |
|
|
) |
|
|
|
|
|
def _repeat_interleave_samples(x, lengths, repeat_times): |
|
|
samples = torch.split(x, lengths) |
|
|
repeat_args = [repeat_times] + [1] * (x.dim() - 1) |
|
|
result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0) |
|
|
return result |
|
|
|
|
|
for key in dict_to_expand: |
|
|
if key == "pixel_values": |
|
|
|
|
|
samples = torch.split(image_grid_thw, list(image_nums)) |
|
|
|
|
|
lengths = [torch.prod(sample, dim=1).sum() for sample in samples] |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
|
) |
|
|
elif key == "image_grid_thw": |
|
|
|
|
|
lengths = list(image_nums) |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
|
) |
|
|
elif key == "pixel_values_videos": |
|
|
samples = torch.split(video_grid_thw, list(video_nums)) |
|
|
lengths = [torch.prod(sample, dim=1).sum() for sample in samples] |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
|
) |
|
|
elif key == "video_grid_thw": |
|
|
lengths = list(video_nums) |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
|
) |
|
|
elif key == "second_per_grid_ts": |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=list(video_nums), repeat_times=expand_size |
|
|
) |
|
|
return dict_to_expand |
|
|
|
|
|
def _expand_dict_for_generation(dict_to_expand): |
|
|
for key in dict_to_expand: |
|
|
if ( |
|
|
key != "cache_position" |
|
|
and dict_to_expand[key] is not None |
|
|
and isinstance(dict_to_expand[key], torch.Tensor) |
|
|
and key not in visual_keys |
|
|
): |
|
|
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) |
|
|
return dict_to_expand |
|
|
|
|
|
model_kwargs = _expand_dict_for_generation_visual(model_kwargs) |
|
|
|
|
|
if input_ids is not None: |
|
|
input_ids = input_ids.repeat_interleave(expand_size, dim=0) |
|
|
|
|
|
model_kwargs = _expand_dict_for_generation(model_kwargs) |
|
|
|
|
|
if is_encoder_decoder: |
|
|
if model_kwargs.get("encoder_outputs") is None: |
|
|
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") |
|
|
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) |
|
|
|
|
|
return input_ids, model_kwargs |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"Qwen3VLMoeVisionModel", |
|
|
"Qwen3VLMoeForConditionalGeneration", |
|
|
"Qwen3VLMoeModel", |
|
|
"Qwen3VLMoePreTrainedModel", |
|
|
"Qwen3VLMoeTextModel", |
|
|
] |
|
|
|