Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,118 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- tensorflow
|
| 5 |
+
- optimizer
|
| 6 |
+
- deep-learning
|
| 7 |
+
- machine-learning
|
| 8 |
+
- adaptive-learning-rate
|
| 9 |
+
library_name: tensorflow
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# NEAT Optimizer
|
| 13 |
+
|
| 14 |
+
**NEAT (Noise-Enhanced Adaptive Training)** is a novel optimization algorithm for deep learning that combines adaptive learning rates with controlled noise injection to improve convergence and generalization.
|
| 15 |
+
|
| 16 |
+
## Overview
|
| 17 |
+
|
| 18 |
+
The NEAT optimizer enhances traditional adaptive optimization methods by intelligently injecting noise into the gradient updates. This approach helps:
|
| 19 |
+
- Escape local minima more effectively
|
| 20 |
+
- Improve generalization performance
|
| 21 |
+
- Achieve faster and more stable convergence
|
| 22 |
+
- Reduce overfitting on training data
|
| 23 |
+
|
| 24 |
+
## Installation
|
| 25 |
+
|
| 26 |
+
### From PyPI (recommended)
|
| 27 |
+
```bash
|
| 28 |
+
pip install neat-optimizer
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
### From Source
|
| 32 |
+
```bash
|
| 33 |
+
git clone https://github.com/yourusername/neat-optimizer.git
|
| 34 |
+
cd neat-optimizer
|
| 35 |
+
pip install -e .
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
## Quick Start
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
import tensorflow as tf
|
| 42 |
+
from neat_optimizer import NEATOptimizer
|
| 43 |
+
|
| 44 |
+
# Create your model
|
| 45 |
+
model = tf.keras.Sequential([
|
| 46 |
+
tf.keras.layers.Dense(128, activation='relu'),
|
| 47 |
+
tf.keras.layers.Dense(10, activation='softmax')
|
| 48 |
+
])
|
| 49 |
+
|
| 50 |
+
# Use NEAT optimizer
|
| 51 |
+
optimizer = NEATOptimizer(
|
| 52 |
+
learning_rate=0.001,
|
| 53 |
+
noise_scale=0.01,
|
| 54 |
+
beta_1=0.9,
|
| 55 |
+
beta_2=0.999
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Compile and train
|
| 59 |
+
model.compile(
|
| 60 |
+
optimizer=optimizer,
|
| 61 |
+
loss='sparse_categorical_crossentropy',
|
| 62 |
+
metrics=['accuracy']
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val))
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
## Key Features
|
| 69 |
+
|
| 70 |
+
- **Adaptive Learning Rates**: Automatically adjusts learning rates per parameter
|
| 71 |
+
- **Noise Injection**: Controlled stochastic perturbations for better exploration
|
| 72 |
+
- **TensorFlow Integration**: Drop-in replacement for standard TensorFlow optimizers
|
| 73 |
+
- **Hyperparameter Flexibility**: Customizable noise schedules and adaptation rates
|
| 74 |
+
|
| 75 |
+
## Parameters
|
| 76 |
+
|
| 77 |
+
- `learning_rate` (float, default=0.001): Initial learning rate
|
| 78 |
+
- `noise_scale` (float, default=0.01): Scale of noise injection
|
| 79 |
+
- `beta_1` (float, default=0.9): Exponential decay rate for first moment estimates
|
| 80 |
+
- `beta_2` (float, default=0.999): Exponential decay rate for second moment estimates
|
| 81 |
+
- `epsilon` (float, default=1e-7): Small constant for numerical stability
|
| 82 |
+
- `noise_decay` (float, default=0.99): Decay rate for noise scale over time
|
| 83 |
+
|
| 84 |
+
## Requirements
|
| 85 |
+
|
| 86 |
+
- Python >= 3.7
|
| 87 |
+
- TensorFlow >= 2.4.0
|
| 88 |
+
- NumPy >= 1.19.0
|
| 89 |
+
|
| 90 |
+
## Citation
|
| 91 |
+
|
| 92 |
+
If you use NEAT optimizer in your research, please cite:
|
| 93 |
+
|
| 94 |
+
```bibtex
|
| 95 |
+
@software{neat_optimizer,
|
| 96 |
+
title={NEAT: Noise-Enhanced Adaptive Training Optimizer},
|
| 97 |
+
author={Your Name},
|
| 98 |
+
year={2025},
|
| 99 |
+
url={https://github.com/yourusername/neat-optimizer}
|
| 100 |
+
}
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
## References
|
| 104 |
+
|
| 105 |
+
- Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
|
| 106 |
+
- Neelakantan, A., et al. (2015). Adding gradient noise improves learning for very deep networks. arXiv preprint arXiv:1511.06807.
|
| 107 |
+
|
| 108 |
+
## License
|
| 109 |
+
|
| 110 |
+
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
|
| 111 |
+
|
| 112 |
+
## Contributing
|
| 113 |
+
|
| 114 |
+
Contributions are welcome! Please feel free to submit a Pull Request.
|
| 115 |
+
|
| 116 |
+
## Support
|
| 117 |
+
|
| 118 |
+
For issues, questions, or feature requests, please open an issue on GitHub.
|