|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """SDAR model configuration""" | 
					
						
						|  |  | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers.modeling_rope_utils import rope_config_validation | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SDARConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`SDARModel`]. It is used to instantiate a | 
					
						
						|  | SDAR model according to the specified arguments, defining the model architecture. Instantiating a configuration | 
					
						
						|  | with the defaults will yield a similar configuration to that of | 
					
						
						|  | SDAR-1.7B [DiffuOpen/SDAR-1.7B-Chat](https://huggingface.co/DiffuOpen/SDAR-1.7B-Chat/). | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 151936): | 
					
						
						|  | Vocabulary size of the SDAR model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | `inputs_ids` passed when calling [`SDARModel`] | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 4096): | 
					
						
						|  | Dimension of the hidden representations. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 22016): | 
					
						
						|  | Dimension of the MLP representations. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | num_key_value_heads (`int`, *optional*, defaults to 32): | 
					
						
						|  | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
						
						|  | `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
						
						|  | `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
						
						|  | converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
						
						|  | by meanpooling all the original heads within that group. For more details checkout [this | 
					
						
						|  | paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. | 
					
						
						|  | head_dim (`int`, *optional*, defaults to 128): | 
					
						
						|  | The attention head dimension. | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the decoder. | 
					
						
						|  | max_position_embeddings (`int`, *optional*, defaults to 32768): | 
					
						
						|  | The maximum sequence length that this model might ever be used with. | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | rms_norm_eps (`float`, *optional*, defaults to 1e-06): | 
					
						
						|  | The epsilon used by the rms normalization layers. | 
					
						
						|  | use_cache (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
						
						|  | relevant if `config.is_decoder=True`. | 
					
						
						|  | tie_word_embeddings (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether the model's input and output word embeddings should be tied. | 
					
						
						|  | rope_theta (`float`, *optional*, defaults to 10000.0): | 
					
						
						|  | The base period of the RoPE embeddings. | 
					
						
						|  | rope_scaling (`Dict`, *optional*): | 
					
						
						|  | Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type | 
					
						
						|  | and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value | 
					
						
						|  | accordingly. | 
					
						
						|  | Expected contents: | 
					
						
						|  | `rope_type` (`str`): | 
					
						
						|  | The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', | 
					
						
						|  | 'llama3'], with 'default' being the original RoPE implementation. | 
					
						
						|  | `factor` (`float`, *optional*): | 
					
						
						|  | Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In | 
					
						
						|  | most scaling types, a `factor` of x will enable the model to handle sequences of length x * | 
					
						
						|  | original maximum pre-trained length. | 
					
						
						|  | `original_max_position_embeddings` (`int`, *optional*): | 
					
						
						|  | Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during | 
					
						
						|  | pretraining. | 
					
						
						|  | `attention_factor` (`float`, *optional*): | 
					
						
						|  | Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention | 
					
						
						|  | computation. If unspecified, it defaults to value recommended by the implementation, using the | 
					
						
						|  | `factor` field to infer the suggested value. | 
					
						
						|  | `beta_fast` (`float`, *optional*): | 
					
						
						|  | Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear | 
					
						
						|  | ramp function. If unspecified, it defaults to 32. | 
					
						
						|  | `beta_slow` (`float`, *optional*): | 
					
						
						|  | Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear | 
					
						
						|  | ramp function. If unspecified, it defaults to 1. | 
					
						
						|  | `short_factor` (`List[float]`, *optional*): | 
					
						
						|  | Only used with 'longrope'. The scaling factor to be applied to short contexts (< | 
					
						
						|  | `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | 
					
						
						|  | size divided by the number of attention heads divided by 2 | 
					
						
						|  | `long_factor` (`List[float]`, *optional*): | 
					
						
						|  | Only used with 'longrope'. The scaling factor to be applied to long contexts (< | 
					
						
						|  | `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | 
					
						
						|  | size divided by the number of attention heads divided by 2 | 
					
						
						|  | `low_freq_factor` (`float`, *optional*): | 
					
						
						|  | Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE | 
					
						
						|  | `high_freq_factor` (`float`, *optional*): | 
					
						
						|  | Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE | 
					
						
						|  | attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to use a bias in the query, key, value and output projection layers during self-attention. | 
					
						
						|  | use_sliding_window (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to use sliding window attention. | 
					
						
						|  | sliding_window (`int`, *optional*, defaults to 4096): | 
					
						
						|  | Sliding window attention (SWA) window size. If not specified, will default to `4096`. | 
					
						
						|  | max_window_layers (`int`, *optional*, defaults to 28): | 
					
						
						|  | The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. | 
					
						
						|  | attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout ratio for the attention probabilities. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import SDARModel, SDARConfig | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a SDAR style configuration | 
					
						
						|  | >>> configuration = SDARConfig() | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a model from the SDAR-8B style configuration | 
					
						
						|  | >>> model = SDARModel(configuration) | 
					
						
						|  |  | 
					
						
						|  | >>> # Accessing the model configuration | 
					
						
						|  | >>> configuration = model.config | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | model_type = "sdar" | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | base_model_tp_plan = { | 
					
						
						|  | "layers.*.self_attn.q_proj": "colwise", | 
					
						
						|  | "layers.*.self_attn.k_proj": "colwise", | 
					
						
						|  | "layers.*.self_attn.v_proj": "colwise", | 
					
						
						|  | "layers.*.self_attn.o_proj": "rowwise", | 
					
						
						|  | "layers.*.mlp.gate_proj": "colwise", | 
					
						
						|  | "layers.*.mlp.up_proj": "colwise", | 
					
						
						|  | "layers.*.mlp.down_proj": "rowwise", | 
					
						
						|  | } | 
					
						
						|  | base_model_pp_plan = { | 
					
						
						|  | "embed_tokens": (["input_ids"], ["inputs_embeds"]), | 
					
						
						|  | "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), | 
					
						
						|  | "norm": (["hidden_states"], ["hidden_states"]), | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=151936, | 
					
						
						|  | hidden_size=4096, | 
					
						
						|  | intermediate_size=22016, | 
					
						
						|  | num_hidden_layers=32, | 
					
						
						|  | num_attention_heads=32, | 
					
						
						|  | num_key_value_heads=32, | 
					
						
						|  | head_dim=128, | 
					
						
						|  | hidden_act="silu", | 
					
						
						|  | max_position_embeddings=32768, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | rms_norm_eps=1e-6, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | tie_word_embeddings=False, | 
					
						
						|  | rope_theta=10000.0, | 
					
						
						|  | rope_scaling=None, | 
					
						
						|  | attention_bias=False, | 
					
						
						|  | use_sliding_window=False, | 
					
						
						|  | sliding_window=4096, | 
					
						
						|  | max_window_layers=28, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.use_sliding_window = use_sliding_window | 
					
						
						|  | self.sliding_window = sliding_window | 
					
						
						|  | self.max_window_layers = max_window_layers | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if num_key_value_heads is None: | 
					
						
						|  | num_key_value_heads = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | self.num_key_value_heads = num_key_value_heads | 
					
						
						|  | self.head_dim = head_dim | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.rms_norm_eps = rms_norm_eps | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.rope_scaling = rope_scaling | 
					
						
						|  | self.attention_bias = attention_bias | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.rope_scaling is not None and "type" in self.rope_scaling: | 
					
						
						|  | self.rope_scaling["rope_type"] = self.rope_scaling["type"] | 
					
						
						|  | rope_config_validation(self) | 
					
						
						|  |  | 
					
						
						|  | super().__init__( | 
					
						
						|  | tie_word_embeddings=tie_word_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | __all__ = ["SDARConfig"] | 
					
						
						|  |  |