JingyaHuang
commited on
Commit
·
b05d834
1
Parent(s):
57c38d0
update model
Browse files- config.json +25 -0
- create_model.py +10 -0
- modeling_bert.py +1894 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tf_model.h5 +3 -0
- tokenizer.json +1274 -0
- tokenizer_config.json +16 -0
- vocab.txt +1124 -0
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "temp/dummy/bert/BertModel",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 32,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 37,
|
| 13 |
+
"layer_norm_eps": 1e-12,
|
| 14 |
+
"max_position_embeddings": 512,
|
| 15 |
+
"model_type": "bert",
|
| 16 |
+
"num_attention_heads": 4,
|
| 17 |
+
"num_hidden_layers": 5,
|
| 18 |
+
"pad_token_id": 0,
|
| 19 |
+
"position_embedding_type": "absolute",
|
| 20 |
+
"torch_dtype": "float32",
|
| 21 |
+
"transformers_version": "4.25.0.dev0",
|
| 22 |
+
"type_vocab_size": 16,
|
| 23 |
+
"use_cache": true,
|
| 24 |
+
"vocab_size": 1124
|
| 25 |
+
}
|
create_model.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from transformers import AutoConfig
|
| 2 |
+
|
| 3 |
+
# from modeling.modeling_bert import BertCustomLMHeadModel
|
| 4 |
+
|
| 5 |
+
# cfg = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
| 6 |
+
|
| 7 |
+
# BertCustomLMHeadModel.register_for_auto_class("AutoModelForSequenceClassification")
|
| 8 |
+
|
| 9 |
+
# model = BertCustomLMHeadModel(cfg)
|
| 10 |
+
# model.save_pretrained("/home/Jingya/hf_internship/tiny-testing-gpt2-remote-code")
|
modeling_bert.py
ADDED
|
@@ -0,0 +1,1894 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
| 3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""PyTorch BERT model."""
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
import math
|
| 20 |
+
import os
|
| 21 |
+
import warnings
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
from typing import List, Optional, Tuple, Union
|
| 24 |
+
|
| 25 |
+
import torch
|
| 26 |
+
import torch.utils.checkpoint
|
| 27 |
+
from torch import nn
|
| 28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 29 |
+
|
| 30 |
+
from ...activations import ACT2FN
|
| 31 |
+
from ...modeling_outputs import (
|
| 32 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 33 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 34 |
+
CausalLMOutputWithCrossAttentions,
|
| 35 |
+
MaskedLMOutput,
|
| 36 |
+
MultipleChoiceModelOutput,
|
| 37 |
+
NextSentencePredictorOutput,
|
| 38 |
+
QuestionAnsweringModelOutput,
|
| 39 |
+
SequenceClassifierOutput,
|
| 40 |
+
TokenClassifierOutput,
|
| 41 |
+
)
|
| 42 |
+
from ...modeling_utils import PreTrainedModel
|
| 43 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
| 44 |
+
from ...utils import (
|
| 45 |
+
ModelOutput,
|
| 46 |
+
add_code_sample_docstrings,
|
| 47 |
+
add_start_docstrings,
|
| 48 |
+
add_start_docstrings_to_model_forward,
|
| 49 |
+
logging,
|
| 50 |
+
replace_return_docstrings,
|
| 51 |
+
)
|
| 52 |
+
from .configuration_bert import BertConfig
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
logger = logging.get_logger(__name__)
|
| 56 |
+
|
| 57 |
+
_CHECKPOINT_FOR_DOC = "bert-base-uncased"
|
| 58 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
| 59 |
+
|
| 60 |
+
# TokenClassification docstring
|
| 61 |
+
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
| 62 |
+
_TOKEN_CLASS_EXPECTED_OUTPUT = (
|
| 63 |
+
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
|
| 64 |
+
)
|
| 65 |
+
_TOKEN_CLASS_EXPECTED_LOSS = 0.01
|
| 66 |
+
|
| 67 |
+
# QuestionAnswering docstring
|
| 68 |
+
_CHECKPOINT_FOR_QA = "deepset/bert-base-cased-squad2"
|
| 69 |
+
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
|
| 70 |
+
_QA_EXPECTED_LOSS = 7.41
|
| 71 |
+
_QA_TARGET_START_INDEX = 14
|
| 72 |
+
_QA_TARGET_END_INDEX = 15
|
| 73 |
+
|
| 74 |
+
# SequenceClassification docstring
|
| 75 |
+
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity"
|
| 76 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
|
| 77 |
+
_SEQ_CLASS_EXPECTED_LOSS = 0.01
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 81 |
+
"bert-base-uncased",
|
| 82 |
+
"bert-large-uncased",
|
| 83 |
+
"bert-base-cased",
|
| 84 |
+
"bert-large-cased",
|
| 85 |
+
"bert-base-multilingual-uncased",
|
| 86 |
+
"bert-base-multilingual-cased",
|
| 87 |
+
"bert-base-chinese",
|
| 88 |
+
"bert-base-german-cased",
|
| 89 |
+
"bert-large-uncased-whole-word-masking",
|
| 90 |
+
"bert-large-cased-whole-word-masking",
|
| 91 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad",
|
| 92 |
+
"bert-large-cased-whole-word-masking-finetuned-squad",
|
| 93 |
+
"bert-base-cased-finetuned-mrpc",
|
| 94 |
+
"bert-base-german-dbmdz-cased",
|
| 95 |
+
"bert-base-german-dbmdz-uncased",
|
| 96 |
+
"cl-tohoku/bert-base-japanese",
|
| 97 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking",
|
| 98 |
+
"cl-tohoku/bert-base-japanese-char",
|
| 99 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
|
| 100 |
+
"TurkuNLP/bert-base-finnish-cased-v1",
|
| 101 |
+
"TurkuNLP/bert-base-finnish-uncased-v1",
|
| 102 |
+
"wietsedv/bert-base-dutch-cased",
|
| 103 |
+
# See all BERT models at https://huggingface.co/models?filter=bert
|
| 104 |
+
]
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
|
| 108 |
+
"""Load tf checkpoints in a pytorch model."""
|
| 109 |
+
try:
|
| 110 |
+
import re
|
| 111 |
+
|
| 112 |
+
import numpy as np
|
| 113 |
+
import tensorflow as tf
|
| 114 |
+
except ImportError:
|
| 115 |
+
logger.error(
|
| 116 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
| 117 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
| 118 |
+
)
|
| 119 |
+
raise
|
| 120 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
| 121 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
| 122 |
+
# Load weights from TF model
|
| 123 |
+
init_vars = tf.train.list_variables(tf_path)
|
| 124 |
+
names = []
|
| 125 |
+
arrays = []
|
| 126 |
+
for name, shape in init_vars:
|
| 127 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
| 128 |
+
array = tf.train.load_variable(tf_path, name)
|
| 129 |
+
names.append(name)
|
| 130 |
+
arrays.append(array)
|
| 131 |
+
|
| 132 |
+
for name, array in zip(names, arrays):
|
| 133 |
+
name = name.split("/")
|
| 134 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
| 135 |
+
# which are not required for using pretrained model
|
| 136 |
+
if any(
|
| 137 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
| 138 |
+
for n in name
|
| 139 |
+
):
|
| 140 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
| 141 |
+
continue
|
| 142 |
+
pointer = model
|
| 143 |
+
for m_name in name:
|
| 144 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
| 145 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
| 146 |
+
else:
|
| 147 |
+
scope_names = [m_name]
|
| 148 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
| 149 |
+
pointer = getattr(pointer, "weight")
|
| 150 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
| 151 |
+
pointer = getattr(pointer, "bias")
|
| 152 |
+
elif scope_names[0] == "output_weights":
|
| 153 |
+
pointer = getattr(pointer, "weight")
|
| 154 |
+
elif scope_names[0] == "squad":
|
| 155 |
+
pointer = getattr(pointer, "classifier")
|
| 156 |
+
else:
|
| 157 |
+
try:
|
| 158 |
+
pointer = getattr(pointer, scope_names[0])
|
| 159 |
+
except AttributeError:
|
| 160 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
| 161 |
+
continue
|
| 162 |
+
if len(scope_names) >= 2:
|
| 163 |
+
num = int(scope_names[1])
|
| 164 |
+
pointer = pointer[num]
|
| 165 |
+
if m_name[-11:] == "_embeddings":
|
| 166 |
+
pointer = getattr(pointer, "weight")
|
| 167 |
+
elif m_name == "kernel":
|
| 168 |
+
array = np.transpose(array)
|
| 169 |
+
try:
|
| 170 |
+
if pointer.shape != array.shape:
|
| 171 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
| 172 |
+
except AssertionError as e:
|
| 173 |
+
e.args += (pointer.shape, array.shape)
|
| 174 |
+
raise
|
| 175 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
| 176 |
+
pointer.data = torch.from_numpy(array)
|
| 177 |
+
return model
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class BertEmbeddings(nn.Module):
|
| 181 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
| 182 |
+
|
| 183 |
+
def __init__(self, config):
|
| 184 |
+
super().__init__()
|
| 185 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
| 186 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
| 187 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
| 188 |
+
|
| 189 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 190 |
+
# any TensorFlow checkpoint file
|
| 191 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 192 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 193 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 194 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
| 195 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
| 196 |
+
self.register_buffer(
|
| 197 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
def forward(
|
| 201 |
+
self,
|
| 202 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 203 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 204 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 205 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 206 |
+
past_key_values_length: int = 0,
|
| 207 |
+
) -> torch.Tensor:
|
| 208 |
+
if input_ids is not None:
|
| 209 |
+
input_shape = input_ids.size()
|
| 210 |
+
else:
|
| 211 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 212 |
+
|
| 213 |
+
seq_length = input_shape[1]
|
| 214 |
+
|
| 215 |
+
if position_ids is None:
|
| 216 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
| 217 |
+
|
| 218 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
| 219 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
| 220 |
+
# issue #5664
|
| 221 |
+
if token_type_ids is None:
|
| 222 |
+
if hasattr(self, "token_type_ids"):
|
| 223 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
| 224 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
| 225 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 226 |
+
else:
|
| 227 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
| 228 |
+
|
| 229 |
+
if inputs_embeds is None:
|
| 230 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 231 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 232 |
+
|
| 233 |
+
embeddings = inputs_embeds + token_type_embeddings
|
| 234 |
+
if self.position_embedding_type == "absolute":
|
| 235 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 236 |
+
embeddings += position_embeddings
|
| 237 |
+
embeddings = self.LayerNorm(embeddings)
|
| 238 |
+
embeddings = self.dropout(embeddings)
|
| 239 |
+
return embeddings
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
class BertSelfAttention(nn.Module):
|
| 243 |
+
def __init__(self, config, position_embedding_type=None):
|
| 244 |
+
super().__init__()
|
| 245 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
| 246 |
+
raise ValueError(
|
| 247 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 248 |
+
f"heads ({config.num_attention_heads})"
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
self.num_attention_heads = config.num_attention_heads
|
| 252 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 253 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 254 |
+
|
| 255 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 256 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 257 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 258 |
+
|
| 259 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 260 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
| 261 |
+
config, "position_embedding_type", "absolute"
|
| 262 |
+
)
|
| 263 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
| 264 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 265 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
| 266 |
+
|
| 267 |
+
self.is_decoder = config.is_decoder
|
| 268 |
+
|
| 269 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
| 270 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 271 |
+
x = x.view(new_x_shape)
|
| 272 |
+
return x.permute(0, 2, 1, 3)
|
| 273 |
+
|
| 274 |
+
def forward(
|
| 275 |
+
self,
|
| 276 |
+
hidden_states: torch.Tensor,
|
| 277 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 278 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 279 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 280 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 281 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 282 |
+
output_attentions: Optional[bool] = False,
|
| 283 |
+
) -> Tuple[torch.Tensor]:
|
| 284 |
+
mixed_query_layer = self.query(hidden_states)
|
| 285 |
+
|
| 286 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 287 |
+
# and values come from an encoder; the attention mask needs to be
|
| 288 |
+
# such that the encoder's padding tokens are not attended to.
|
| 289 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 290 |
+
|
| 291 |
+
if is_cross_attention and past_key_value is not None:
|
| 292 |
+
# reuse k,v, cross_attentions
|
| 293 |
+
key_layer = past_key_value[0]
|
| 294 |
+
value_layer = past_key_value[1]
|
| 295 |
+
attention_mask = encoder_attention_mask
|
| 296 |
+
elif is_cross_attention:
|
| 297 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
| 298 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
| 299 |
+
attention_mask = encoder_attention_mask
|
| 300 |
+
elif past_key_value is not None:
|
| 301 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 302 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 303 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
| 304 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
| 305 |
+
else:
|
| 306 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 307 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 308 |
+
|
| 309 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 310 |
+
|
| 311 |
+
use_cache = past_key_value is not None
|
| 312 |
+
if self.is_decoder:
|
| 313 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
| 314 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
| 315 |
+
# key/value_states (first "if" case)
|
| 316 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
| 317 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
| 318 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
| 319 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
| 320 |
+
past_key_value = (key_layer, value_layer)
|
| 321 |
+
|
| 322 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 323 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 324 |
+
|
| 325 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
| 326 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
| 327 |
+
if use_cache:
|
| 328 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
| 329 |
+
-1, 1
|
| 330 |
+
)
|
| 331 |
+
else:
|
| 332 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
| 333 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
| 334 |
+
distance = position_ids_l - position_ids_r
|
| 335 |
+
|
| 336 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
| 337 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
| 338 |
+
|
| 339 |
+
if self.position_embedding_type == "relative_key":
|
| 340 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
| 341 |
+
attention_scores = attention_scores + relative_position_scores
|
| 342 |
+
elif self.position_embedding_type == "relative_key_query":
|
| 343 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
| 344 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
| 345 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
| 346 |
+
|
| 347 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 348 |
+
if attention_mask is not None:
|
| 349 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
| 350 |
+
attention_scores = attention_scores + attention_mask
|
| 351 |
+
|
| 352 |
+
# Normalize the attention scores to probabilities.
|
| 353 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 354 |
+
|
| 355 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 356 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 357 |
+
attention_probs = self.dropout(attention_probs)
|
| 358 |
+
|
| 359 |
+
# Mask heads if we want to
|
| 360 |
+
if head_mask is not None:
|
| 361 |
+
attention_probs = attention_probs * head_mask
|
| 362 |
+
|
| 363 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 364 |
+
|
| 365 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 366 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 367 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
| 368 |
+
|
| 369 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
| 370 |
+
|
| 371 |
+
if self.is_decoder:
|
| 372 |
+
outputs = outputs + (past_key_value,)
|
| 373 |
+
return outputs
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
class BertSelfOutput(nn.Module):
|
| 377 |
+
def __init__(self, config):
|
| 378 |
+
super().__init__()
|
| 379 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 380 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 381 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 382 |
+
|
| 383 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 384 |
+
hidden_states = self.dense(hidden_states)
|
| 385 |
+
hidden_states = self.dropout(hidden_states)
|
| 386 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 387 |
+
return hidden_states
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
class BertAttention(nn.Module):
|
| 391 |
+
def __init__(self, config, position_embedding_type=None):
|
| 392 |
+
super().__init__()
|
| 393 |
+
self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type)
|
| 394 |
+
self.output = BertSelfOutput(config)
|
| 395 |
+
self.pruned_heads = set()
|
| 396 |
+
|
| 397 |
+
def prune_heads(self, heads):
|
| 398 |
+
if len(heads) == 0:
|
| 399 |
+
return
|
| 400 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 401 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
# Prune linear layers
|
| 405 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
| 406 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
| 407 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
| 408 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
| 409 |
+
|
| 410 |
+
# Update hyper params and store pruned heads
|
| 411 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
| 412 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
| 413 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 414 |
+
|
| 415 |
+
def forward(
|
| 416 |
+
self,
|
| 417 |
+
hidden_states: torch.Tensor,
|
| 418 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 419 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 420 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 421 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 422 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 423 |
+
output_attentions: Optional[bool] = False,
|
| 424 |
+
) -> Tuple[torch.Tensor]:
|
| 425 |
+
self_outputs = self.self(
|
| 426 |
+
hidden_states,
|
| 427 |
+
attention_mask,
|
| 428 |
+
head_mask,
|
| 429 |
+
encoder_hidden_states,
|
| 430 |
+
encoder_attention_mask,
|
| 431 |
+
past_key_value,
|
| 432 |
+
output_attentions,
|
| 433 |
+
)
|
| 434 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 435 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
| 436 |
+
return outputs
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
class BertIntermediate(nn.Module):
|
| 440 |
+
def __init__(self, config):
|
| 441 |
+
super().__init__()
|
| 442 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 443 |
+
if isinstance(config.hidden_act, str):
|
| 444 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 445 |
+
else:
|
| 446 |
+
self.intermediate_act_fn = config.hidden_act
|
| 447 |
+
|
| 448 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 449 |
+
hidden_states = self.dense(hidden_states)
|
| 450 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 451 |
+
return hidden_states
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
class BertOutput(nn.Module):
|
| 455 |
+
def __init__(self, config):
|
| 456 |
+
super().__init__()
|
| 457 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 458 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 459 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 460 |
+
|
| 461 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 462 |
+
hidden_states = self.dense(hidden_states)
|
| 463 |
+
hidden_states = self.dropout(hidden_states)
|
| 464 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 465 |
+
return hidden_states
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
class BertLayer(nn.Module):
|
| 469 |
+
def __init__(self, config):
|
| 470 |
+
super().__init__()
|
| 471 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 472 |
+
self.seq_len_dim = 1
|
| 473 |
+
self.attention = BertAttention(config)
|
| 474 |
+
self.is_decoder = config.is_decoder
|
| 475 |
+
self.add_cross_attention = config.add_cross_attention
|
| 476 |
+
if self.add_cross_attention:
|
| 477 |
+
if not self.is_decoder:
|
| 478 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
| 479 |
+
self.crossattention = BertAttention(config, position_embedding_type="absolute")
|
| 480 |
+
self.intermediate = BertIntermediate(config)
|
| 481 |
+
self.output = BertOutput(config)
|
| 482 |
+
|
| 483 |
+
def forward(
|
| 484 |
+
self,
|
| 485 |
+
hidden_states: torch.Tensor,
|
| 486 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 487 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 488 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 489 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 490 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 491 |
+
output_attentions: Optional[bool] = False,
|
| 492 |
+
) -> Tuple[torch.Tensor]:
|
| 493 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
| 494 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
| 495 |
+
self_attention_outputs = self.attention(
|
| 496 |
+
hidden_states,
|
| 497 |
+
attention_mask,
|
| 498 |
+
head_mask,
|
| 499 |
+
output_attentions=output_attentions,
|
| 500 |
+
past_key_value=self_attn_past_key_value,
|
| 501 |
+
)
|
| 502 |
+
attention_output = self_attention_outputs[0]
|
| 503 |
+
|
| 504 |
+
# if decoder, the last output is tuple of self-attn cache
|
| 505 |
+
if self.is_decoder:
|
| 506 |
+
outputs = self_attention_outputs[1:-1]
|
| 507 |
+
present_key_value = self_attention_outputs[-1]
|
| 508 |
+
else:
|
| 509 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
| 510 |
+
|
| 511 |
+
cross_attn_present_key_value = None
|
| 512 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 513 |
+
if not hasattr(self, "crossattention"):
|
| 514 |
+
raise ValueError(
|
| 515 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
| 516 |
+
" by setting `config.add_cross_attention=True`"
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
| 520 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
| 521 |
+
cross_attention_outputs = self.crossattention(
|
| 522 |
+
attention_output,
|
| 523 |
+
attention_mask,
|
| 524 |
+
head_mask,
|
| 525 |
+
encoder_hidden_states,
|
| 526 |
+
encoder_attention_mask,
|
| 527 |
+
cross_attn_past_key_value,
|
| 528 |
+
output_attentions,
|
| 529 |
+
)
|
| 530 |
+
attention_output = cross_attention_outputs[0]
|
| 531 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
| 532 |
+
|
| 533 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
| 534 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
| 535 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
| 536 |
+
|
| 537 |
+
layer_output = apply_chunking_to_forward(
|
| 538 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
| 539 |
+
)
|
| 540 |
+
outputs = (layer_output,) + outputs
|
| 541 |
+
|
| 542 |
+
# if decoder, return the attn key/values as the last output
|
| 543 |
+
if self.is_decoder:
|
| 544 |
+
outputs = outputs + (present_key_value,)
|
| 545 |
+
|
| 546 |
+
return outputs
|
| 547 |
+
|
| 548 |
+
def feed_forward_chunk(self, attention_output):
|
| 549 |
+
intermediate_output = self.intermediate(attention_output)
|
| 550 |
+
layer_output = self.output(intermediate_output, attention_output)
|
| 551 |
+
return layer_output
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
class BertEncoder(nn.Module):
|
| 555 |
+
def __init__(self, config):
|
| 556 |
+
super().__init__()
|
| 557 |
+
self.config = config
|
| 558 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
| 559 |
+
self.gradient_checkpointing = False
|
| 560 |
+
|
| 561 |
+
def forward(
|
| 562 |
+
self,
|
| 563 |
+
hidden_states: torch.Tensor,
|
| 564 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 565 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 566 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 567 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 568 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 569 |
+
use_cache: Optional[bool] = None,
|
| 570 |
+
output_attentions: Optional[bool] = False,
|
| 571 |
+
output_hidden_states: Optional[bool] = False,
|
| 572 |
+
return_dict: Optional[bool] = True,
|
| 573 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
| 574 |
+
all_hidden_states = () if output_hidden_states else None
|
| 575 |
+
all_self_attentions = () if output_attentions else None
|
| 576 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
| 577 |
+
|
| 578 |
+
if self.gradient_checkpointing and self.training:
|
| 579 |
+
if use_cache:
|
| 580 |
+
logger.warning_once(
|
| 581 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 582 |
+
)
|
| 583 |
+
use_cache = False
|
| 584 |
+
|
| 585 |
+
next_decoder_cache = () if use_cache else None
|
| 586 |
+
for i, layer_module in enumerate(self.layer):
|
| 587 |
+
if output_hidden_states:
|
| 588 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 589 |
+
|
| 590 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 591 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 592 |
+
|
| 593 |
+
if self.gradient_checkpointing and self.training:
|
| 594 |
+
|
| 595 |
+
def create_custom_forward(module):
|
| 596 |
+
def custom_forward(*inputs):
|
| 597 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 598 |
+
|
| 599 |
+
return custom_forward
|
| 600 |
+
|
| 601 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 602 |
+
create_custom_forward(layer_module),
|
| 603 |
+
hidden_states,
|
| 604 |
+
attention_mask,
|
| 605 |
+
layer_head_mask,
|
| 606 |
+
encoder_hidden_states,
|
| 607 |
+
encoder_attention_mask,
|
| 608 |
+
)
|
| 609 |
+
else:
|
| 610 |
+
layer_outputs = layer_module(
|
| 611 |
+
hidden_states,
|
| 612 |
+
attention_mask,
|
| 613 |
+
layer_head_mask,
|
| 614 |
+
encoder_hidden_states,
|
| 615 |
+
encoder_attention_mask,
|
| 616 |
+
past_key_value,
|
| 617 |
+
output_attentions,
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
hidden_states = layer_outputs[0]
|
| 621 |
+
if use_cache:
|
| 622 |
+
next_decoder_cache += (layer_outputs[-1],)
|
| 623 |
+
if output_attentions:
|
| 624 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 625 |
+
if self.config.add_cross_attention:
|
| 626 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
| 627 |
+
|
| 628 |
+
if output_hidden_states:
|
| 629 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 630 |
+
|
| 631 |
+
if not return_dict:
|
| 632 |
+
return tuple(
|
| 633 |
+
v
|
| 634 |
+
for v in [
|
| 635 |
+
hidden_states,
|
| 636 |
+
next_decoder_cache,
|
| 637 |
+
all_hidden_states,
|
| 638 |
+
all_self_attentions,
|
| 639 |
+
all_cross_attentions,
|
| 640 |
+
]
|
| 641 |
+
if v is not None
|
| 642 |
+
)
|
| 643 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 644 |
+
last_hidden_state=hidden_states,
|
| 645 |
+
past_key_values=next_decoder_cache,
|
| 646 |
+
hidden_states=all_hidden_states,
|
| 647 |
+
attentions=all_self_attentions,
|
| 648 |
+
cross_attentions=all_cross_attentions,
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
class BertPooler(nn.Module):
|
| 653 |
+
def __init__(self, config):
|
| 654 |
+
super().__init__()
|
| 655 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 656 |
+
self.activation = nn.Tanh()
|
| 657 |
+
|
| 658 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 659 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 660 |
+
# to the first token.
|
| 661 |
+
first_token_tensor = hidden_states[:, 0]
|
| 662 |
+
pooled_output = self.dense(first_token_tensor)
|
| 663 |
+
pooled_output = self.activation(pooled_output)
|
| 664 |
+
return pooled_output
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
class BertPredictionHeadTransform(nn.Module):
|
| 668 |
+
def __init__(self, config):
|
| 669 |
+
super().__init__()
|
| 670 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 671 |
+
if isinstance(config.hidden_act, str):
|
| 672 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
| 673 |
+
else:
|
| 674 |
+
self.transform_act_fn = config.hidden_act
|
| 675 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 676 |
+
|
| 677 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 678 |
+
hidden_states = self.dense(hidden_states)
|
| 679 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
| 680 |
+
hidden_states = self.LayerNorm(hidden_states)
|
| 681 |
+
return hidden_states
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
class BertLMPredictionHead(nn.Module):
|
| 685 |
+
def __init__(self, config):
|
| 686 |
+
super().__init__()
|
| 687 |
+
self.transform = BertPredictionHeadTransform(config)
|
| 688 |
+
|
| 689 |
+
# The output weights are the same as the input embeddings, but there is
|
| 690 |
+
# an output-only bias for each token.
|
| 691 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 692 |
+
|
| 693 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
| 694 |
+
|
| 695 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
| 696 |
+
self.decoder.bias = self.bias
|
| 697 |
+
|
| 698 |
+
def forward(self, hidden_states):
|
| 699 |
+
hidden_states = self.transform(hidden_states)
|
| 700 |
+
hidden_states = self.decoder(hidden_states)
|
| 701 |
+
return hidden_states
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
class BertOnlyMLMHead(nn.Module):
|
| 705 |
+
def __init__(self, config):
|
| 706 |
+
super().__init__()
|
| 707 |
+
self.predictions = BertLMPredictionHead(config)
|
| 708 |
+
|
| 709 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
| 710 |
+
prediction_scores = self.predictions(sequence_output)
|
| 711 |
+
return prediction_scores
|
| 712 |
+
|
| 713 |
+
|
| 714 |
+
class BertOnlyNSPHead(nn.Module):
|
| 715 |
+
def __init__(self, config):
|
| 716 |
+
super().__init__()
|
| 717 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
| 718 |
+
|
| 719 |
+
def forward(self, pooled_output):
|
| 720 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
| 721 |
+
return seq_relationship_score
|
| 722 |
+
|
| 723 |
+
|
| 724 |
+
class BertPreTrainingHeads(nn.Module):
|
| 725 |
+
def __init__(self, config):
|
| 726 |
+
super().__init__()
|
| 727 |
+
self.predictions = BertLMPredictionHead(config)
|
| 728 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
| 729 |
+
|
| 730 |
+
def forward(self, sequence_output, pooled_output):
|
| 731 |
+
prediction_scores = self.predictions(sequence_output)
|
| 732 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
| 733 |
+
return prediction_scores, seq_relationship_score
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
class BertPreTrainedModel(PreTrainedModel):
|
| 737 |
+
"""
|
| 738 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 739 |
+
models.
|
| 740 |
+
"""
|
| 741 |
+
|
| 742 |
+
config_class = BertConfig
|
| 743 |
+
load_tf_weights = load_tf_weights_in_bert
|
| 744 |
+
base_model_prefix = "bert"
|
| 745 |
+
supports_gradient_checkpointing = True
|
| 746 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 747 |
+
|
| 748 |
+
def _init_weights(self, module):
|
| 749 |
+
"""Initialize the weights"""
|
| 750 |
+
if isinstance(module, nn.Linear):
|
| 751 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 752 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 753 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 754 |
+
if module.bias is not None:
|
| 755 |
+
module.bias.data.zero_()
|
| 756 |
+
elif isinstance(module, nn.Embedding):
|
| 757 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 758 |
+
if module.padding_idx is not None:
|
| 759 |
+
module.weight.data[module.padding_idx].zero_()
|
| 760 |
+
elif isinstance(module, nn.LayerNorm):
|
| 761 |
+
module.bias.data.zero_()
|
| 762 |
+
module.weight.data.fill_(1.0)
|
| 763 |
+
|
| 764 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 765 |
+
if isinstance(module, BertEncoder):
|
| 766 |
+
module.gradient_checkpointing = value
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
@dataclass
|
| 770 |
+
class BertForPreTrainingOutput(ModelOutput):
|
| 771 |
+
"""
|
| 772 |
+
Output type of [`BertForPreTraining`].
|
| 773 |
+
|
| 774 |
+
Args:
|
| 775 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
| 776 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
| 777 |
+
(classification) loss.
|
| 778 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 779 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 780 |
+
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
| 781 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
| 782 |
+
before SoftMax).
|
| 783 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 784 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
| 785 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
| 786 |
+
|
| 787 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
| 788 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 789 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 790 |
+
sequence_length)`.
|
| 791 |
+
|
| 792 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 793 |
+
heads.
|
| 794 |
+
"""
|
| 795 |
+
|
| 796 |
+
loss: Optional[torch.FloatTensor] = None
|
| 797 |
+
prediction_logits: torch.FloatTensor = None
|
| 798 |
+
seq_relationship_logits: torch.FloatTensor = None
|
| 799 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 800 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 801 |
+
|
| 802 |
+
|
| 803 |
+
BERT_START_DOCSTRING = r"""
|
| 804 |
+
|
| 805 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 806 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 807 |
+
etc.)
|
| 808 |
+
|
| 809 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 810 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 811 |
+
and behavior.
|
| 812 |
+
|
| 813 |
+
Parameters:
|
| 814 |
+
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
|
| 815 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 816 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 817 |
+
"""
|
| 818 |
+
|
| 819 |
+
BERT_INPUTS_DOCSTRING = r"""
|
| 820 |
+
Args:
|
| 821 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
| 822 |
+
Indices of input sequence tokens in the vocabulary.
|
| 823 |
+
|
| 824 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 825 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 826 |
+
|
| 827 |
+
[What are input IDs?](../glossary#input-ids)
|
| 828 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
| 829 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 830 |
+
|
| 831 |
+
- 1 for tokens that are **not masked**,
|
| 832 |
+
- 0 for tokens that are **masked**.
|
| 833 |
+
|
| 834 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 835 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 836 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 837 |
+
1]`:
|
| 838 |
+
|
| 839 |
+
- 0 corresponds to a *sentence A* token,
|
| 840 |
+
- 1 corresponds to a *sentence B* token.
|
| 841 |
+
|
| 842 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 843 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 844 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 845 |
+
config.max_position_embeddings - 1]`.
|
| 846 |
+
|
| 847 |
+
[What are position IDs?](../glossary#position-ids)
|
| 848 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 849 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 850 |
+
|
| 851 |
+
- 1 indicates the head is **not masked**,
|
| 852 |
+
- 0 indicates the head is **masked**.
|
| 853 |
+
|
| 854 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
| 855 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 856 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 857 |
+
model's internal embedding lookup matrix.
|
| 858 |
+
output_attentions (`bool`, *optional*):
|
| 859 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 860 |
+
tensors for more detail.
|
| 861 |
+
output_hidden_states (`bool`, *optional*):
|
| 862 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 863 |
+
more detail.
|
| 864 |
+
return_dict (`bool`, *optional*):
|
| 865 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 866 |
+
"""
|
| 867 |
+
|
| 868 |
+
|
| 869 |
+
@add_start_docstrings(
|
| 870 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
| 871 |
+
BERT_START_DOCSTRING,
|
| 872 |
+
)
|
| 873 |
+
class BertModel(BertPreTrainedModel):
|
| 874 |
+
"""
|
| 875 |
+
|
| 876 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
| 877 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
| 878 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
| 879 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
| 880 |
+
|
| 881 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
| 882 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
| 883 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
| 884 |
+
"""
|
| 885 |
+
|
| 886 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 887 |
+
super().__init__(config)
|
| 888 |
+
self.config = config
|
| 889 |
+
|
| 890 |
+
self.embeddings = BertEmbeddings(config)
|
| 891 |
+
self.encoder = BertEncoder(config)
|
| 892 |
+
|
| 893 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
| 894 |
+
|
| 895 |
+
# Initialize weights and apply final processing
|
| 896 |
+
self.post_init()
|
| 897 |
+
|
| 898 |
+
def get_input_embeddings(self):
|
| 899 |
+
return self.embeddings.word_embeddings
|
| 900 |
+
|
| 901 |
+
def set_input_embeddings(self, value):
|
| 902 |
+
self.embeddings.word_embeddings = value
|
| 903 |
+
|
| 904 |
+
def _prune_heads(self, heads_to_prune):
|
| 905 |
+
"""
|
| 906 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 907 |
+
class PreTrainedModel
|
| 908 |
+
"""
|
| 909 |
+
for layer, heads in heads_to_prune.items():
|
| 910 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 911 |
+
|
| 912 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 913 |
+
@add_code_sample_docstrings(
|
| 914 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 915 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
| 916 |
+
config_class=_CONFIG_FOR_DOC,
|
| 917 |
+
)
|
| 918 |
+
def forward(
|
| 919 |
+
self,
|
| 920 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 921 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 922 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 923 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 924 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 925 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 926 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 927 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 928 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 929 |
+
use_cache: Optional[bool] = None,
|
| 930 |
+
output_attentions: Optional[bool] = None,
|
| 931 |
+
output_hidden_states: Optional[bool] = None,
|
| 932 |
+
return_dict: Optional[bool] = None,
|
| 933 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
| 934 |
+
r"""
|
| 935 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 936 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 937 |
+
the model is configured as a decoder.
|
| 938 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 939 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 940 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 941 |
+
|
| 942 |
+
- 1 for tokens that are **not masked**,
|
| 943 |
+
- 0 for tokens that are **masked**.
|
| 944 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 945 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 946 |
+
|
| 947 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 948 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 949 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 950 |
+
use_cache (`bool`, *optional*):
|
| 951 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 952 |
+
`past_key_values`).
|
| 953 |
+
"""
|
| 954 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 955 |
+
output_hidden_states = (
|
| 956 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 957 |
+
)
|
| 958 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 959 |
+
|
| 960 |
+
if self.config.is_decoder:
|
| 961 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 962 |
+
else:
|
| 963 |
+
use_cache = False
|
| 964 |
+
|
| 965 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 966 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 967 |
+
elif input_ids is not None:
|
| 968 |
+
input_shape = input_ids.size()
|
| 969 |
+
elif inputs_embeds is not None:
|
| 970 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 971 |
+
else:
|
| 972 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 973 |
+
|
| 974 |
+
batch_size, seq_length = input_shape
|
| 975 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 976 |
+
|
| 977 |
+
# past_key_values_length
|
| 978 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 979 |
+
|
| 980 |
+
if attention_mask is None:
|
| 981 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
| 982 |
+
|
| 983 |
+
if token_type_ids is None:
|
| 984 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
| 985 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
| 986 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
| 987 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 988 |
+
else:
|
| 989 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
| 990 |
+
|
| 991 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 992 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 993 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
| 994 |
+
|
| 995 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 996 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 997 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
| 998 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 999 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 1000 |
+
if encoder_attention_mask is None:
|
| 1001 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 1002 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 1003 |
+
else:
|
| 1004 |
+
encoder_extended_attention_mask = None
|
| 1005 |
+
|
| 1006 |
+
# Prepare head mask if needed
|
| 1007 |
+
# 1.0 in head_mask indicate we keep the head
|
| 1008 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 1009 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 1010 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 1011 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 1012 |
+
|
| 1013 |
+
embedding_output = self.embeddings(
|
| 1014 |
+
input_ids=input_ids,
|
| 1015 |
+
position_ids=position_ids,
|
| 1016 |
+
token_type_ids=token_type_ids,
|
| 1017 |
+
inputs_embeds=inputs_embeds,
|
| 1018 |
+
past_key_values_length=past_key_values_length,
|
| 1019 |
+
)
|
| 1020 |
+
encoder_outputs = self.encoder(
|
| 1021 |
+
embedding_output,
|
| 1022 |
+
attention_mask=extended_attention_mask,
|
| 1023 |
+
head_mask=head_mask,
|
| 1024 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1025 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 1026 |
+
past_key_values=past_key_values,
|
| 1027 |
+
use_cache=use_cache,
|
| 1028 |
+
output_attentions=output_attentions,
|
| 1029 |
+
output_hidden_states=output_hidden_states,
|
| 1030 |
+
return_dict=return_dict,
|
| 1031 |
+
)
|
| 1032 |
+
sequence_output = encoder_outputs[0]
|
| 1033 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 1034 |
+
|
| 1035 |
+
if not return_dict:
|
| 1036 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 1037 |
+
|
| 1038 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 1039 |
+
last_hidden_state=sequence_output,
|
| 1040 |
+
pooler_output=pooled_output,
|
| 1041 |
+
past_key_values=encoder_outputs.past_key_values,
|
| 1042 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1043 |
+
attentions=encoder_outputs.attentions,
|
| 1044 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
| 1045 |
+
)
|
| 1046 |
+
|
| 1047 |
+
|
| 1048 |
+
@add_start_docstrings(
|
| 1049 |
+
"""
|
| 1050 |
+
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
| 1051 |
+
sentence prediction (classification)` head.
|
| 1052 |
+
""",
|
| 1053 |
+
BERT_START_DOCSTRING,
|
| 1054 |
+
)
|
| 1055 |
+
class BertForPreTraining(BertPreTrainedModel):
|
| 1056 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias", r"cls.predictions.decoder.weight"]
|
| 1057 |
+
|
| 1058 |
+
def __init__(self, config):
|
| 1059 |
+
super().__init__(config)
|
| 1060 |
+
|
| 1061 |
+
self.bert = BertModel(config)
|
| 1062 |
+
self.cls = BertPreTrainingHeads(config)
|
| 1063 |
+
|
| 1064 |
+
# Initialize weights and apply final processing
|
| 1065 |
+
self.post_init()
|
| 1066 |
+
|
| 1067 |
+
def get_output_embeddings(self):
|
| 1068 |
+
return self.cls.predictions.decoder
|
| 1069 |
+
|
| 1070 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1071 |
+
self.cls.predictions.decoder = new_embeddings
|
| 1072 |
+
|
| 1073 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1074 |
+
@replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
| 1075 |
+
def forward(
|
| 1076 |
+
self,
|
| 1077 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1078 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1079 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1080 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1081 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1082 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1083 |
+
labels: Optional[torch.Tensor] = None,
|
| 1084 |
+
next_sentence_label: Optional[torch.Tensor] = None,
|
| 1085 |
+
output_attentions: Optional[bool] = None,
|
| 1086 |
+
output_hidden_states: Optional[bool] = None,
|
| 1087 |
+
return_dict: Optional[bool] = None,
|
| 1088 |
+
) -> Union[Tuple[torch.Tensor], BertForPreTrainingOutput]:
|
| 1089 |
+
r"""
|
| 1090 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1091 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 1092 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
|
| 1093 |
+
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
| 1094 |
+
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1095 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
|
| 1096 |
+
pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
|
| 1097 |
+
|
| 1098 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
| 1099 |
+
- 1 indicates sequence B is a random sequence.
|
| 1100 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
| 1101 |
+
Used to hide legacy arguments that have been deprecated.
|
| 1102 |
+
|
| 1103 |
+
Returns:
|
| 1104 |
+
|
| 1105 |
+
Example:
|
| 1106 |
+
|
| 1107 |
+
```python
|
| 1108 |
+
>>> from transformers import AutoTokenizer, BertForPreTraining
|
| 1109 |
+
>>> import torch
|
| 1110 |
+
|
| 1111 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 1112 |
+
>>> model = BertForPreTraining.from_pretrained("bert-base-uncased")
|
| 1113 |
+
|
| 1114 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
| 1115 |
+
>>> outputs = model(**inputs)
|
| 1116 |
+
|
| 1117 |
+
>>> prediction_logits = outputs.prediction_logits
|
| 1118 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
| 1119 |
+
```
|
| 1120 |
+
"""
|
| 1121 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1122 |
+
|
| 1123 |
+
outputs = self.bert(
|
| 1124 |
+
input_ids,
|
| 1125 |
+
attention_mask=attention_mask,
|
| 1126 |
+
token_type_ids=token_type_ids,
|
| 1127 |
+
position_ids=position_ids,
|
| 1128 |
+
head_mask=head_mask,
|
| 1129 |
+
inputs_embeds=inputs_embeds,
|
| 1130 |
+
output_attentions=output_attentions,
|
| 1131 |
+
output_hidden_states=output_hidden_states,
|
| 1132 |
+
return_dict=return_dict,
|
| 1133 |
+
)
|
| 1134 |
+
|
| 1135 |
+
sequence_output, pooled_output = outputs[:2]
|
| 1136 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
| 1137 |
+
|
| 1138 |
+
total_loss = None
|
| 1139 |
+
if labels is not None and next_sentence_label is not None:
|
| 1140 |
+
loss_fct = CrossEntropyLoss()
|
| 1141 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 1142 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
| 1143 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
| 1144 |
+
|
| 1145 |
+
if not return_dict:
|
| 1146 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
| 1147 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1148 |
+
|
| 1149 |
+
return BertForPreTrainingOutput(
|
| 1150 |
+
loss=total_loss,
|
| 1151 |
+
prediction_logits=prediction_scores,
|
| 1152 |
+
seq_relationship_logits=seq_relationship_score,
|
| 1153 |
+
hidden_states=outputs.hidden_states,
|
| 1154 |
+
attentions=outputs.attentions,
|
| 1155 |
+
)
|
| 1156 |
+
|
| 1157 |
+
|
| 1158 |
+
@add_start_docstrings(
|
| 1159 |
+
"""Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING
|
| 1160 |
+
)
|
| 1161 |
+
class BertCustomLMHeadModel(BertPreTrainedModel):
|
| 1162 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1163 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias", r"cls.predictions.decoder.weight"]
|
| 1164 |
+
|
| 1165 |
+
def __init__(self, config):
|
| 1166 |
+
super().__init__(config)
|
| 1167 |
+
|
| 1168 |
+
if not config.is_decoder:
|
| 1169 |
+
logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`")
|
| 1170 |
+
|
| 1171 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 1172 |
+
self.cls = BertOnlyMLMHead(config)
|
| 1173 |
+
|
| 1174 |
+
# Initialize weights and apply final processing
|
| 1175 |
+
self.post_init()
|
| 1176 |
+
|
| 1177 |
+
def get_output_embeddings(self):
|
| 1178 |
+
return self.cls.predictions.decoder
|
| 1179 |
+
|
| 1180 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1181 |
+
self.cls.predictions.decoder = new_embeddings
|
| 1182 |
+
|
| 1183 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1184 |
+
@add_code_sample_docstrings(
|
| 1185 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1186 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
| 1187 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1188 |
+
)
|
| 1189 |
+
def forward(
|
| 1190 |
+
self,
|
| 1191 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1192 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1193 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1194 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1195 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1196 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1197 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 1198 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 1199 |
+
labels: Optional[torch.Tensor] = None,
|
| 1200 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
| 1201 |
+
use_cache: Optional[bool] = None,
|
| 1202 |
+
output_attentions: Optional[bool] = None,
|
| 1203 |
+
output_hidden_states: Optional[bool] = None,
|
| 1204 |
+
return_dict: Optional[bool] = None,
|
| 1205 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
| 1206 |
+
r"""
|
| 1207 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1208 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 1209 |
+
the model is configured as a decoder.
|
| 1210 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1211 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 1212 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 1213 |
+
|
| 1214 |
+
- 1 for tokens that are **not masked**,
|
| 1215 |
+
- 0 for tokens that are **masked**.
|
| 1216 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1217 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
| 1218 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
| 1219 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
| 1220 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 1221 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 1222 |
+
|
| 1223 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 1224 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 1225 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 1226 |
+
use_cache (`bool`, *optional*):
|
| 1227 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1228 |
+
`past_key_values`).
|
| 1229 |
+
"""
|
| 1230 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1231 |
+
if labels is not None:
|
| 1232 |
+
use_cache = False
|
| 1233 |
+
|
| 1234 |
+
outputs = self.bert(
|
| 1235 |
+
input_ids,
|
| 1236 |
+
attention_mask=attention_mask,
|
| 1237 |
+
token_type_ids=token_type_ids,
|
| 1238 |
+
position_ids=position_ids,
|
| 1239 |
+
head_mask=head_mask,
|
| 1240 |
+
inputs_embeds=inputs_embeds,
|
| 1241 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1242 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1243 |
+
past_key_values=past_key_values,
|
| 1244 |
+
use_cache=use_cache,
|
| 1245 |
+
output_attentions=output_attentions,
|
| 1246 |
+
output_hidden_states=output_hidden_states,
|
| 1247 |
+
return_dict=return_dict,
|
| 1248 |
+
)
|
| 1249 |
+
|
| 1250 |
+
sequence_output = outputs[0]
|
| 1251 |
+
prediction_scores = self.cls(sequence_output)
|
| 1252 |
+
|
| 1253 |
+
lm_loss = None
|
| 1254 |
+
if labels is not None:
|
| 1255 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
| 1256 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
| 1257 |
+
labels = labels[:, 1:].contiguous()
|
| 1258 |
+
loss_fct = CrossEntropyLoss()
|
| 1259 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 1260 |
+
|
| 1261 |
+
if not return_dict:
|
| 1262 |
+
output = (prediction_scores,) + outputs[2:]
|
| 1263 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
| 1264 |
+
|
| 1265 |
+
return CausalLMOutputWithCrossAttentions(
|
| 1266 |
+
loss=lm_loss,
|
| 1267 |
+
logits=prediction_scores,
|
| 1268 |
+
past_key_values=outputs.past_key_values,
|
| 1269 |
+
hidden_states=outputs.hidden_states,
|
| 1270 |
+
attentions=outputs.attentions,
|
| 1271 |
+
cross_attentions=outputs.cross_attentions,
|
| 1272 |
+
)
|
| 1273 |
+
|
| 1274 |
+
def prepare_inputs_for_generation(
|
| 1275 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs
|
| 1276 |
+
):
|
| 1277 |
+
input_shape = input_ids.shape
|
| 1278 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
| 1279 |
+
if attention_mask is None:
|
| 1280 |
+
attention_mask = input_ids.new_ones(input_shape)
|
| 1281 |
+
|
| 1282 |
+
# cut decoder_input_ids if past_key_values is used
|
| 1283 |
+
if past_key_values is not None:
|
| 1284 |
+
input_ids = input_ids[:, -1:]
|
| 1285 |
+
|
| 1286 |
+
return {
|
| 1287 |
+
"input_ids": input_ids,
|
| 1288 |
+
"attention_mask": attention_mask,
|
| 1289 |
+
"past_key_values": past_key_values,
|
| 1290 |
+
"use_cache": use_cache,
|
| 1291 |
+
}
|
| 1292 |
+
|
| 1293 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
| 1294 |
+
reordered_past = ()
|
| 1295 |
+
for layer_past in past_key_values:
|
| 1296 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
| 1297 |
+
return reordered_past
|
| 1298 |
+
|
| 1299 |
+
|
| 1300 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
|
| 1301 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
| 1302 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1303 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias", r"cls.predictions.decoder.weight"]
|
| 1304 |
+
|
| 1305 |
+
def __init__(self, config):
|
| 1306 |
+
super().__init__(config)
|
| 1307 |
+
|
| 1308 |
+
if config.is_decoder:
|
| 1309 |
+
logger.warning(
|
| 1310 |
+
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
|
| 1311 |
+
"bi-directional self-attention."
|
| 1312 |
+
)
|
| 1313 |
+
|
| 1314 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 1315 |
+
self.cls = BertOnlyMLMHead(config)
|
| 1316 |
+
|
| 1317 |
+
# Initialize weights and apply final processing
|
| 1318 |
+
self.post_init()
|
| 1319 |
+
|
| 1320 |
+
def get_output_embeddings(self):
|
| 1321 |
+
return self.cls.predictions.decoder
|
| 1322 |
+
|
| 1323 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1324 |
+
self.cls.predictions.decoder = new_embeddings
|
| 1325 |
+
|
| 1326 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1327 |
+
@add_code_sample_docstrings(
|
| 1328 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1329 |
+
output_type=MaskedLMOutput,
|
| 1330 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1331 |
+
expected_output="'paris'",
|
| 1332 |
+
expected_loss=0.88,
|
| 1333 |
+
)
|
| 1334 |
+
def forward(
|
| 1335 |
+
self,
|
| 1336 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1337 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1338 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1339 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1340 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1341 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1342 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 1343 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 1344 |
+
labels: Optional[torch.Tensor] = None,
|
| 1345 |
+
output_attentions: Optional[bool] = None,
|
| 1346 |
+
output_hidden_states: Optional[bool] = None,
|
| 1347 |
+
return_dict: Optional[bool] = None,
|
| 1348 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 1349 |
+
r"""
|
| 1350 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1351 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 1352 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
| 1353 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
| 1354 |
+
"""
|
| 1355 |
+
|
| 1356 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1357 |
+
|
| 1358 |
+
outputs = self.bert(
|
| 1359 |
+
input_ids,
|
| 1360 |
+
attention_mask=attention_mask,
|
| 1361 |
+
token_type_ids=token_type_ids,
|
| 1362 |
+
position_ids=position_ids,
|
| 1363 |
+
head_mask=head_mask,
|
| 1364 |
+
inputs_embeds=inputs_embeds,
|
| 1365 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1366 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1367 |
+
output_attentions=output_attentions,
|
| 1368 |
+
output_hidden_states=output_hidden_states,
|
| 1369 |
+
return_dict=return_dict,
|
| 1370 |
+
)
|
| 1371 |
+
|
| 1372 |
+
sequence_output = outputs[0]
|
| 1373 |
+
prediction_scores = self.cls(sequence_output)
|
| 1374 |
+
|
| 1375 |
+
masked_lm_loss = None
|
| 1376 |
+
if labels is not None:
|
| 1377 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
| 1378 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 1379 |
+
|
| 1380 |
+
if not return_dict:
|
| 1381 |
+
output = (prediction_scores,) + outputs[2:]
|
| 1382 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 1383 |
+
|
| 1384 |
+
return MaskedLMOutput(
|
| 1385 |
+
loss=masked_lm_loss,
|
| 1386 |
+
logits=prediction_scores,
|
| 1387 |
+
hidden_states=outputs.hidden_states,
|
| 1388 |
+
attentions=outputs.attentions,
|
| 1389 |
+
)
|
| 1390 |
+
|
| 1391 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
| 1392 |
+
input_shape = input_ids.shape
|
| 1393 |
+
effective_batch_size = input_shape[0]
|
| 1394 |
+
|
| 1395 |
+
# add a dummy token
|
| 1396 |
+
if self.config.pad_token_id is None:
|
| 1397 |
+
raise ValueError("The PAD token should be defined for generation")
|
| 1398 |
+
|
| 1399 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
| 1400 |
+
dummy_token = torch.full(
|
| 1401 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
| 1402 |
+
)
|
| 1403 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
| 1404 |
+
|
| 1405 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
| 1406 |
+
|
| 1407 |
+
|
| 1408 |
+
@add_start_docstrings(
|
| 1409 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
|
| 1410 |
+
BERT_START_DOCSTRING,
|
| 1411 |
+
)
|
| 1412 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
| 1413 |
+
def __init__(self, config):
|
| 1414 |
+
super().__init__(config)
|
| 1415 |
+
|
| 1416 |
+
self.bert = BertModel(config)
|
| 1417 |
+
self.cls = BertOnlyNSPHead(config)
|
| 1418 |
+
|
| 1419 |
+
# Initialize weights and apply final processing
|
| 1420 |
+
self.post_init()
|
| 1421 |
+
|
| 1422 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1423 |
+
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
| 1424 |
+
def forward(
|
| 1425 |
+
self,
|
| 1426 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1427 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1428 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1429 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1430 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1431 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1432 |
+
labels: Optional[torch.Tensor] = None,
|
| 1433 |
+
output_attentions: Optional[bool] = None,
|
| 1434 |
+
output_hidden_states: Optional[bool] = None,
|
| 1435 |
+
return_dict: Optional[bool] = None,
|
| 1436 |
+
**kwargs,
|
| 1437 |
+
) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
|
| 1438 |
+
r"""
|
| 1439 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1440 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
| 1441 |
+
(see `input_ids` docstring). Indices should be in `[0, 1]`:
|
| 1442 |
+
|
| 1443 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
| 1444 |
+
- 1 indicates sequence B is a random sequence.
|
| 1445 |
+
|
| 1446 |
+
Returns:
|
| 1447 |
+
|
| 1448 |
+
Example:
|
| 1449 |
+
|
| 1450 |
+
```python
|
| 1451 |
+
>>> from transformers import AutoTokenizer, BertForNextSentencePrediction
|
| 1452 |
+
>>> import torch
|
| 1453 |
+
|
| 1454 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 1455 |
+
>>> model = BertForNextSentencePrediction.from_pretrained("bert-base-uncased")
|
| 1456 |
+
|
| 1457 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
| 1458 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
| 1459 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
|
| 1460 |
+
|
| 1461 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
|
| 1462 |
+
>>> logits = outputs.logits
|
| 1463 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
| 1464 |
+
```
|
| 1465 |
+
"""
|
| 1466 |
+
|
| 1467 |
+
if "next_sentence_label" in kwargs:
|
| 1468 |
+
warnings.warn(
|
| 1469 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
|
| 1470 |
+
" `labels` instead.",
|
| 1471 |
+
FutureWarning,
|
| 1472 |
+
)
|
| 1473 |
+
labels = kwargs.pop("next_sentence_label")
|
| 1474 |
+
|
| 1475 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1476 |
+
|
| 1477 |
+
outputs = self.bert(
|
| 1478 |
+
input_ids,
|
| 1479 |
+
attention_mask=attention_mask,
|
| 1480 |
+
token_type_ids=token_type_ids,
|
| 1481 |
+
position_ids=position_ids,
|
| 1482 |
+
head_mask=head_mask,
|
| 1483 |
+
inputs_embeds=inputs_embeds,
|
| 1484 |
+
output_attentions=output_attentions,
|
| 1485 |
+
output_hidden_states=output_hidden_states,
|
| 1486 |
+
return_dict=return_dict,
|
| 1487 |
+
)
|
| 1488 |
+
|
| 1489 |
+
pooled_output = outputs[1]
|
| 1490 |
+
|
| 1491 |
+
seq_relationship_scores = self.cls(pooled_output)
|
| 1492 |
+
|
| 1493 |
+
next_sentence_loss = None
|
| 1494 |
+
if labels is not None:
|
| 1495 |
+
loss_fct = CrossEntropyLoss()
|
| 1496 |
+
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
|
| 1497 |
+
|
| 1498 |
+
if not return_dict:
|
| 1499 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
| 1500 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
| 1501 |
+
|
| 1502 |
+
return NextSentencePredictorOutput(
|
| 1503 |
+
loss=next_sentence_loss,
|
| 1504 |
+
logits=seq_relationship_scores,
|
| 1505 |
+
hidden_states=outputs.hidden_states,
|
| 1506 |
+
attentions=outputs.attentions,
|
| 1507 |
+
)
|
| 1508 |
+
|
| 1509 |
+
|
| 1510 |
+
@add_start_docstrings(
|
| 1511 |
+
"""
|
| 1512 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
| 1513 |
+
output) e.g. for GLUE tasks.
|
| 1514 |
+
""",
|
| 1515 |
+
BERT_START_DOCSTRING,
|
| 1516 |
+
)
|
| 1517 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
| 1518 |
+
def __init__(self, config):
|
| 1519 |
+
super().__init__(config)
|
| 1520 |
+
self.num_labels = config.num_labels
|
| 1521 |
+
self.config = config
|
| 1522 |
+
|
| 1523 |
+
self.bert = BertModel(config)
|
| 1524 |
+
classifier_dropout = (
|
| 1525 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 1526 |
+
)
|
| 1527 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1528 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1529 |
+
|
| 1530 |
+
# Initialize weights and apply final processing
|
| 1531 |
+
self.post_init()
|
| 1532 |
+
|
| 1533 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1534 |
+
@add_code_sample_docstrings(
|
| 1535 |
+
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
|
| 1536 |
+
output_type=SequenceClassifierOutput,
|
| 1537 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1538 |
+
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
| 1539 |
+
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
| 1540 |
+
)
|
| 1541 |
+
def forward(
|
| 1542 |
+
self,
|
| 1543 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1544 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1545 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1546 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1547 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1548 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1549 |
+
labels: Optional[torch.Tensor] = None,
|
| 1550 |
+
output_attentions: Optional[bool] = None,
|
| 1551 |
+
output_hidden_states: Optional[bool] = None,
|
| 1552 |
+
return_dict: Optional[bool] = None,
|
| 1553 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 1554 |
+
r"""
|
| 1555 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1556 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1557 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1558 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1559 |
+
"""
|
| 1560 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1561 |
+
|
| 1562 |
+
outputs = self.bert(
|
| 1563 |
+
input_ids,
|
| 1564 |
+
attention_mask=attention_mask,
|
| 1565 |
+
token_type_ids=token_type_ids,
|
| 1566 |
+
position_ids=position_ids,
|
| 1567 |
+
head_mask=head_mask,
|
| 1568 |
+
inputs_embeds=inputs_embeds,
|
| 1569 |
+
output_attentions=output_attentions,
|
| 1570 |
+
output_hidden_states=output_hidden_states,
|
| 1571 |
+
return_dict=return_dict,
|
| 1572 |
+
)
|
| 1573 |
+
|
| 1574 |
+
pooled_output = outputs[1]
|
| 1575 |
+
|
| 1576 |
+
pooled_output = self.dropout(pooled_output)
|
| 1577 |
+
logits = self.classifier(pooled_output)
|
| 1578 |
+
|
| 1579 |
+
loss = None
|
| 1580 |
+
if labels is not None:
|
| 1581 |
+
if self.config.problem_type is None:
|
| 1582 |
+
if self.num_labels == 1:
|
| 1583 |
+
self.config.problem_type = "regression"
|
| 1584 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1585 |
+
self.config.problem_type = "single_label_classification"
|
| 1586 |
+
else:
|
| 1587 |
+
self.config.problem_type = "multi_label_classification"
|
| 1588 |
+
|
| 1589 |
+
if self.config.problem_type == "regression":
|
| 1590 |
+
loss_fct = MSELoss()
|
| 1591 |
+
if self.num_labels == 1:
|
| 1592 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1593 |
+
else:
|
| 1594 |
+
loss = loss_fct(logits, labels)
|
| 1595 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1596 |
+
loss_fct = CrossEntropyLoss()
|
| 1597 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1598 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1599 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1600 |
+
loss = loss_fct(logits, labels)
|
| 1601 |
+
if not return_dict:
|
| 1602 |
+
output = (logits,) + outputs[2:]
|
| 1603 |
+
return ((loss,) + output) if loss is not None else output
|
| 1604 |
+
|
| 1605 |
+
return SequenceClassifierOutput(
|
| 1606 |
+
loss=loss,
|
| 1607 |
+
logits=logits,
|
| 1608 |
+
hidden_states=outputs.hidden_states,
|
| 1609 |
+
attentions=outputs.attentions,
|
| 1610 |
+
)
|
| 1611 |
+
|
| 1612 |
+
|
| 1613 |
+
@add_start_docstrings(
|
| 1614 |
+
"""
|
| 1615 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
| 1616 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
| 1617 |
+
""",
|
| 1618 |
+
BERT_START_DOCSTRING,
|
| 1619 |
+
)
|
| 1620 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
| 1621 |
+
def __init__(self, config):
|
| 1622 |
+
super().__init__(config)
|
| 1623 |
+
|
| 1624 |
+
self.bert = BertModel(config)
|
| 1625 |
+
classifier_dropout = (
|
| 1626 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 1627 |
+
)
|
| 1628 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1629 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
| 1630 |
+
|
| 1631 |
+
# Initialize weights and apply final processing
|
| 1632 |
+
self.post_init()
|
| 1633 |
+
|
| 1634 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
| 1635 |
+
@add_code_sample_docstrings(
|
| 1636 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1637 |
+
output_type=MultipleChoiceModelOutput,
|
| 1638 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1639 |
+
)
|
| 1640 |
+
def forward(
|
| 1641 |
+
self,
|
| 1642 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1643 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1644 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1645 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1646 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1647 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1648 |
+
labels: Optional[torch.Tensor] = None,
|
| 1649 |
+
output_attentions: Optional[bool] = None,
|
| 1650 |
+
output_hidden_states: Optional[bool] = None,
|
| 1651 |
+
return_dict: Optional[bool] = None,
|
| 1652 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
| 1653 |
+
r"""
|
| 1654 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1655 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
| 1656 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
| 1657 |
+
`input_ids` above)
|
| 1658 |
+
"""
|
| 1659 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1660 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
| 1661 |
+
|
| 1662 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
| 1663 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 1664 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 1665 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 1666 |
+
inputs_embeds = (
|
| 1667 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
| 1668 |
+
if inputs_embeds is not None
|
| 1669 |
+
else None
|
| 1670 |
+
)
|
| 1671 |
+
|
| 1672 |
+
outputs = self.bert(
|
| 1673 |
+
input_ids,
|
| 1674 |
+
attention_mask=attention_mask,
|
| 1675 |
+
token_type_ids=token_type_ids,
|
| 1676 |
+
position_ids=position_ids,
|
| 1677 |
+
head_mask=head_mask,
|
| 1678 |
+
inputs_embeds=inputs_embeds,
|
| 1679 |
+
output_attentions=output_attentions,
|
| 1680 |
+
output_hidden_states=output_hidden_states,
|
| 1681 |
+
return_dict=return_dict,
|
| 1682 |
+
)
|
| 1683 |
+
|
| 1684 |
+
pooled_output = outputs[1]
|
| 1685 |
+
|
| 1686 |
+
pooled_output = self.dropout(pooled_output)
|
| 1687 |
+
logits = self.classifier(pooled_output)
|
| 1688 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 1689 |
+
|
| 1690 |
+
loss = None
|
| 1691 |
+
if labels is not None:
|
| 1692 |
+
loss_fct = CrossEntropyLoss()
|
| 1693 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 1694 |
+
|
| 1695 |
+
if not return_dict:
|
| 1696 |
+
output = (reshaped_logits,) + outputs[2:]
|
| 1697 |
+
return ((loss,) + output) if loss is not None else output
|
| 1698 |
+
|
| 1699 |
+
return MultipleChoiceModelOutput(
|
| 1700 |
+
loss=loss,
|
| 1701 |
+
logits=reshaped_logits,
|
| 1702 |
+
hidden_states=outputs.hidden_states,
|
| 1703 |
+
attentions=outputs.attentions,
|
| 1704 |
+
)
|
| 1705 |
+
|
| 1706 |
+
|
| 1707 |
+
@add_start_docstrings(
|
| 1708 |
+
"""
|
| 1709 |
+
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
| 1710 |
+
Named-Entity-Recognition (NER) tasks.
|
| 1711 |
+
""",
|
| 1712 |
+
BERT_START_DOCSTRING,
|
| 1713 |
+
)
|
| 1714 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
| 1715 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1716 |
+
|
| 1717 |
+
def __init__(self, config):
|
| 1718 |
+
super().__init__(config)
|
| 1719 |
+
self.num_labels = config.num_labels
|
| 1720 |
+
|
| 1721 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 1722 |
+
classifier_dropout = (
|
| 1723 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 1724 |
+
)
|
| 1725 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1726 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1727 |
+
|
| 1728 |
+
# Initialize weights and apply final processing
|
| 1729 |
+
self.post_init()
|
| 1730 |
+
|
| 1731 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1732 |
+
@add_code_sample_docstrings(
|
| 1733 |
+
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
|
| 1734 |
+
output_type=TokenClassifierOutput,
|
| 1735 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1736 |
+
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
|
| 1737 |
+
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
|
| 1738 |
+
)
|
| 1739 |
+
def forward(
|
| 1740 |
+
self,
|
| 1741 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1742 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1743 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1744 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1745 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1746 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1747 |
+
labels: Optional[torch.Tensor] = None,
|
| 1748 |
+
output_attentions: Optional[bool] = None,
|
| 1749 |
+
output_hidden_states: Optional[bool] = None,
|
| 1750 |
+
return_dict: Optional[bool] = None,
|
| 1751 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 1752 |
+
r"""
|
| 1753 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1754 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 1755 |
+
"""
|
| 1756 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1757 |
+
|
| 1758 |
+
outputs = self.bert(
|
| 1759 |
+
input_ids,
|
| 1760 |
+
attention_mask=attention_mask,
|
| 1761 |
+
token_type_ids=token_type_ids,
|
| 1762 |
+
position_ids=position_ids,
|
| 1763 |
+
head_mask=head_mask,
|
| 1764 |
+
inputs_embeds=inputs_embeds,
|
| 1765 |
+
output_attentions=output_attentions,
|
| 1766 |
+
output_hidden_states=output_hidden_states,
|
| 1767 |
+
return_dict=return_dict,
|
| 1768 |
+
)
|
| 1769 |
+
|
| 1770 |
+
sequence_output = outputs[0]
|
| 1771 |
+
|
| 1772 |
+
sequence_output = self.dropout(sequence_output)
|
| 1773 |
+
logits = self.classifier(sequence_output)
|
| 1774 |
+
|
| 1775 |
+
loss = None
|
| 1776 |
+
if labels is not None:
|
| 1777 |
+
loss_fct = CrossEntropyLoss()
|
| 1778 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1779 |
+
|
| 1780 |
+
if not return_dict:
|
| 1781 |
+
output = (logits,) + outputs[2:]
|
| 1782 |
+
return ((loss,) + output) if loss is not None else output
|
| 1783 |
+
|
| 1784 |
+
return TokenClassifierOutput(
|
| 1785 |
+
loss=loss,
|
| 1786 |
+
logits=logits,
|
| 1787 |
+
hidden_states=outputs.hidden_states,
|
| 1788 |
+
attentions=outputs.attentions,
|
| 1789 |
+
)
|
| 1790 |
+
|
| 1791 |
+
|
| 1792 |
+
@add_start_docstrings(
|
| 1793 |
+
"""
|
| 1794 |
+
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
| 1795 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
| 1796 |
+
""",
|
| 1797 |
+
BERT_START_DOCSTRING,
|
| 1798 |
+
)
|
| 1799 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
| 1800 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1801 |
+
|
| 1802 |
+
def __init__(self, config):
|
| 1803 |
+
super().__init__(config)
|
| 1804 |
+
self.num_labels = config.num_labels
|
| 1805 |
+
|
| 1806 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 1807 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
| 1808 |
+
|
| 1809 |
+
# Initialize weights and apply final processing
|
| 1810 |
+
self.post_init()
|
| 1811 |
+
|
| 1812 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1813 |
+
@add_code_sample_docstrings(
|
| 1814 |
+
checkpoint=_CHECKPOINT_FOR_QA,
|
| 1815 |
+
output_type=QuestionAnsweringModelOutput,
|
| 1816 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1817 |
+
qa_target_start_index=_QA_TARGET_START_INDEX,
|
| 1818 |
+
qa_target_end_index=_QA_TARGET_END_INDEX,
|
| 1819 |
+
expected_output=_QA_EXPECTED_OUTPUT,
|
| 1820 |
+
expected_loss=_QA_EXPECTED_LOSS,
|
| 1821 |
+
)
|
| 1822 |
+
def forward(
|
| 1823 |
+
self,
|
| 1824 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1825 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1826 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1827 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1828 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1829 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1830 |
+
start_positions: Optional[torch.Tensor] = None,
|
| 1831 |
+
end_positions: Optional[torch.Tensor] = None,
|
| 1832 |
+
output_attentions: Optional[bool] = None,
|
| 1833 |
+
output_hidden_states: Optional[bool] = None,
|
| 1834 |
+
return_dict: Optional[bool] = None,
|
| 1835 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
| 1836 |
+
r"""
|
| 1837 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1838 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 1839 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1840 |
+
are not taken into account for computing the loss.
|
| 1841 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1842 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 1843 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1844 |
+
are not taken into account for computing the loss.
|
| 1845 |
+
"""
|
| 1846 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1847 |
+
|
| 1848 |
+
outputs = self.bert(
|
| 1849 |
+
input_ids,
|
| 1850 |
+
attention_mask=attention_mask,
|
| 1851 |
+
token_type_ids=token_type_ids,
|
| 1852 |
+
position_ids=position_ids,
|
| 1853 |
+
head_mask=head_mask,
|
| 1854 |
+
inputs_embeds=inputs_embeds,
|
| 1855 |
+
output_attentions=output_attentions,
|
| 1856 |
+
output_hidden_states=output_hidden_states,
|
| 1857 |
+
return_dict=return_dict,
|
| 1858 |
+
)
|
| 1859 |
+
|
| 1860 |
+
sequence_output = outputs[0]
|
| 1861 |
+
|
| 1862 |
+
logits = self.qa_outputs(sequence_output)
|
| 1863 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1864 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1865 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1866 |
+
|
| 1867 |
+
total_loss = None
|
| 1868 |
+
if start_positions is not None and end_positions is not None:
|
| 1869 |
+
# If we are on multi-GPU, split add a dimension
|
| 1870 |
+
if len(start_positions.size()) > 1:
|
| 1871 |
+
start_positions = start_positions.squeeze(-1)
|
| 1872 |
+
if len(end_positions.size()) > 1:
|
| 1873 |
+
end_positions = end_positions.squeeze(-1)
|
| 1874 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1875 |
+
ignored_index = start_logits.size(1)
|
| 1876 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1877 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1878 |
+
|
| 1879 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
| 1880 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1881 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1882 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1883 |
+
|
| 1884 |
+
if not return_dict:
|
| 1885 |
+
output = (start_logits, end_logits) + outputs[2:]
|
| 1886 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1887 |
+
|
| 1888 |
+
return QuestionAnsweringModelOutput(
|
| 1889 |
+
loss=total_loss,
|
| 1890 |
+
start_logits=start_logits,
|
| 1891 |
+
end_logits=end_logits,
|
| 1892 |
+
hidden_states=outputs.hidden_states,
|
| 1893 |
+
attentions=outputs.attentions,
|
| 1894 |
+
)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:545d8feae7cdaa752dfcecd8d480928b31a0f7a0b494877c9ab5ddf504906703
|
| 3 |
+
size 383481
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tf_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8961e0116b64f7aa000cdee56f226922e47168126dfc846a85b935b259311edf
|
| 3 |
+
size 472416
|
tokenizer.json
ADDED
|
@@ -0,0 +1,1274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"version": "1.0",
|
| 3 |
+
"truncation": null,
|
| 4 |
+
"padding": null,
|
| 5 |
+
"added_tokens": [
|
| 6 |
+
{
|
| 7 |
+
"id": 0,
|
| 8 |
+
"content": "[PAD]",
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"lstrip": false,
|
| 11 |
+
"rstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"special": true
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"id": 1,
|
| 17 |
+
"content": "[UNK]",
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"normalized": false,
|
| 22 |
+
"special": true
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"id": 2,
|
| 26 |
+
"content": "[CLS]",
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"rstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"special": true
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"id": 3,
|
| 35 |
+
"content": "[SEP]",
|
| 36 |
+
"single_word": false,
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"rstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"special": true
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"id": 4,
|
| 44 |
+
"content": "[MASK]",
|
| 45 |
+
"single_word": false,
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"special": true
|
| 50 |
+
}
|
| 51 |
+
],
|
| 52 |
+
"normalizer": {
|
| 53 |
+
"type": "BertNormalizer",
|
| 54 |
+
"clean_text": true,
|
| 55 |
+
"handle_chinese_chars": true,
|
| 56 |
+
"strip_accents": null,
|
| 57 |
+
"lowercase": true
|
| 58 |
+
},
|
| 59 |
+
"pre_tokenizer": {
|
| 60 |
+
"type": "BertPreTokenizer"
|
| 61 |
+
},
|
| 62 |
+
"post_processor": {
|
| 63 |
+
"type": "TemplateProcessing",
|
| 64 |
+
"single": [
|
| 65 |
+
{
|
| 66 |
+
"SpecialToken": {
|
| 67 |
+
"id": "[CLS]",
|
| 68 |
+
"type_id": 0
|
| 69 |
+
}
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"Sequence": {
|
| 73 |
+
"id": "A",
|
| 74 |
+
"type_id": 0
|
| 75 |
+
}
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"SpecialToken": {
|
| 79 |
+
"id": "[SEP]",
|
| 80 |
+
"type_id": 0
|
| 81 |
+
}
|
| 82 |
+
}
|
| 83 |
+
],
|
| 84 |
+
"pair": [
|
| 85 |
+
{
|
| 86 |
+
"SpecialToken": {
|
| 87 |
+
"id": "[CLS]",
|
| 88 |
+
"type_id": 0
|
| 89 |
+
}
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"Sequence": {
|
| 93 |
+
"id": "A",
|
| 94 |
+
"type_id": 0
|
| 95 |
+
}
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"SpecialToken": {
|
| 99 |
+
"id": "[SEP]",
|
| 100 |
+
"type_id": 0
|
| 101 |
+
}
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"Sequence": {
|
| 105 |
+
"id": "B",
|
| 106 |
+
"type_id": 1
|
| 107 |
+
}
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"SpecialToken": {
|
| 111 |
+
"id": "[SEP]",
|
| 112 |
+
"type_id": 1
|
| 113 |
+
}
|
| 114 |
+
}
|
| 115 |
+
],
|
| 116 |
+
"special_tokens": {
|
| 117 |
+
"[CLS]": {
|
| 118 |
+
"id": "[CLS]",
|
| 119 |
+
"ids": [
|
| 120 |
+
2
|
| 121 |
+
],
|
| 122 |
+
"tokens": [
|
| 123 |
+
"[CLS]"
|
| 124 |
+
]
|
| 125 |
+
},
|
| 126 |
+
"[SEP]": {
|
| 127 |
+
"id": "[SEP]",
|
| 128 |
+
"ids": [
|
| 129 |
+
3
|
| 130 |
+
],
|
| 131 |
+
"tokens": [
|
| 132 |
+
"[SEP]"
|
| 133 |
+
]
|
| 134 |
+
}
|
| 135 |
+
}
|
| 136 |
+
},
|
| 137 |
+
"decoder": {
|
| 138 |
+
"type": "WordPiece",
|
| 139 |
+
"prefix": "##",
|
| 140 |
+
"cleanup": true
|
| 141 |
+
},
|
| 142 |
+
"model": {
|
| 143 |
+
"type": "WordPiece",
|
| 144 |
+
"unk_token": "[UNK]",
|
| 145 |
+
"continuing_subword_prefix": "##",
|
| 146 |
+
"max_input_chars_per_word": 100,
|
| 147 |
+
"vocab": {
|
| 148 |
+
"[PAD]": 0,
|
| 149 |
+
"[UNK]": 1,
|
| 150 |
+
"[CLS]": 2,
|
| 151 |
+
"[SEP]": 3,
|
| 152 |
+
"[MASK]": 4,
|
| 153 |
+
"!": 5,
|
| 154 |
+
"\"": 6,
|
| 155 |
+
"#": 7,
|
| 156 |
+
"$": 8,
|
| 157 |
+
"%": 9,
|
| 158 |
+
"&": 10,
|
| 159 |
+
"'": 11,
|
| 160 |
+
"(": 12,
|
| 161 |
+
")": 13,
|
| 162 |
+
"*": 14,
|
| 163 |
+
"+": 15,
|
| 164 |
+
",": 16,
|
| 165 |
+
"-": 17,
|
| 166 |
+
".": 18,
|
| 167 |
+
"/": 19,
|
| 168 |
+
"0": 20,
|
| 169 |
+
"1": 21,
|
| 170 |
+
"2": 22,
|
| 171 |
+
"3": 23,
|
| 172 |
+
"4": 24,
|
| 173 |
+
"5": 25,
|
| 174 |
+
"6": 26,
|
| 175 |
+
"7": 27,
|
| 176 |
+
"8": 28,
|
| 177 |
+
"9": 29,
|
| 178 |
+
":": 30,
|
| 179 |
+
";": 31,
|
| 180 |
+
"<": 32,
|
| 181 |
+
"=": 33,
|
| 182 |
+
">": 34,
|
| 183 |
+
"?": 35,
|
| 184 |
+
"@": 36,
|
| 185 |
+
"[": 37,
|
| 186 |
+
"\\": 38,
|
| 187 |
+
"]": 39,
|
| 188 |
+
"^": 40,
|
| 189 |
+
"_": 41,
|
| 190 |
+
"`": 42,
|
| 191 |
+
"a": 43,
|
| 192 |
+
"b": 44,
|
| 193 |
+
"c": 45,
|
| 194 |
+
"d": 46,
|
| 195 |
+
"e": 47,
|
| 196 |
+
"f": 48,
|
| 197 |
+
"g": 49,
|
| 198 |
+
"h": 50,
|
| 199 |
+
"i": 51,
|
| 200 |
+
"j": 52,
|
| 201 |
+
"k": 53,
|
| 202 |
+
"l": 54,
|
| 203 |
+
"m": 55,
|
| 204 |
+
"n": 56,
|
| 205 |
+
"o": 57,
|
| 206 |
+
"p": 58,
|
| 207 |
+
"q": 59,
|
| 208 |
+
"r": 60,
|
| 209 |
+
"s": 61,
|
| 210 |
+
"t": 62,
|
| 211 |
+
"u": 63,
|
| 212 |
+
"v": 64,
|
| 213 |
+
"w": 65,
|
| 214 |
+
"x": 66,
|
| 215 |
+
"y": 67,
|
| 216 |
+
"z": 68,
|
| 217 |
+
"|": 69,
|
| 218 |
+
"}": 70,
|
| 219 |
+
"~": 71,
|
| 220 |
+
"¡": 72,
|
| 221 |
+
"¢": 73,
|
| 222 |
+
"£": 74,
|
| 223 |
+
"¥": 75,
|
| 224 |
+
"§": 76,
|
| 225 |
+
"°": 77,
|
| 226 |
+
"±": 78,
|
| 227 |
+
"²": 79,
|
| 228 |
+
"³": 80,
|
| 229 |
+
"´": 81,
|
| 230 |
+
"µ": 82,
|
| 231 |
+
"·": 83,
|
| 232 |
+
"º": 84,
|
| 233 |
+
"½": 85,
|
| 234 |
+
"¿": 86,
|
| 235 |
+
"×": 87,
|
| 236 |
+
"ß": 88,
|
| 237 |
+
"æ": 89,
|
| 238 |
+
"ð": 90,
|
| 239 |
+
"ø": 91,
|
| 240 |
+
"þ": 92,
|
| 241 |
+
"đ": 93,
|
| 242 |
+
"ħ": 94,
|
| 243 |
+
"ı": 95,
|
| 244 |
+
"ł": 96,
|
| 245 |
+
"œ": 97,
|
| 246 |
+
"ɐ": 98,
|
| 247 |
+
"ɑ": 99,
|
| 248 |
+
"ɒ": 100,
|
| 249 |
+
"ɔ": 101,
|
| 250 |
+
"ə": 102,
|
| 251 |
+
"ɛ": 103,
|
| 252 |
+
"ɜ": 104,
|
| 253 |
+
"ɡ": 105,
|
| 254 |
+
"ɢ": 106,
|
| 255 |
+
"ɪ": 107,
|
| 256 |
+
"ɫ": 108,
|
| 257 |
+
"ɳ": 109,
|
| 258 |
+
"ɽ": 110,
|
| 259 |
+
"ɾ": 111,
|
| 260 |
+
"ʁ": 112,
|
| 261 |
+
"ʃ": 113,
|
| 262 |
+
"ʊ": 114,
|
| 263 |
+
"ʋ": 115,
|
| 264 |
+
"ʒ": 116,
|
| 265 |
+
"ʔ": 117,
|
| 266 |
+
"ʕ": 118,
|
| 267 |
+
"ʲ": 119,
|
| 268 |
+
"ʻ": 120,
|
| 269 |
+
"ʼ": 121,
|
| 270 |
+
"ʾ": 122,
|
| 271 |
+
"ʿ": 123,
|
| 272 |
+
"ˈ": 124,
|
| 273 |
+
"ˌ": 125,
|
| 274 |
+
"ː": 126,
|
| 275 |
+
"α": 127,
|
| 276 |
+
"β": 128,
|
| 277 |
+
"γ": 129,
|
| 278 |
+
"δ": 130,
|
| 279 |
+
"ε": 131,
|
| 280 |
+
"η": 132,
|
| 281 |
+
"θ": 133,
|
| 282 |
+
"ι": 134,
|
| 283 |
+
"κ": 135,
|
| 284 |
+
"λ": 136,
|
| 285 |
+
"μ": 137,
|
| 286 |
+
"��": 138,
|
| 287 |
+
"ξ": 139,
|
| 288 |
+
"ο": 140,
|
| 289 |
+
"π": 141,
|
| 290 |
+
"ρ": 142,
|
| 291 |
+
"ς": 143,
|
| 292 |
+
"σ": 144,
|
| 293 |
+
"τ": 145,
|
| 294 |
+
"υ": 146,
|
| 295 |
+
"φ": 147,
|
| 296 |
+
"χ": 148,
|
| 297 |
+
"ψ": 149,
|
| 298 |
+
"ω": 150,
|
| 299 |
+
"а": 151,
|
| 300 |
+
"б": 152,
|
| 301 |
+
"в": 153,
|
| 302 |
+
"г": 154,
|
| 303 |
+
"д": 155,
|
| 304 |
+
"е": 156,
|
| 305 |
+
"ж": 157,
|
| 306 |
+
"з": 158,
|
| 307 |
+
"и": 159,
|
| 308 |
+
"к": 160,
|
| 309 |
+
"л": 161,
|
| 310 |
+
"м": 162,
|
| 311 |
+
"н": 163,
|
| 312 |
+
"о": 164,
|
| 313 |
+
"п": 165,
|
| 314 |
+
"р": 166,
|
| 315 |
+
"с": 167,
|
| 316 |
+
"т": 168,
|
| 317 |
+
"у": 169,
|
| 318 |
+
"х": 170,
|
| 319 |
+
"ц": 171,
|
| 320 |
+
"ш": 172,
|
| 321 |
+
"ъ": 173,
|
| 322 |
+
"ы": 174,
|
| 323 |
+
"ь": 175,
|
| 324 |
+
"ю": 176,
|
| 325 |
+
"я": 177,
|
| 326 |
+
"є": 178,
|
| 327 |
+
"א": 179,
|
| 328 |
+
"ב": 180,
|
| 329 |
+
"ג": 181,
|
| 330 |
+
"ה": 182,
|
| 331 |
+
"ו": 183,
|
| 332 |
+
"ז": 184,
|
| 333 |
+
"ח": 185,
|
| 334 |
+
"י": 186,
|
| 335 |
+
"ל": 187,
|
| 336 |
+
"ם": 188,
|
| 337 |
+
"מ": 189,
|
| 338 |
+
"ן": 190,
|
| 339 |
+
"נ": 191,
|
| 340 |
+
"ס": 192,
|
| 341 |
+
"ף": 193,
|
| 342 |
+
"פ": 194,
|
| 343 |
+
"צ": 195,
|
| 344 |
+
"ר": 196,
|
| 345 |
+
"ש": 197,
|
| 346 |
+
"ת": 198,
|
| 347 |
+
"ء": 199,
|
| 348 |
+
"ا": 200,
|
| 349 |
+
"ب": 201,
|
| 350 |
+
"ة": 202,
|
| 351 |
+
"ت": 203,
|
| 352 |
+
"ث": 204,
|
| 353 |
+
"ج": 205,
|
| 354 |
+
"ح": 206,
|
| 355 |
+
"خ": 207,
|
| 356 |
+
"د": 208,
|
| 357 |
+
"ذ": 209,
|
| 358 |
+
"ر": 210,
|
| 359 |
+
"س": 211,
|
| 360 |
+
"ش": 212,
|
| 361 |
+
"ص": 213,
|
| 362 |
+
"ع": 214,
|
| 363 |
+
"ف": 215,
|
| 364 |
+
"ق": 216,
|
| 365 |
+
"ك": 217,
|
| 366 |
+
"ل": 218,
|
| 367 |
+
"م": 219,
|
| 368 |
+
"ن": 220,
|
| 369 |
+
"ه": 221,
|
| 370 |
+
"و": 222,
|
| 371 |
+
"ي": 223,
|
| 372 |
+
"ܐ": 224,
|
| 373 |
+
"ܕ": 225,
|
| 374 |
+
"ܗ": 226,
|
| 375 |
+
"ܝ": 227,
|
| 376 |
+
"ܠ": 228,
|
| 377 |
+
"ܢ": 229,
|
| 378 |
+
"ܬ": 230,
|
| 379 |
+
"अ": 231,
|
| 380 |
+
"ई": 232,
|
| 381 |
+
"क": 233,
|
| 382 |
+
"ग": 234,
|
| 383 |
+
"ण": 235,
|
| 384 |
+
"त": 236,
|
| 385 |
+
"द": 237,
|
| 386 |
+
"न": 238,
|
| 387 |
+
"प": 239,
|
| 388 |
+
"ब": 240,
|
| 389 |
+
"म": 241,
|
| 390 |
+
"य": 242,
|
| 391 |
+
"र": 243,
|
| 392 |
+
"ल": 244,
|
| 393 |
+
"व": 245,
|
| 394 |
+
"स": 246,
|
| 395 |
+
"ह": 247,
|
| 396 |
+
"ा": 248,
|
| 397 |
+
"ि": 249,
|
| 398 |
+
"আ": 250,
|
| 399 |
+
"ল": 251,
|
| 400 |
+
"হ": 252,
|
| 401 |
+
"া": 253,
|
| 402 |
+
"ਅ": 254,
|
| 403 |
+
"ਲ": 255,
|
| 404 |
+
"ਹ": 256,
|
| 405 |
+
"ਾ": 257,
|
| 406 |
+
"അ": 258,
|
| 407 |
+
"ള": 259,
|
| 408 |
+
"ഹ": 260,
|
| 409 |
+
"ാ": 261,
|
| 410 |
+
"ก": 262,
|
| 411 |
+
"ค": 263,
|
| 412 |
+
"ง": 264,
|
| 413 |
+
"ช": 265,
|
| 414 |
+
"ซ": 266,
|
| 415 |
+
"ญ": 267,
|
| 416 |
+
"ฐ": 268,
|
| 417 |
+
"ณ": 269,
|
| 418 |
+
"ด": 270,
|
| 419 |
+
"ต": 271,
|
| 420 |
+
"น": 272,
|
| 421 |
+
"บ": 273,
|
| 422 |
+
"ป": 274,
|
| 423 |
+
"พ": 275,
|
| 424 |
+
"ภ": 276,
|
| 425 |
+
"ม": 277,
|
| 426 |
+
"ย": 278,
|
| 427 |
+
"ร": 279,
|
| 428 |
+
"ล": 280,
|
| 429 |
+
"ว": 281,
|
| 430 |
+
"ศ": 282,
|
| 431 |
+
"ษ": 283,
|
| 432 |
+
"ส": 284,
|
| 433 |
+
"ห": 285,
|
| 434 |
+
"อ": 286,
|
| 435 |
+
"ฮ": 287,
|
| 436 |
+
"ะ": 288,
|
| 437 |
+
"า": 289,
|
| 438 |
+
"เ": 290,
|
| 439 |
+
"แ": 291,
|
| 440 |
+
"ไ": 292,
|
| 441 |
+
"ა": 293,
|
| 442 |
+
"ბ": 294,
|
| 443 |
+
"გ": 295,
|
| 444 |
+
"დ": 296,
|
| 445 |
+
"ე": 297,
|
| 446 |
+
"ვ": 298,
|
| 447 |
+
"ზ": 299,
|
| 448 |
+
"თ": 300,
|
| 449 |
+
"ი": 301,
|
| 450 |
+
"კ": 302,
|
| 451 |
+
"ლ": 303,
|
| 452 |
+
"მ": 304,
|
| 453 |
+
"ნ": 305,
|
| 454 |
+
"ო": 306,
|
| 455 |
+
"პ": 307,
|
| 456 |
+
"ჟ": 308,
|
| 457 |
+
"რ": 309,
|
| 458 |
+
"ს": 310,
|
| 459 |
+
"ტ": 311,
|
| 460 |
+
"უ": 312,
|
| 461 |
+
"ფ": 313,
|
| 462 |
+
"ქ": 314,
|
| 463 |
+
"ღ": 315,
|
| 464 |
+
"ყ": 316,
|
| 465 |
+
"შ": 317,
|
| 466 |
+
"ჩ": 318,
|
| 467 |
+
"ც": 319,
|
| 468 |
+
"ძ": 320,
|
| 469 |
+
"წ": 321,
|
| 470 |
+
"ჭ": 322,
|
| 471 |
+
"ხ": 323,
|
| 472 |
+
"ჯ": 324,
|
| 473 |
+
"ჰ": 325,
|
| 474 |
+
"ჱ": 326,
|
| 475 |
+
"ჲ": 327,
|
| 476 |
+
"ჳ": 328,
|
| 477 |
+
"ჴ": 329,
|
| 478 |
+
"ჵ": 330,
|
| 479 |
+
"ჶ": 331,
|
| 480 |
+
"ჷ": 332,
|
| 481 |
+
"ჸ": 333,
|
| 482 |
+
"ჹ": 334,
|
| 483 |
+
"ჺ": 335,
|
| 484 |
+
"჻": 336,
|
| 485 |
+
"ᄃ": 337,
|
| 486 |
+
"ᄅ": 338,
|
| 487 |
+
"ᄇ": 339,
|
| 488 |
+
"ᄋ": 340,
|
| 489 |
+
"ᄌ": 341,
|
| 490 |
+
"ᅡ": 342,
|
| 491 |
+
"ᅢ": 343,
|
| 492 |
+
"ᅦ": 344,
|
| 493 |
+
"ᅧ": 345,
|
| 494 |
+
"ᅩ": 346,
|
| 495 |
+
"ᅮ": 347,
|
| 496 |
+
"ᅵ": 348,
|
| 497 |
+
"ᆨ": 349,
|
| 498 |
+
"ᆫ": 350,
|
| 499 |
+
"ᆯ": 351,
|
| 500 |
+
"ᆸ": 352,
|
| 501 |
+
"ᆼ": 353,
|
| 502 |
+
"ᵻ": 354,
|
| 503 |
+
"‐": 355,
|
| 504 |
+
"‑": 356,
|
| 505 |
+
"–": 357,
|
| 506 |
+
"—": 358,
|
| 507 |
+
"―": 359,
|
| 508 |
+
"‘": 360,
|
| 509 |
+
"’": 361,
|
| 510 |
+
"“": 362,
|
| 511 |
+
"”": 363,
|
| 512 |
+
"„": 364,
|
| 513 |
+
"†": 365,
|
| 514 |
+
"‡": 366,
|
| 515 |
+
"•": 367,
|
| 516 |
+
"…": 368,
|
| 517 |
+
"′": 369,
|
| 518 |
+
"″": 370,
|
| 519 |
+
"⁄": 371,
|
| 520 |
+
"₣": 372,
|
| 521 |
+
"₤": 373,
|
| 522 |
+
"€": 374,
|
| 523 |
+
"₹": 375,
|
| 524 |
+
"⅓": 376,
|
| 525 |
+
"⅔": 377,
|
| 526 |
+
"→": 378,
|
| 527 |
+
"−": 379,
|
| 528 |
+
"≡": 380,
|
| 529 |
+
"≤": 381,
|
| 530 |
+
"①": 382,
|
| 531 |
+
"☉": 383,
|
| 532 |
+
"☫": 384,
|
| 533 |
+
"♀": 385,
|
| 534 |
+
"♭": 386,
|
| 535 |
+
"♯": 387,
|
| 536 |
+
"⚳": 388,
|
| 537 |
+
"ⴀ": 389,
|
| 538 |
+
"ⴂ": 390,
|
| 539 |
+
"ⴃ": 391,
|
| 540 |
+
"ⴈ": 392,
|
| 541 |
+
"ⴌ": 393,
|
| 542 |
+
"ⴕ": 394,
|
| 543 |
+
"ⴟ": 395,
|
| 544 |
+
"〈": 396,
|
| 545 |
+
"〉": 397,
|
| 546 |
+
"〜": 398,
|
| 547 |
+
"あ": 399,
|
| 548 |
+
"い": 400,
|
| 549 |
+
"う": 401,
|
| 550 |
+
"お": 402,
|
| 551 |
+
"か": 403,
|
| 552 |
+
"き": 404,
|
| 553 |
+
"く": 405,
|
| 554 |
+
"け": 406,
|
| 555 |
+
"こ": 407,
|
| 556 |
+
"さ": 408,
|
| 557 |
+
"し": 409,
|
| 558 |
+
"す": 410,
|
| 559 |
+
"せ": 411,
|
| 560 |
+
"た": 412,
|
| 561 |
+
"ち": 413,
|
| 562 |
+
"っ": 414,
|
| 563 |
+
"つ": 415,
|
| 564 |
+
"と": 416,
|
| 565 |
+
"な": 417,
|
| 566 |
+
"に": 418,
|
| 567 |
+
"の": 419,
|
| 568 |
+
"は": 420,
|
| 569 |
+
"ひ": 421,
|
| 570 |
+
"ふ": 422,
|
| 571 |
+
"ほ": 423,
|
| 572 |
+
"ま": 424,
|
| 573 |
+
"み": 425,
|
| 574 |
+
"め": 426,
|
| 575 |
+
"も": 427,
|
| 576 |
+
"ゃ": 428,
|
| 577 |
+
"ゆ": 429,
|
| 578 |
+
"ょ": 430,
|
| 579 |
+
"ら": 431,
|
| 580 |
+
"り": 432,
|
| 581 |
+
"る": 433,
|
| 582 |
+
"れ": 434,
|
| 583 |
+
"わ": 435,
|
| 584 |
+
"を": 436,
|
| 585 |
+
"ん": 437,
|
| 586 |
+
"ァ": 438,
|
| 587 |
+
"ア": 439,
|
| 588 |
+
"ィ": 440,
|
| 589 |
+
"イ": 441,
|
| 590 |
+
"ゥ": 442,
|
| 591 |
+
"ウ": 443,
|
| 592 |
+
"ェ": 444,
|
| 593 |
+
"エ": 445,
|
| 594 |
+
"ォ": 446,
|
| 595 |
+
"オ": 447,
|
| 596 |
+
"カ": 448,
|
| 597 |
+
"キ": 449,
|
| 598 |
+
"ク": 450,
|
| 599 |
+
"ケ": 451,
|
| 600 |
+
"コ": 452,
|
| 601 |
+
"サ": 453,
|
| 602 |
+
"シ": 454,
|
| 603 |
+
"ス": 455,
|
| 604 |
+
"セ": 456,
|
| 605 |
+
"タ": 457,
|
| 606 |
+
"チ": 458,
|
| 607 |
+
"ッ": 459,
|
| 608 |
+
"ツ": 460,
|
| 609 |
+
"テ": 461,
|
| 610 |
+
"ト": 462,
|
| 611 |
+
"ナ": 463,
|
| 612 |
+
"ニ": 464,
|
| 613 |
+
"ネ": 465,
|
| 614 |
+
"ノ": 466,
|
| 615 |
+
"ハ": 467,
|
| 616 |
+
"フ": 468,
|
| 617 |
+
"ヘ": 469,
|
| 618 |
+
"マ": 470,
|
| 619 |
+
"ミ": 471,
|
| 620 |
+
"ム": 472,
|
| 621 |
+
"モ": 473,
|
| 622 |
+
"ャ": 474,
|
| 623 |
+
"ュ": 475,
|
| 624 |
+
"ョ": 476,
|
| 625 |
+
"ラ": 477,
|
| 626 |
+
"リ": 478,
|
| 627 |
+
"ル": 479,
|
| 628 |
+
"レ": 480,
|
| 629 |
+
"ロ": 481,
|
| 630 |
+
"ン": 482,
|
| 631 |
+
"・": 483,
|
| 632 |
+
"ー": 484,
|
| 633 |
+
"一": 485,
|
| 634 |
+
"七": 486,
|
| 635 |
+
"下": 487,
|
| 636 |
+
"世": 488,
|
| 637 |
+
"丙": 489,
|
| 638 |
+
"中": 490,
|
| 639 |
+
"主": 491,
|
| 640 |
+
"乃": 492,
|
| 641 |
+
"之": 493,
|
| 642 |
+
"乙": 494,
|
| 643 |
+
"九": 495,
|
| 644 |
+
"二": 496,
|
| 645 |
+
"云": 497,
|
| 646 |
+
"人": 498,
|
| 647 |
+
"今": 499,
|
| 648 |
+
"付": 500,
|
| 649 |
+
"作": 501,
|
| 650 |
+
"侗": 502,
|
| 651 |
+
"依": 503,
|
| 652 |
+
"信": 504,
|
| 653 |
+
"傳": 505,
|
| 654 |
+
"儚": 506,
|
| 655 |
+
"充": 507,
|
| 656 |
+
"光": 508,
|
| 657 |
+
"全": 509,
|
| 658 |
+
"兵": 510,
|
| 659 |
+
"其": 511,
|
| 660 |
+
"具": 512,
|
| 661 |
+
"円": 513,
|
| 662 |
+
"再": 514,
|
| 663 |
+
"出": 515,
|
| 664 |
+
"判": 516,
|
| 665 |
+
"前": 517,
|
| 666 |
+
"剛": 518,
|
| 667 |
+
"劇": 519,
|
| 668 |
+
"劉": 520,
|
| 669 |
+
"動": 521,
|
| 670 |
+
"化": 522,
|
| 671 |
+
"北": 523,
|
| 672 |
+
"华": 524,
|
| 673 |
+
"厂": 525,
|
| 674 |
+
"去": 526,
|
| 675 |
+
"古": 527,
|
| 676 |
+
"可": 528,
|
| 677 |
+
"台": 529,
|
| 678 |
+
"史": 530,
|
| 679 |
+
"同": 531,
|
| 680 |
+
"名": 532,
|
| 681 |
+
"君": 533,
|
| 682 |
+
"吳": 534,
|
| 683 |
+
"周": 535,
|
| 684 |
+
"命": 536,
|
| 685 |
+
"和": 537,
|
| 686 |
+
"咲": 538,
|
| 687 |
+
"善": 539,
|
| 688 |
+
"四": 540,
|
| 689 |
+
"國": 541,
|
| 690 |
+
"園": 542,
|
| 691 |
+
"圣": 543,
|
| 692 |
+
"在": 544,
|
| 693 |
+
"坂": 545,
|
| 694 |
+
"堤": 546,
|
| 695 |
+
"場": 547,
|
| 696 |
+
"塘": 548,
|
| 697 |
+
"夕": 549,
|
| 698 |
+
"大": 550,
|
| 699 |
+
"天": 551,
|
| 700 |
+
"夫": 552,
|
| 701 |
+
"女": 553,
|
| 702 |
+
"妙": 554,
|
| 703 |
+
"姚": 555,
|
| 704 |
+
"子": 556,
|
| 705 |
+
"孟": 557,
|
| 706 |
+
"守": 558,
|
| 707 |
+
"安": 559,
|
| 708 |
+
"宋": 560,
|
| 709 |
+
"完": 561,
|
| 710 |
+
"宗": 562,
|
| 711 |
+
"宝": 563,
|
| 712 |
+
"宫": 564,
|
| 713 |
+
"寝": 565,
|
| 714 |
+
"寺": 566,
|
| 715 |
+
"小": 567,
|
| 716 |
+
"少": 568,
|
| 717 |
+
"尾": 569,
|
| 718 |
+
"山": 570,
|
| 719 |
+
"岳": 571,
|
| 720 |
+
"川": 572,
|
| 721 |
+
"州": 573,
|
| 722 |
+
"巳": 574,
|
| 723 |
+
"市": 575,
|
| 724 |
+
"師": 576,
|
| 725 |
+
"平": 577,
|
| 726 |
+
"广": 578,
|
| 727 |
+
"庆": 579,
|
| 728 |
+
"府": 580,
|
| 729 |
+
"座": 581,
|
| 730 |
+
"廬": 582,
|
| 731 |
+
"建": 583,
|
| 732 |
+
"式": 584,
|
| 733 |
+
"張": 585,
|
| 734 |
+
"彌": 586,
|
| 735 |
+
"彩": 587,
|
| 736 |
+
"彼": 588,
|
| 737 |
+
"後": 589,
|
| 738 |
+
"御": 590,
|
| 739 |
+
"德": 591,
|
| 740 |
+
"思": 592,
|
| 741 |
+
"愛": 593,
|
| 742 |
+
"憑": 594,
|
| 743 |
+
"憶": 595,
|
| 744 |
+
"應": 596,
|
| 745 |
+
"懷": 597,
|
| 746 |
+
"战": 598,
|
| 747 |
+
"戦": 599,
|
| 748 |
+
"扈": 600,
|
| 749 |
+
"技": 601,
|
| 750 |
+
"拉": 602,
|
| 751 |
+
"拳": 603,
|
| 752 |
+
"挑": 604,
|
| 753 |
+
"揺": 605,
|
| 754 |
+
"攻": 606,
|
| 755 |
+
"放": 607,
|
| 756 |
+
"政": 608,
|
| 757 |
+
"散": 609,
|
| 758 |
+
"斯": 610,
|
| 759 |
+
"方": 611,
|
| 760 |
+
"日": 612,
|
| 761 |
+
"旦": 613,
|
| 762 |
+
"旭": 614,
|
| 763 |
+
"昌": 615,
|
| 764 |
+
"明": 616,
|
| 765 |
+
"星": 617,
|
| 766 |
+
"春": 618,
|
| 767 |
+
"晋": 619,
|
| 768 |
+
"景": 620,
|
| 769 |
+
"曦": 621,
|
| 770 |
+
"月": 622,
|
| 771 |
+
"望": 623,
|
| 772 |
+
"未": 624,
|
| 773 |
+
"本": 625,
|
| 774 |
+
"李": 626,
|
| 775 |
+
"村": 627,
|
| 776 |
+
"杜": 628,
|
| 777 |
+
"束": 629,
|
| 778 |
+
"来": 630,
|
| 779 |
+
"林": 631,
|
| 780 |
+
"桜": 632,
|
| 781 |
+
"梶": 633,
|
| 782 |
+
"棘": 634,
|
| 783 |
+
"椎": 635,
|
| 784 |
+
"楊": 636,
|
| 785 |
+
"楚": 637,
|
| 786 |
+
"榮": 638,
|
| 787 |
+
"橘": 639,
|
| 788 |
+
"機": 640,
|
| 789 |
+
"正": 641,
|
| 790 |
+
"殻": 642,
|
| 791 |
+
"殿": 643,
|
| 792 |
+
"母": 644,
|
| 793 |
+
"水": 645,
|
| 794 |
+
"汉": 646,
|
| 795 |
+
"沂": 647,
|
| 796 |
+
"沙": 648,
|
| 797 |
+
"河": 649,
|
| 798 |
+
"泗": 650,
|
| 799 |
+
"波": 651,
|
| 800 |
+
"泣": 652,
|
| 801 |
+
"洪": 653,
|
| 802 |
+
"淹": 654,
|
| 803 |
+
"清": 655,
|
| 804 |
+
"湯": 656,
|
| 805 |
+
"漢": 657,
|
| 806 |
+
"澄": 658,
|
| 807 |
+
"澤": 659,
|
| 808 |
+
"火": 660,
|
| 809 |
+
"灯": 661,
|
| 810 |
+
"灵": 662,
|
| 811 |
+
"灼": 663,
|
| 812 |
+
"焼": 664,
|
| 813 |
+
"熱": 665,
|
| 814 |
+
"物": 666,
|
| 815 |
+
"狐": 667,
|
| 816 |
+
"狸": 668,
|
| 817 |
+
"玄": 669,
|
| 818 |
+
"王": 670,
|
| 819 |
+
"玩": 671,
|
| 820 |
+
"珂": 672,
|
| 821 |
+
"珙": 673,
|
| 822 |
+
"球": 674,
|
| 823 |
+
"理": 675,
|
| 824 |
+
"琦": 676,
|
| 825 |
+
"琪": 677,
|
| 826 |
+
"瓊": 678,
|
| 827 |
+
"生": 679,
|
| 828 |
+
"田": 680,
|
| 829 |
+
"畢": 681,
|
| 830 |
+
"番": 682,
|
| 831 |
+
"瘡": 683,
|
| 832 |
+
"白": 684,
|
| 833 |
+
"皮": 685,
|
| 834 |
+
"真": 686,
|
| 835 |
+
"砲": 687,
|
| 836 |
+
"礮": 688,
|
| 837 |
+
"祈": 689,
|
| 838 |
+
"神": 690,
|
| 839 |
+
"祠": 691,
|
| 840 |
+
"秋": 692,
|
| 841 |
+
"空": 693,
|
| 842 |
+
"立": 694,
|
| 843 |
+
"精": 695,
|
| 844 |
+
"約": 696,
|
| 845 |
+
"絵": 697,
|
| 846 |
+
"織": 698,
|
| 847 |
+
"義": 699,
|
| 848 |
+
"翠": 700,
|
| 849 |
+
"者": 701,
|
| 850 |
+
"耕": 702,
|
| 851 |
+
"肖": 703,
|
| 852 |
+
"胡": 704,
|
| 853 |
+
"膀": 705,
|
| 854 |
+
"臂": 706,
|
| 855 |
+
"興": 707,
|
| 856 |
+
"良": 708,
|
| 857 |
+
"花": 709,
|
| 858 |
+
"芳": 710,
|
| 859 |
+
"芽": 711,
|
| 860 |
+
"若": 712,
|
| 861 |
+
"英": 713,
|
| 862 |
+
"藕": 714,
|
| 863 |
+
"藥": 715,
|
| 864 |
+
"蘄": 716,
|
| 865 |
+
"蘇": 717,
|
| 866 |
+
"行": 718,
|
| 867 |
+
"裁": 719,
|
| 868 |
+
"規": 720,
|
| 869 |
+
"覺": 721,
|
| 870 |
+
"观": 722,
|
| 871 |
+
"解": 723,
|
| 872 |
+
"記": 724,
|
| 873 |
+
"誓": 725,
|
| 874 |
+
"誡": 726,
|
| 875 |
+
"誰": 727,
|
| 876 |
+
"謎": 728,
|
| 877 |
+
"许": 729,
|
| 878 |
+
"谭": 730,
|
| 879 |
+
"豪": 731,
|
| 880 |
+
"豫": 732,
|
| 881 |
+
"費": 733,
|
| 882 |
+
"贵": 734,
|
| 883 |
+
"赤": 735,
|
| 884 |
+
"趙": 736,
|
| 885 |
+
"足": 737,
|
| 886 |
+
"跡": 738,
|
| 887 |
+
"転": 739,
|
| 888 |
+
"辛": 740,
|
| 889 |
+
"逆": 741,
|
| 890 |
+
"遇": 742,
|
| 891 |
+
"運": 743,
|
| 892 |
+
"過": 744,
|
| 893 |
+
"遠": 745,
|
| 894 |
+
"選": 746,
|
| 895 |
+
"邦": 747,
|
| 896 |
+
"邱": 748,
|
| 897 |
+
"部": 749,
|
| 898 |
+
"郭": 750,
|
| 899 |
+
"都": 751,
|
| 900 |
+
"酈": 752,
|
| 901 |
+
"里": 753,
|
| 902 |
+
"野": 754,
|
| 903 |
+
"金": 755,
|
| 904 |
+
"銃": 756,
|
| 905 |
+
"鋼": 757,
|
| 906 |
+
"錄": 758,
|
| 907 |
+
"錡": 759,
|
| 908 |
+
"鍵": 760,
|
| 909 |
+
"鐵": 761,
|
| 910 |
+
"钱": 762,
|
| 911 |
+
"铁": 763,
|
| 912 |
+
"關": 764,
|
| 913 |
+
"防": 765,
|
| 914 |
+
"阿": 766,
|
| 915 |
+
"陈": 767,
|
| 916 |
+
"陳": 768,
|
| 917 |
+
"陽": 769,
|
| 918 |
+
"隊": 770,
|
| 919 |
+
"階": 771,
|
| 920 |
+
"集": 772,
|
| 921 |
+
"雪": 773,
|
| 922 |
+
"雲": 774,
|
| 923 |
+
"霖": 775,
|
| 924 |
+
"霹": 776,
|
| 925 |
+
"靂": 777,
|
| 926 |
+
"韓": 778,
|
| 927 |
+
"願": 779,
|
| 928 |
+
"顯": 780,
|
| 929 |
+
"颜": 781,
|
| 930 |
+
"马": 782,
|
| 931 |
+
"高": 783,
|
| 932 |
+
"龍": 784,
|
| 933 |
+
"ﷲ": 785,
|
| 934 |
+
"ﻋ": 786,
|
| 935 |
+
"/": 787,
|
| 936 |
+
"3": 788,
|
| 937 |
+
"~": 789,
|
| 938 |
+
"##i": 790,
|
| 939 |
+
"##y": 791,
|
| 940 |
+
"##o": 792,
|
| 941 |
+
"##r": 793,
|
| 942 |
+
"##g": 794,
|
| 943 |
+
"##a": 795,
|
| 944 |
+
"##w": 796,
|
| 945 |
+
"##l": 797,
|
| 946 |
+
"##b": 798,
|
| 947 |
+
"##z": 799,
|
| 948 |
+
"##t": 800,
|
| 949 |
+
"##n": 801,
|
| 950 |
+
"##c": 802,
|
| 951 |
+
"##h": 803,
|
| 952 |
+
"##s": 804,
|
| 953 |
+
"##u": 805,
|
| 954 |
+
"##d": 806,
|
| 955 |
+
"##e": 807,
|
| 956 |
+
"##k": 808,
|
| 957 |
+
"##v": 809,
|
| 958 |
+
"##f": 810,
|
| 959 |
+
"##x": 811,
|
| 960 |
+
"##q": 812,
|
| 961 |
+
"##p": 813,
|
| 962 |
+
"##æ": 814,
|
| 963 |
+
"##0": 815,
|
| 964 |
+
"##5": 816,
|
| 965 |
+
"##m": 817,
|
| 966 |
+
"##8": 818,
|
| 967 |
+
"##4": 819,
|
| 968 |
+
"##س": 820,
|
| 969 |
+
"##ت": 821,
|
| 970 |
+
"##ا": 822,
|
| 971 |
+
"##ن": 823,
|
| 972 |
+
"##6": 824,
|
| 973 |
+
"##1": 825,
|
| 974 |
+
"##7": 826,
|
| 975 |
+
"##j": 827,
|
| 976 |
+
"##つ": 828,
|
| 977 |
+
"##う": 829,
|
| 978 |
+
"##2": 830,
|
| 979 |
+
"##9": 831,
|
| 980 |
+
"##3": 832,
|
| 981 |
+
"##ø": 833,
|
| 982 |
+
"##ล": 834,
|
| 983 |
+
"##ว": 835,
|
| 984 |
+
"##ง": 836,
|
| 985 |
+
"##พ": 837,
|
| 986 |
+
"##ไ": 838,
|
| 987 |
+
"##ช": 839,
|
| 988 |
+
"##ย": 840,
|
| 989 |
+
"##า": 841,
|
| 990 |
+
"##ร": 842,
|
| 991 |
+
"##თ": 843,
|
| 992 |
+
"##ა": 844,
|
| 993 |
+
"##ვ": 845,
|
| 994 |
+
"##რ": 846,
|
| 995 |
+
"##ი": 847,
|
| 996 |
+
"##ള": 848,
|
| 997 |
+
"##あ": 849,
|
| 998 |
+
"##ん": 850,
|
| 999 |
+
"##α": 851,
|
| 1000 |
+
"##ν": 852,
|
| 1001 |
+
"##τ": 853,
|
| 1002 |
+
"##ο": 854,
|
| 1003 |
+
"##κ": 855,
|
| 1004 |
+
"##ρ": 856,
|
| 1005 |
+
"##ω": 857,
|
| 1006 |
+
"##ς": 858,
|
| 1007 |
+
"##の": 859,
|
| 1008 |
+
"##な": 860,
|
| 1009 |
+
"##ら": 861,
|
| 1010 |
+
"##ð": 862,
|
| 1011 |
+
"##œ": 863,
|
| 1012 |
+
"##ɛ": 864,
|
| 1013 |
+
"##ł": 865,
|
| 1014 |
+
"##η": 866,
|
| 1015 |
+
"##μ": 867,
|
| 1016 |
+
"##ซ": 868,
|
| 1017 |
+
"##ル": 869,
|
| 1018 |
+
"##シ": 870,
|
| 1019 |
+
"##ア": 871,
|
| 1020 |
+
"##リ": 872,
|
| 1021 |
+
"##ス": 873,
|
| 1022 |
+
"##ʔ": 874,
|
| 1023 |
+
"##ल": 875,
|
| 1024 |
+
"##ᄇ": 876,
|
| 1025 |
+
"##ᅮ": 877,
|
| 1026 |
+
"##ᄃ": 878,
|
| 1027 |
+
"##ᅢ": 879,
|
| 1028 |
+
"##β": 880,
|
| 1029 |
+
"##ß": 881,
|
| 1030 |
+
"##か": 882,
|
| 1031 |
+
"##た": 883,
|
| 1032 |
+
"##ə": 884,
|
| 1033 |
+
"##ʻ": 885,
|
| 1034 |
+
"##ι": 886,
|
| 1035 |
+
"##χ": 887,
|
| 1036 |
+
"##о": 888,
|
| 1037 |
+
"##л": 889,
|
| 1038 |
+
"##с": 890,
|
| 1039 |
+
"##а": 891,
|
| 1040 |
+
"##т": 892,
|
| 1041 |
+
"##ы": 893,
|
| 1042 |
+
"##и": 894,
|
| 1043 |
+
"##в": 895,
|
| 1044 |
+
"##к": 896,
|
| 1045 |
+
"##з": 897,
|
| 1046 |
+
"##ッ": 898,
|
| 1047 |
+
"##ク": 899,
|
| 1048 |
+
"##マ": 900,
|
| 1049 |
+
"##ン": 901,
|
| 1050 |
+
"##გ": 902,
|
| 1051 |
+
"##ლ": 903,
|
| 1052 |
+
"##ო": 904,
|
| 1053 |
+
"##ნ": 905,
|
| 1054 |
+
"##ː": 906,
|
| 1055 |
+
"##ל": 907,
|
| 1056 |
+
"##ה": 908,
|
| 1057 |
+
"##א": 909,
|
| 1058 |
+
"##く": 910,
|
| 1059 |
+
"##み": 911,
|
| 1060 |
+
"##ε": 912,
|
| 1061 |
+
"##ξ": 913,
|
| 1062 |
+
"##ল": 914,
|
| 1063 |
+
"##ˈ": 915,
|
| 1064 |
+
"##ɡ": 916,
|
| 1065 |
+
"##ɑ": 917,
|
| 1066 |
+
"##ɒ": 918,
|
| 1067 |
+
"##し": 919,
|
| 1068 |
+
"##す": 920,
|
| 1069 |
+
"##き": 921,
|
| 1070 |
+
"##ひ": 922,
|
| 1071 |
+
"##と": 923,
|
| 1072 |
+
"##đ": 924,
|
| 1073 |
+
"##ъ": 925,
|
| 1074 |
+
"##н": 926,
|
| 1075 |
+
"##е": 927,
|
| 1076 |
+
"##י": 928,
|
| 1077 |
+
"##פ": 929,
|
| 1078 |
+
"##イ": 930,
|
| 1079 |
+
"##λ": 931,
|
| 1080 |
+
"##ق": 932,
|
| 1081 |
+
"##ع": 933,
|
| 1082 |
+
"##د": 934,
|
| 1083 |
+
"##ᅡ": 935,
|
| 1084 |
+
"##ᆯ": 936,
|
| 1085 |
+
"##ᄅ": 937,
|
| 1086 |
+
"##ɪ": 938,
|
| 1087 |
+
"##ค": 939,
|
| 1088 |
+
"##ต": 940,
|
| 1089 |
+
"##व": 941,
|
| 1090 |
+
"##��": 942,
|
| 1091 |
+
"##द": 943,
|
| 1092 |
+
"##は": 944,
|
| 1093 |
+
"##り": 945,
|
| 1094 |
+
"##レ": 946,
|
| 1095 |
+
"##ー": 947,
|
| 1096 |
+
"##ツ": 948,
|
| 1097 |
+
"##ي": 949,
|
| 1098 |
+
"##ش": 950,
|
| 1099 |
+
"##و": 951,
|
| 1100 |
+
"##م": 952,
|
| 1101 |
+
"##º": 953,
|
| 1102 |
+
"##ਲ": 954,
|
| 1103 |
+
"##ਾ": 955,
|
| 1104 |
+
"##ਹ": 956,
|
| 1105 |
+
"##д": 957,
|
| 1106 |
+
"##р": 958,
|
| 1107 |
+
"##ل": 959,
|
| 1108 |
+
"##ب": 960,
|
| 1109 |
+
"##い": 961,
|
| 1110 |
+
"##ち": 962,
|
| 1111 |
+
"##ゃ": 963,
|
| 1112 |
+
"##ʒ": 964,
|
| 1113 |
+
"##ʃ": 965,
|
| 1114 |
+
"##ɔ": 966,
|
| 1115 |
+
"##ह": 967,
|
| 1116 |
+
"##ニ": 968,
|
| 1117 |
+
"##ウ": 969,
|
| 1118 |
+
"##ァ": 970,
|
| 1119 |
+
"##キ": 971,
|
| 1120 |
+
"##ュ": 972,
|
| 1121 |
+
"##3": 973,
|
| 1122 |
+
"##ხ": 974,
|
| 1123 |
+
"##ს": 975,
|
| 1124 |
+
"##お": 976,
|
| 1125 |
+
"##タ": 977,
|
| 1126 |
+
"##ാ": 978,
|
| 1127 |
+
"##ഹ": 979,
|
| 1128 |
+
"##ɳ": 980,
|
| 1129 |
+
"##ま": 981,
|
| 1130 |
+
"##る": 982,
|
| 1131 |
+
"##ะ": 983,
|
| 1132 |
+
"##อ": 984,
|
| 1133 |
+
"##น": 985,
|
| 1134 |
+
"##ן": 986,
|
| 1135 |
+
"##я": 987,
|
| 1136 |
+
"##แ": 988,
|
| 1137 |
+
"##ก": 989,
|
| 1138 |
+
"##ɾ": 990,
|
| 1139 |
+
"##ʲ": 991,
|
| 1140 |
+
"##フ": 992,
|
| 1141 |
+
"##უ": 993,
|
| 1142 |
+
"##ภ": 994,
|
| 1143 |
+
"##ด": 995,
|
| 1144 |
+
"##ב": 996,
|
| 1145 |
+
"##ת": 997,
|
| 1146 |
+
"##خ": 998,
|
| 1147 |
+
"##ラ": 999,
|
| 1148 |
+
"##れ": 1000,
|
| 1149 |
+
"##ण": 1001,
|
| 1150 |
+
"##स": 1002,
|
| 1151 |
+
"##न": 1003,
|
| 1152 |
+
"##ه": 1004,
|
| 1153 |
+
"##ف": 1005,
|
| 1154 |
+
"##ر": 1006,
|
| 1155 |
+
"##エ": 1007,
|
| 1156 |
+
"##テ": 1008,
|
| 1157 |
+
"##ษ": 1009,
|
| 1158 |
+
"##ฐ": 1010,
|
| 1159 |
+
"##ィ": 1011,
|
| 1160 |
+
"##क": 1012,
|
| 1161 |
+
"##ノ": 1013,
|
| 1162 |
+
"##θ": 1014,
|
| 1163 |
+
"##ネ": 1015,
|
| 1164 |
+
"##ョ": 1016,
|
| 1165 |
+
"##δ": 1017,
|
| 1166 |
+
"##ɽ": 1018,
|
| 1167 |
+
"##ʁ": 1019,
|
| 1168 |
+
"##ტ": 1020,
|
| 1169 |
+
"##ჱ": 1021,
|
| 1170 |
+
"##ェ": 1022,
|
| 1171 |
+
"##ハ": 1023,
|
| 1172 |
+
"##υ": 1024,
|
| 1173 |
+
"##र": 1025,
|
| 1174 |
+
"##х": 1026,
|
| 1175 |
+
"##も": 1027,
|
| 1176 |
+
"##っ": 1028,
|
| 1177 |
+
"##ょ": 1029,
|
| 1178 |
+
"##に": 1030,
|
| 1179 |
+
"##γ": 1031,
|
| 1180 |
+
"##ც": 1032,
|
| 1181 |
+
"##ე": 1033,
|
| 1182 |
+
"##є": 1034,
|
| 1183 |
+
"##м": 1035,
|
| 1184 |
+
"##ܕ": 1036,
|
| 1185 |
+
"##ܝ": 1037,
|
| 1186 |
+
"##ܢ": 1038,
|
| 1187 |
+
"##ܬ": 1039,
|
| 1188 |
+
"##ณ": 1040,
|
| 1189 |
+
"##ม": 1041,
|
| 1190 |
+
"##ฮ": 1042,
|
| 1191 |
+
"##ж": 1043,
|
| 1192 |
+
"##ם": 1044,
|
| 1193 |
+
"##ء": 1045,
|
| 1194 |
+
"##ʊ": 1046,
|
| 1195 |
+
"##ई": 1047,
|
| 1196 |
+
"##め": 1048,
|
| 1197 |
+
"##მ": 1049,
|
| 1198 |
+
"##ム": 1050,
|
| 1199 |
+
"##チ": 1051,
|
| 1200 |
+
"##ᵻ": 1052,
|
| 1201 |
+
"##ˌ": 1053,
|
| 1202 |
+
"##ו": 1054,
|
| 1203 |
+
"##ף": 1055,
|
| 1204 |
+
"##წ": 1056,
|
| 1205 |
+
"##ფ": 1057,
|
| 1206 |
+
"##ャ": 1058,
|
| 1207 |
+
"##モ": 1059,
|
| 1208 |
+
"##ɐ": 1060,
|
| 1209 |
+
"##ᅦ": 1061,
|
| 1210 |
+
"##ᅩ": 1062,
|
| 1211 |
+
"##ᆨ": 1063,
|
| 1212 |
+
"##ᅵ": 1064,
|
| 1213 |
+
"##ᆸ": 1065,
|
| 1214 |
+
"##ᅧ": 1066,
|
| 1215 |
+
"##ᆼ": 1067,
|
| 1216 |
+
"##ᄋ": 1068,
|
| 1217 |
+
"##ᆫ": 1069,
|
| 1218 |
+
"##わ": 1070,
|
| 1219 |
+
"##ı": 1071,
|
| 1220 |
+
"##ქ": 1072,
|
| 1221 |
+
"##დ": 1073,
|
| 1222 |
+
"##ि": 1074,
|
| 1223 |
+
"##ჲ": 1075,
|
| 1224 |
+
"##ר": 1076,
|
| 1225 |
+
"##セ": 1077,
|
| 1226 |
+
"##オ": 1078,
|
| 1227 |
+
"##ゆ": 1079,
|
| 1228 |
+
"##せ": 1080,
|
| 1229 |
+
"##ك": 1081,
|
| 1230 |
+
"##ʿ": 1082,
|
| 1231 |
+
"##ש": 1083,
|
| 1232 |
+
"##מ": 1084,
|
| 1233 |
+
"##צ": 1085,
|
| 1234 |
+
"##п": 1086,
|
| 1235 |
+
"##г": 1087,
|
| 1236 |
+
"##カ": 1088,
|
| 1237 |
+
"##ܠ": 1089,
|
| 1238 |
+
"##ܗ": 1090,
|
| 1239 |
+
"##ܐ": 1091,
|
| 1240 |
+
"##ナ": 1092,
|
| 1241 |
+
"##ミ": 1093,
|
| 1242 |
+
"##こ": 1094,
|
| 1243 |
+
"##を": 1095,
|
| 1244 |
+
"##ψ": 1096,
|
| 1245 |
+
"##サ": 1097,
|
| 1246 |
+
"##ォ": 1098,
|
| 1247 |
+
"##π": 1099,
|
| 1248 |
+
"##ト": 1100,
|
| 1249 |
+
"##у": 1101,
|
| 1250 |
+
"##ح": 1102,
|
| 1251 |
+
"##σ": 1103,
|
| 1252 |
+
"##เ": 1104,
|
| 1253 |
+
"##ป": 1105,
|
| 1254 |
+
"##ш": 1106,
|
| 1255 |
+
"##ゥ": 1107,
|
| 1256 |
+
"##ロ": 1108,
|
| 1257 |
+
"##া": 1109,
|
| 1258 |
+
"##হ": 1110,
|
| 1259 |
+
"##ɜ": 1111,
|
| 1260 |
+
"##ة": 1112,
|
| 1261 |
+
"##ص": 1113,
|
| 1262 |
+
"##ס": 1114,
|
| 1263 |
+
"##ث": 1115,
|
| 1264 |
+
"##ჳ": 1116,
|
| 1265 |
+
"##נ": 1117,
|
| 1266 |
+
"##ذ": 1118,
|
| 1267 |
+
"##ग": 1119,
|
| 1268 |
+
"##ɫ": 1120,
|
| 1269 |
+
"##ц": 1121,
|
| 1270 |
+
"##ь": 1122,
|
| 1271 |
+
"##ю": 1123
|
| 1272 |
+
}
|
| 1273 |
+
}
|
| 1274 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"do_basic_tokenize": true,
|
| 4 |
+
"do_lower_case": true,
|
| 5 |
+
"mask_token": "[MASK]",
|
| 6 |
+
"model_max_length": 512,
|
| 7 |
+
"name_or_path": "temp/dummy/bert/processors",
|
| 8 |
+
"never_split": null,
|
| 9 |
+
"pad_token": "[PAD]",
|
| 10 |
+
"sep_token": "[SEP]",
|
| 11 |
+
"special_tokens_map_file": null,
|
| 12 |
+
"strip_accents": null,
|
| 13 |
+
"tokenize_chinese_chars": true,
|
| 14 |
+
"tokenizer_class": "BertTokenizer",
|
| 15 |
+
"unk_token": "[UNK]"
|
| 16 |
+
}
|
vocab.txt
ADDED
|
@@ -0,0 +1,1124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[PAD]
|
| 2 |
+
[UNK]
|
| 3 |
+
[CLS]
|
| 4 |
+
[SEP]
|
| 5 |
+
[MASK]
|
| 6 |
+
!
|
| 7 |
+
"
|
| 8 |
+
#
|
| 9 |
+
$
|
| 10 |
+
%
|
| 11 |
+
&
|
| 12 |
+
'
|
| 13 |
+
(
|
| 14 |
+
)
|
| 15 |
+
*
|
| 16 |
+
+
|
| 17 |
+
,
|
| 18 |
+
-
|
| 19 |
+
.
|
| 20 |
+
/
|
| 21 |
+
0
|
| 22 |
+
1
|
| 23 |
+
2
|
| 24 |
+
3
|
| 25 |
+
4
|
| 26 |
+
5
|
| 27 |
+
6
|
| 28 |
+
7
|
| 29 |
+
8
|
| 30 |
+
9
|
| 31 |
+
:
|
| 32 |
+
;
|
| 33 |
+
<
|
| 34 |
+
=
|
| 35 |
+
>
|
| 36 |
+
?
|
| 37 |
+
@
|
| 38 |
+
[
|
| 39 |
+
\
|
| 40 |
+
]
|
| 41 |
+
^
|
| 42 |
+
_
|
| 43 |
+
`
|
| 44 |
+
a
|
| 45 |
+
b
|
| 46 |
+
c
|
| 47 |
+
d
|
| 48 |
+
e
|
| 49 |
+
f
|
| 50 |
+
g
|
| 51 |
+
h
|
| 52 |
+
i
|
| 53 |
+
j
|
| 54 |
+
k
|
| 55 |
+
l
|
| 56 |
+
m
|
| 57 |
+
n
|
| 58 |
+
o
|
| 59 |
+
p
|
| 60 |
+
q
|
| 61 |
+
r
|
| 62 |
+
s
|
| 63 |
+
t
|
| 64 |
+
u
|
| 65 |
+
v
|
| 66 |
+
w
|
| 67 |
+
x
|
| 68 |
+
y
|
| 69 |
+
z
|
| 70 |
+
|
|
| 71 |
+
}
|
| 72 |
+
~
|
| 73 |
+
¡
|
| 74 |
+
¢
|
| 75 |
+
£
|
| 76 |
+
¥
|
| 77 |
+
§
|
| 78 |
+
°
|
| 79 |
+
±
|
| 80 |
+
²
|
| 81 |
+
³
|
| 82 |
+
´
|
| 83 |
+
µ
|
| 84 |
+
·
|
| 85 |
+
º
|
| 86 |
+
½
|
| 87 |
+
¿
|
| 88 |
+
×
|
| 89 |
+
ß
|
| 90 |
+
æ
|
| 91 |
+
ð
|
| 92 |
+
ø
|
| 93 |
+
þ
|
| 94 |
+
đ
|
| 95 |
+
ħ
|
| 96 |
+
ı
|
| 97 |
+
ł
|
| 98 |
+
œ
|
| 99 |
+
ɐ
|
| 100 |
+
ɑ
|
| 101 |
+
ɒ
|
| 102 |
+
ɔ
|
| 103 |
+
ə
|
| 104 |
+
ɛ
|
| 105 |
+
ɜ
|
| 106 |
+
ɡ
|
| 107 |
+
ɢ
|
| 108 |
+
ɪ
|
| 109 |
+
ɫ
|
| 110 |
+
ɳ
|
| 111 |
+
ɽ
|
| 112 |
+
ɾ
|
| 113 |
+
ʁ
|
| 114 |
+
ʃ
|
| 115 |
+
ʊ
|
| 116 |
+
ʋ
|
| 117 |
+
ʒ
|
| 118 |
+
ʔ
|
| 119 |
+
ʕ
|
| 120 |
+
ʲ
|
| 121 |
+
ʻ
|
| 122 |
+
ʼ
|
| 123 |
+
ʾ
|
| 124 |
+
ʿ
|
| 125 |
+
ˈ
|
| 126 |
+
ˌ
|
| 127 |
+
ː
|
| 128 |
+
α
|
| 129 |
+
β
|
| 130 |
+
γ
|
| 131 |
+
δ
|
| 132 |
+
ε
|
| 133 |
+
η
|
| 134 |
+
θ
|
| 135 |
+
ι
|
| 136 |
+
κ
|
| 137 |
+
λ
|
| 138 |
+
μ
|
| 139 |
+
ν
|
| 140 |
+
ξ
|
| 141 |
+
ο
|
| 142 |
+
π
|
| 143 |
+
ρ
|
| 144 |
+
ς
|
| 145 |
+
σ
|
| 146 |
+
τ
|
| 147 |
+
υ
|
| 148 |
+
φ
|
| 149 |
+
χ
|
| 150 |
+
ψ
|
| 151 |
+
ω
|
| 152 |
+
а
|
| 153 |
+
б
|
| 154 |
+
в
|
| 155 |
+
г
|
| 156 |
+
д
|
| 157 |
+
е
|
| 158 |
+
ж
|
| 159 |
+
з
|
| 160 |
+
и
|
| 161 |
+
к
|
| 162 |
+
л
|
| 163 |
+
м
|
| 164 |
+
н
|
| 165 |
+
о
|
| 166 |
+
п
|
| 167 |
+
р
|
| 168 |
+
с
|
| 169 |
+
т
|
| 170 |
+
у
|
| 171 |
+
х
|
| 172 |
+
ц
|
| 173 |
+
ш
|
| 174 |
+
ъ
|
| 175 |
+
ы
|
| 176 |
+
ь
|
| 177 |
+
ю
|
| 178 |
+
я
|
| 179 |
+
є
|
| 180 |
+
א
|
| 181 |
+
ב
|
| 182 |
+
ג
|
| 183 |
+
ה
|
| 184 |
+
ו
|
| 185 |
+
ז
|
| 186 |
+
ח
|
| 187 |
+
י
|
| 188 |
+
ל
|
| 189 |
+
ם
|
| 190 |
+
מ
|
| 191 |
+
ן
|
| 192 |
+
נ
|
| 193 |
+
ס
|
| 194 |
+
ף
|
| 195 |
+
פ
|
| 196 |
+
צ
|
| 197 |
+
ר
|
| 198 |
+
ש
|
| 199 |
+
ת
|
| 200 |
+
ء
|
| 201 |
+
ا
|
| 202 |
+
ب
|
| 203 |
+
ة
|
| 204 |
+
ت
|
| 205 |
+
ث
|
| 206 |
+
ج
|
| 207 |
+
ح
|
| 208 |
+
خ
|
| 209 |
+
د
|
| 210 |
+
ذ
|
| 211 |
+
ر
|
| 212 |
+
س
|
| 213 |
+
ش
|
| 214 |
+
ص
|
| 215 |
+
ع
|
| 216 |
+
ف
|
| 217 |
+
ق
|
| 218 |
+
ك
|
| 219 |
+
ل
|
| 220 |
+
م
|
| 221 |
+
ن
|
| 222 |
+
ه
|
| 223 |
+
و
|
| 224 |
+
ي
|
| 225 |
+
ܐ
|
| 226 |
+
ܕ
|
| 227 |
+
ܗ
|
| 228 |
+
ܝ
|
| 229 |
+
ܠ
|
| 230 |
+
ܢ
|
| 231 |
+
ܬ
|
| 232 |
+
अ
|
| 233 |
+
ई
|
| 234 |
+
क
|
| 235 |
+
ग
|
| 236 |
+
ण
|
| 237 |
+
त
|
| 238 |
+
द
|
| 239 |
+
न
|
| 240 |
+
प
|
| 241 |
+
ब
|
| 242 |
+
म
|
| 243 |
+
य
|
| 244 |
+
र
|
| 245 |
+
ल
|
| 246 |
+
व
|
| 247 |
+
स
|
| 248 |
+
ह
|
| 249 |
+
ा
|
| 250 |
+
ि
|
| 251 |
+
আ
|
| 252 |
+
ল
|
| 253 |
+
হ
|
| 254 |
+
া
|
| 255 |
+
ਅ
|
| 256 |
+
ਲ
|
| 257 |
+
ਹ
|
| 258 |
+
ਾ
|
| 259 |
+
അ
|
| 260 |
+
ള
|
| 261 |
+
ഹ
|
| 262 |
+
ാ
|
| 263 |
+
ก
|
| 264 |
+
ค
|
| 265 |
+
ง
|
| 266 |
+
ช
|
| 267 |
+
ซ
|
| 268 |
+
ญ
|
| 269 |
+
ฐ
|
| 270 |
+
ณ
|
| 271 |
+
ด
|
| 272 |
+
ต
|
| 273 |
+
น
|
| 274 |
+
บ
|
| 275 |
+
ป
|
| 276 |
+
พ
|
| 277 |
+
ภ
|
| 278 |
+
ม
|
| 279 |
+
ย
|
| 280 |
+
ร
|
| 281 |
+
ล
|
| 282 |
+
ว
|
| 283 |
+
ศ
|
| 284 |
+
ษ
|
| 285 |
+
ส
|
| 286 |
+
ห
|
| 287 |
+
อ
|
| 288 |
+
ฮ
|
| 289 |
+
ะ
|
| 290 |
+
า
|
| 291 |
+
เ
|
| 292 |
+
แ
|
| 293 |
+
ไ
|
| 294 |
+
ა
|
| 295 |
+
ბ
|
| 296 |
+
გ
|
| 297 |
+
დ
|
| 298 |
+
ე
|
| 299 |
+
ვ
|
| 300 |
+
ზ
|
| 301 |
+
თ
|
| 302 |
+
ი
|
| 303 |
+
კ
|
| 304 |
+
ლ
|
| 305 |
+
მ
|
| 306 |
+
ნ
|
| 307 |
+
ო
|
| 308 |
+
პ
|
| 309 |
+
ჟ
|
| 310 |
+
რ
|
| 311 |
+
ს
|
| 312 |
+
ტ
|
| 313 |
+
უ
|
| 314 |
+
ფ
|
| 315 |
+
ქ
|
| 316 |
+
ღ
|
| 317 |
+
ყ
|
| 318 |
+
შ
|
| 319 |
+
ჩ
|
| 320 |
+
ც
|
| 321 |
+
ძ
|
| 322 |
+
წ
|
| 323 |
+
ჭ
|
| 324 |
+
ხ
|
| 325 |
+
ჯ
|
| 326 |
+
ჰ
|
| 327 |
+
ჱ
|
| 328 |
+
ჲ
|
| 329 |
+
ჳ
|
| 330 |
+
ჴ
|
| 331 |
+
ჵ
|
| 332 |
+
ჶ
|
| 333 |
+
ჷ
|
| 334 |
+
ჸ
|
| 335 |
+
ჹ
|
| 336 |
+
ჺ
|
| 337 |
+
჻
|
| 338 |
+
ᄃ
|
| 339 |
+
ᄅ
|
| 340 |
+
ᄇ
|
| 341 |
+
ᄋ
|
| 342 |
+
ᄌ
|
| 343 |
+
ᅡ
|
| 344 |
+
ᅢ
|
| 345 |
+
ᅦ
|
| 346 |
+
ᅧ
|
| 347 |
+
ᅩ
|
| 348 |
+
ᅮ
|
| 349 |
+
ᅵ
|
| 350 |
+
ᆨ
|
| 351 |
+
ᆫ
|
| 352 |
+
ᆯ
|
| 353 |
+
ᆸ
|
| 354 |
+
ᆼ
|
| 355 |
+
ᵻ
|
| 356 |
+
‐
|
| 357 |
+
‑
|
| 358 |
+
–
|
| 359 |
+
—
|
| 360 |
+
―
|
| 361 |
+
‘
|
| 362 |
+
’
|
| 363 |
+
“
|
| 364 |
+
”
|
| 365 |
+
„
|
| 366 |
+
†
|
| 367 |
+
‡
|
| 368 |
+
•
|
| 369 |
+
…
|
| 370 |
+
′
|
| 371 |
+
″
|
| 372 |
+
⁄
|
| 373 |
+
₣
|
| 374 |
+
₤
|
| 375 |
+
€
|
| 376 |
+
₹
|
| 377 |
+
⅓
|
| 378 |
+
⅔
|
| 379 |
+
→
|
| 380 |
+
−
|
| 381 |
+
≡
|
| 382 |
+
≤
|
| 383 |
+
①
|
| 384 |
+
☉
|
| 385 |
+
☫
|
| 386 |
+
♀
|
| 387 |
+
♭
|
| 388 |
+
♯
|
| 389 |
+
⚳
|
| 390 |
+
ⴀ
|
| 391 |
+
ⴂ
|
| 392 |
+
ⴃ
|
| 393 |
+
ⴈ
|
| 394 |
+
ⴌ
|
| 395 |
+
ⴕ
|
| 396 |
+
ⴟ
|
| 397 |
+
〈
|
| 398 |
+
〉
|
| 399 |
+
〜
|
| 400 |
+
あ
|
| 401 |
+
い
|
| 402 |
+
う
|
| 403 |
+
お
|
| 404 |
+
か
|
| 405 |
+
き
|
| 406 |
+
く
|
| 407 |
+
け
|
| 408 |
+
こ
|
| 409 |
+
さ
|
| 410 |
+
し
|
| 411 |
+
す
|
| 412 |
+
せ
|
| 413 |
+
た
|
| 414 |
+
ち
|
| 415 |
+
っ
|
| 416 |
+
つ
|
| 417 |
+
と
|
| 418 |
+
な
|
| 419 |
+
に
|
| 420 |
+
の
|
| 421 |
+
は
|
| 422 |
+
ひ
|
| 423 |
+
ふ
|
| 424 |
+
ほ
|
| 425 |
+
ま
|
| 426 |
+
み
|
| 427 |
+
め
|
| 428 |
+
も
|
| 429 |
+
ゃ
|
| 430 |
+
ゆ
|
| 431 |
+
ょ
|
| 432 |
+
ら
|
| 433 |
+
り
|
| 434 |
+
る
|
| 435 |
+
れ
|
| 436 |
+
わ
|
| 437 |
+
を
|
| 438 |
+
ん
|
| 439 |
+
ァ
|
| 440 |
+
ア
|
| 441 |
+
ィ
|
| 442 |
+
イ
|
| 443 |
+
ゥ
|
| 444 |
+
ウ
|
| 445 |
+
ェ
|
| 446 |
+
エ
|
| 447 |
+
ォ
|
| 448 |
+
オ
|
| 449 |
+
カ
|
| 450 |
+
キ
|
| 451 |
+
ク
|
| 452 |
+
ケ
|
| 453 |
+
コ
|
| 454 |
+
サ
|
| 455 |
+
シ
|
| 456 |
+
ス
|
| 457 |
+
セ
|
| 458 |
+
タ
|
| 459 |
+
チ
|
| 460 |
+
ッ
|
| 461 |
+
ツ
|
| 462 |
+
テ
|
| 463 |
+
ト
|
| 464 |
+
ナ
|
| 465 |
+
ニ
|
| 466 |
+
ネ
|
| 467 |
+
ノ
|
| 468 |
+
ハ
|
| 469 |
+
フ
|
| 470 |
+
ヘ
|
| 471 |
+
マ
|
| 472 |
+
ミ
|
| 473 |
+
ム
|
| 474 |
+
モ
|
| 475 |
+
ャ
|
| 476 |
+
ュ
|
| 477 |
+
ョ
|
| 478 |
+
ラ
|
| 479 |
+
リ
|
| 480 |
+
ル
|
| 481 |
+
レ
|
| 482 |
+
ロ
|
| 483 |
+
ン
|
| 484 |
+
・
|
| 485 |
+
ー
|
| 486 |
+
一
|
| 487 |
+
七
|
| 488 |
+
下
|
| 489 |
+
世
|
| 490 |
+
丙
|
| 491 |
+
中
|
| 492 |
+
主
|
| 493 |
+
乃
|
| 494 |
+
之
|
| 495 |
+
乙
|
| 496 |
+
九
|
| 497 |
+
二
|
| 498 |
+
云
|
| 499 |
+
人
|
| 500 |
+
今
|
| 501 |
+
付
|
| 502 |
+
作
|
| 503 |
+
侗
|
| 504 |
+
依
|
| 505 |
+
信
|
| 506 |
+
傳
|
| 507 |
+
儚
|
| 508 |
+
充
|
| 509 |
+
光
|
| 510 |
+
全
|
| 511 |
+
兵
|
| 512 |
+
其
|
| 513 |
+
具
|
| 514 |
+
円
|
| 515 |
+
再
|
| 516 |
+
出
|
| 517 |
+
判
|
| 518 |
+
前
|
| 519 |
+
剛
|
| 520 |
+
劇
|
| 521 |
+
劉
|
| 522 |
+
動
|
| 523 |
+
化
|
| 524 |
+
北
|
| 525 |
+
华
|
| 526 |
+
厂
|
| 527 |
+
去
|
| 528 |
+
古
|
| 529 |
+
可
|
| 530 |
+
台
|
| 531 |
+
史
|
| 532 |
+
同
|
| 533 |
+
名
|
| 534 |
+
君
|
| 535 |
+
吳
|
| 536 |
+
周
|
| 537 |
+
命
|
| 538 |
+
和
|
| 539 |
+
咲
|
| 540 |
+
善
|
| 541 |
+
四
|
| 542 |
+
國
|
| 543 |
+
園
|
| 544 |
+
圣
|
| 545 |
+
在
|
| 546 |
+
坂
|
| 547 |
+
堤
|
| 548 |
+
場
|
| 549 |
+
塘
|
| 550 |
+
夕
|
| 551 |
+
大
|
| 552 |
+
天
|
| 553 |
+
夫
|
| 554 |
+
女
|
| 555 |
+
妙
|
| 556 |
+
姚
|
| 557 |
+
子
|
| 558 |
+
孟
|
| 559 |
+
守
|
| 560 |
+
安
|
| 561 |
+
宋
|
| 562 |
+
完
|
| 563 |
+
宗
|
| 564 |
+
宝
|
| 565 |
+
宫
|
| 566 |
+
寝
|
| 567 |
+
寺
|
| 568 |
+
小
|
| 569 |
+
少
|
| 570 |
+
尾
|
| 571 |
+
山
|
| 572 |
+
岳
|
| 573 |
+
川
|
| 574 |
+
州
|
| 575 |
+
巳
|
| 576 |
+
市
|
| 577 |
+
師
|
| 578 |
+
平
|
| 579 |
+
广
|
| 580 |
+
庆
|
| 581 |
+
府
|
| 582 |
+
座
|
| 583 |
+
廬
|
| 584 |
+
建
|
| 585 |
+
式
|
| 586 |
+
張
|
| 587 |
+
彌
|
| 588 |
+
彩
|
| 589 |
+
彼
|
| 590 |
+
後
|
| 591 |
+
御
|
| 592 |
+
德
|
| 593 |
+
思
|
| 594 |
+
愛
|
| 595 |
+
憑
|
| 596 |
+
憶
|
| 597 |
+
應
|
| 598 |
+
懷
|
| 599 |
+
战
|
| 600 |
+
戦
|
| 601 |
+
扈
|
| 602 |
+
技
|
| 603 |
+
拉
|
| 604 |
+
拳
|
| 605 |
+
挑
|
| 606 |
+
揺
|
| 607 |
+
攻
|
| 608 |
+
放
|
| 609 |
+
政
|
| 610 |
+
散
|
| 611 |
+
斯
|
| 612 |
+
方
|
| 613 |
+
日
|
| 614 |
+
旦
|
| 615 |
+
旭
|
| 616 |
+
昌
|
| 617 |
+
明
|
| 618 |
+
星
|
| 619 |
+
春
|
| 620 |
+
晋
|
| 621 |
+
景
|
| 622 |
+
曦
|
| 623 |
+
月
|
| 624 |
+
望
|
| 625 |
+
未
|
| 626 |
+
本
|
| 627 |
+
李
|
| 628 |
+
村
|
| 629 |
+
杜
|
| 630 |
+
束
|
| 631 |
+
来
|
| 632 |
+
林
|
| 633 |
+
桜
|
| 634 |
+
梶
|
| 635 |
+
棘
|
| 636 |
+
椎
|
| 637 |
+
楊
|
| 638 |
+
楚
|
| 639 |
+
榮
|
| 640 |
+
橘
|
| 641 |
+
機
|
| 642 |
+
正
|
| 643 |
+
殻
|
| 644 |
+
殿
|
| 645 |
+
母
|
| 646 |
+
水
|
| 647 |
+
汉
|
| 648 |
+
沂
|
| 649 |
+
沙
|
| 650 |
+
河
|
| 651 |
+
泗
|
| 652 |
+
波
|
| 653 |
+
泣
|
| 654 |
+
洪
|
| 655 |
+
淹
|
| 656 |
+
清
|
| 657 |
+
湯
|
| 658 |
+
漢
|
| 659 |
+
澄
|
| 660 |
+
澤
|
| 661 |
+
火
|
| 662 |
+
灯
|
| 663 |
+
灵
|
| 664 |
+
灼
|
| 665 |
+
焼
|
| 666 |
+
熱
|
| 667 |
+
物
|
| 668 |
+
狐
|
| 669 |
+
狸
|
| 670 |
+
玄
|
| 671 |
+
王
|
| 672 |
+
玩
|
| 673 |
+
珂
|
| 674 |
+
珙
|
| 675 |
+
球
|
| 676 |
+
理
|
| 677 |
+
琦
|
| 678 |
+
琪
|
| 679 |
+
瓊
|
| 680 |
+
生
|
| 681 |
+
田
|
| 682 |
+
畢
|
| 683 |
+
番
|
| 684 |
+
瘡
|
| 685 |
+
白
|
| 686 |
+
皮
|
| 687 |
+
真
|
| 688 |
+
砲
|
| 689 |
+
礮
|
| 690 |
+
祈
|
| 691 |
+
神
|
| 692 |
+
祠
|
| 693 |
+
秋
|
| 694 |
+
空
|
| 695 |
+
立
|
| 696 |
+
精
|
| 697 |
+
約
|
| 698 |
+
絵
|
| 699 |
+
織
|
| 700 |
+
義
|
| 701 |
+
翠
|
| 702 |
+
者
|
| 703 |
+
耕
|
| 704 |
+
肖
|
| 705 |
+
胡
|
| 706 |
+
膀
|
| 707 |
+
臂
|
| 708 |
+
興
|
| 709 |
+
良
|
| 710 |
+
花
|
| 711 |
+
芳
|
| 712 |
+
芽
|
| 713 |
+
若
|
| 714 |
+
英
|
| 715 |
+
藕
|
| 716 |
+
藥
|
| 717 |
+
蘄
|
| 718 |
+
蘇
|
| 719 |
+
行
|
| 720 |
+
裁
|
| 721 |
+
規
|
| 722 |
+
覺
|
| 723 |
+
观
|
| 724 |
+
解
|
| 725 |
+
記
|
| 726 |
+
誓
|
| 727 |
+
誡
|
| 728 |
+
誰
|
| 729 |
+
謎
|
| 730 |
+
许
|
| 731 |
+
谭
|
| 732 |
+
豪
|
| 733 |
+
豫
|
| 734 |
+
費
|
| 735 |
+
贵
|
| 736 |
+
赤
|
| 737 |
+
趙
|
| 738 |
+
足
|
| 739 |
+
跡
|
| 740 |
+
転
|
| 741 |
+
辛
|
| 742 |
+
逆
|
| 743 |
+
遇
|
| 744 |
+
運
|
| 745 |
+
過
|
| 746 |
+
遠
|
| 747 |
+
選
|
| 748 |
+
邦
|
| 749 |
+
邱
|
| 750 |
+
部
|
| 751 |
+
郭
|
| 752 |
+
都
|
| 753 |
+
酈
|
| 754 |
+
里
|
| 755 |
+
野
|
| 756 |
+
金
|
| 757 |
+
銃
|
| 758 |
+
鋼
|
| 759 |
+
錄
|
| 760 |
+
錡
|
| 761 |
+
鍵
|
| 762 |
+
鐵
|
| 763 |
+
钱
|
| 764 |
+
铁
|
| 765 |
+
關
|
| 766 |
+
防
|
| 767 |
+
阿
|
| 768 |
+
陈
|
| 769 |
+
陳
|
| 770 |
+
陽
|
| 771 |
+
隊
|
| 772 |
+
階
|
| 773 |
+
集
|
| 774 |
+
雪
|
| 775 |
+
雲
|
| 776 |
+
霖
|
| 777 |
+
霹
|
| 778 |
+
靂
|
| 779 |
+
韓
|
| 780 |
+
願
|
| 781 |
+
顯
|
| 782 |
+
颜
|
| 783 |
+
马
|
| 784 |
+
高
|
| 785 |
+
龍
|
| 786 |
+
ﷲ
|
| 787 |
+
ﻋ
|
| 788 |
+
/
|
| 789 |
+
3
|
| 790 |
+
~
|
| 791 |
+
##i
|
| 792 |
+
##y
|
| 793 |
+
##o
|
| 794 |
+
##r
|
| 795 |
+
##g
|
| 796 |
+
##a
|
| 797 |
+
##w
|
| 798 |
+
##l
|
| 799 |
+
##b
|
| 800 |
+
##z
|
| 801 |
+
##t
|
| 802 |
+
##n
|
| 803 |
+
##c
|
| 804 |
+
##h
|
| 805 |
+
##s
|
| 806 |
+
##u
|
| 807 |
+
##d
|
| 808 |
+
##e
|
| 809 |
+
##k
|
| 810 |
+
##v
|
| 811 |
+
##f
|
| 812 |
+
##x
|
| 813 |
+
##q
|
| 814 |
+
##p
|
| 815 |
+
##æ
|
| 816 |
+
##0
|
| 817 |
+
##5
|
| 818 |
+
##m
|
| 819 |
+
##8
|
| 820 |
+
##4
|
| 821 |
+
##س
|
| 822 |
+
##ت
|
| 823 |
+
##ا
|
| 824 |
+
##ن
|
| 825 |
+
##6
|
| 826 |
+
##1
|
| 827 |
+
##7
|
| 828 |
+
##j
|
| 829 |
+
##つ
|
| 830 |
+
##う
|
| 831 |
+
##2
|
| 832 |
+
##9
|
| 833 |
+
##3
|
| 834 |
+
##ø
|
| 835 |
+
##ล
|
| 836 |
+
##ว
|
| 837 |
+
##ง
|
| 838 |
+
##พ
|
| 839 |
+
##ไ
|
| 840 |
+
##ช
|
| 841 |
+
##ย
|
| 842 |
+
##า
|
| 843 |
+
##ร
|
| 844 |
+
##თ
|
| 845 |
+
##ა
|
| 846 |
+
##ვ
|
| 847 |
+
##რ
|
| 848 |
+
##ი
|
| 849 |
+
##ള
|
| 850 |
+
##あ
|
| 851 |
+
##ん
|
| 852 |
+
##α
|
| 853 |
+
##ν
|
| 854 |
+
##τ
|
| 855 |
+
##ο
|
| 856 |
+
##κ
|
| 857 |
+
##ρ
|
| 858 |
+
##ω
|
| 859 |
+
##ς
|
| 860 |
+
##の
|
| 861 |
+
##な
|
| 862 |
+
##ら
|
| 863 |
+
##ð
|
| 864 |
+
##œ
|
| 865 |
+
##ɛ
|
| 866 |
+
##ł
|
| 867 |
+
##η
|
| 868 |
+
##μ
|
| 869 |
+
##ซ
|
| 870 |
+
##ル
|
| 871 |
+
##シ
|
| 872 |
+
##ア
|
| 873 |
+
##リ
|
| 874 |
+
##ス
|
| 875 |
+
##ʔ
|
| 876 |
+
##ल
|
| 877 |
+
##ᄇ
|
| 878 |
+
##ᅮ
|
| 879 |
+
##ᄃ
|
| 880 |
+
##ᅢ
|
| 881 |
+
##β
|
| 882 |
+
##ß
|
| 883 |
+
##か
|
| 884 |
+
##た
|
| 885 |
+
##ə
|
| 886 |
+
##ʻ
|
| 887 |
+
##ι
|
| 888 |
+
##χ
|
| 889 |
+
##о
|
| 890 |
+
##л
|
| 891 |
+
##с
|
| 892 |
+
##а
|
| 893 |
+
##т
|
| 894 |
+
##ы
|
| 895 |
+
##и
|
| 896 |
+
##в
|
| 897 |
+
##к
|
| 898 |
+
##з
|
| 899 |
+
##ッ
|
| 900 |
+
##ク
|
| 901 |
+
##マ
|
| 902 |
+
##ン
|
| 903 |
+
##გ
|
| 904 |
+
##ლ
|
| 905 |
+
##ო
|
| 906 |
+
##ნ
|
| 907 |
+
##ː
|
| 908 |
+
##ל
|
| 909 |
+
##ה
|
| 910 |
+
##א
|
| 911 |
+
##く
|
| 912 |
+
##み
|
| 913 |
+
##ε
|
| 914 |
+
##ξ
|
| 915 |
+
##ল
|
| 916 |
+
##ˈ
|
| 917 |
+
##ɡ
|
| 918 |
+
##ɑ
|
| 919 |
+
##ɒ
|
| 920 |
+
##し
|
| 921 |
+
##す
|
| 922 |
+
##き
|
| 923 |
+
##ひ
|
| 924 |
+
##と
|
| 925 |
+
##đ
|
| 926 |
+
##ъ
|
| 927 |
+
##н
|
| 928 |
+
##е
|
| 929 |
+
##י
|
| 930 |
+
##פ
|
| 931 |
+
##イ
|
| 932 |
+
##λ
|
| 933 |
+
##ق
|
| 934 |
+
##ع
|
| 935 |
+
##د
|
| 936 |
+
##ᅡ
|
| 937 |
+
##ᆯ
|
| 938 |
+
##ᄅ
|
| 939 |
+
##ɪ
|
| 940 |
+
##ค
|
| 941 |
+
##ต
|
| 942 |
+
##व
|
| 943 |
+
##ा
|
| 944 |
+
##द
|
| 945 |
+
##は
|
| 946 |
+
##り
|
| 947 |
+
##レ
|
| 948 |
+
##ー
|
| 949 |
+
##ツ
|
| 950 |
+
##ي
|
| 951 |
+
##ش
|
| 952 |
+
##و
|
| 953 |
+
##م
|
| 954 |
+
##º
|
| 955 |
+
##ਲ
|
| 956 |
+
##ਾ
|
| 957 |
+
##ਹ
|
| 958 |
+
##д
|
| 959 |
+
##р
|
| 960 |
+
##ل
|
| 961 |
+
##ب
|
| 962 |
+
##い
|
| 963 |
+
##ち
|
| 964 |
+
##ゃ
|
| 965 |
+
##ʒ
|
| 966 |
+
##ʃ
|
| 967 |
+
##ɔ
|
| 968 |
+
##ह
|
| 969 |
+
##ニ
|
| 970 |
+
##ウ
|
| 971 |
+
##ァ
|
| 972 |
+
##キ
|
| 973 |
+
##ュ
|
| 974 |
+
##3
|
| 975 |
+
##ხ
|
| 976 |
+
##ს
|
| 977 |
+
##お
|
| 978 |
+
##タ
|
| 979 |
+
##ാ
|
| 980 |
+
##ഹ
|
| 981 |
+
##ɳ
|
| 982 |
+
##ま
|
| 983 |
+
##る
|
| 984 |
+
##ะ
|
| 985 |
+
##อ
|
| 986 |
+
##น
|
| 987 |
+
##ן
|
| 988 |
+
##я
|
| 989 |
+
##แ
|
| 990 |
+
##ก
|
| 991 |
+
##ɾ
|
| 992 |
+
##ʲ
|
| 993 |
+
##フ
|
| 994 |
+
##უ
|
| 995 |
+
##ภ
|
| 996 |
+
##ด
|
| 997 |
+
##ב
|
| 998 |
+
##ת
|
| 999 |
+
##خ
|
| 1000 |
+
##ラ
|
| 1001 |
+
##れ
|
| 1002 |
+
##ण
|
| 1003 |
+
##स
|
| 1004 |
+
##न
|
| 1005 |
+
##ه
|
| 1006 |
+
##ف
|
| 1007 |
+
##ر
|
| 1008 |
+
##エ
|
| 1009 |
+
##テ
|
| 1010 |
+
##ษ
|
| 1011 |
+
##ฐ
|
| 1012 |
+
##ィ
|
| 1013 |
+
##क
|
| 1014 |
+
##ノ
|
| 1015 |
+
##θ
|
| 1016 |
+
##ネ
|
| 1017 |
+
##��
|
| 1018 |
+
##δ
|
| 1019 |
+
##ɽ
|
| 1020 |
+
##ʁ
|
| 1021 |
+
##ტ
|
| 1022 |
+
##ჱ
|
| 1023 |
+
##ェ
|
| 1024 |
+
##ハ
|
| 1025 |
+
##υ
|
| 1026 |
+
##र
|
| 1027 |
+
##х
|
| 1028 |
+
##も
|
| 1029 |
+
##っ
|
| 1030 |
+
##ょ
|
| 1031 |
+
##に
|
| 1032 |
+
##γ
|
| 1033 |
+
##ც
|
| 1034 |
+
##ე
|
| 1035 |
+
##є
|
| 1036 |
+
##м
|
| 1037 |
+
##ܕ
|
| 1038 |
+
##ܝ
|
| 1039 |
+
##ܢ
|
| 1040 |
+
##ܬ
|
| 1041 |
+
##ณ
|
| 1042 |
+
##ม
|
| 1043 |
+
##ฮ
|
| 1044 |
+
##ж
|
| 1045 |
+
##ם
|
| 1046 |
+
##ء
|
| 1047 |
+
##ʊ
|
| 1048 |
+
##ई
|
| 1049 |
+
##め
|
| 1050 |
+
##მ
|
| 1051 |
+
##ム
|
| 1052 |
+
##チ
|
| 1053 |
+
##ᵻ
|
| 1054 |
+
##ˌ
|
| 1055 |
+
##ו
|
| 1056 |
+
##ף
|
| 1057 |
+
##წ
|
| 1058 |
+
##ფ
|
| 1059 |
+
##ャ
|
| 1060 |
+
##モ
|
| 1061 |
+
##ɐ
|
| 1062 |
+
##ᅦ
|
| 1063 |
+
##ᅩ
|
| 1064 |
+
##ᆨ
|
| 1065 |
+
##ᅵ
|
| 1066 |
+
##ᆸ
|
| 1067 |
+
##ᅧ
|
| 1068 |
+
##ᆼ
|
| 1069 |
+
##ᄋ
|
| 1070 |
+
##ᆫ
|
| 1071 |
+
##わ
|
| 1072 |
+
##ı
|
| 1073 |
+
##ქ
|
| 1074 |
+
##დ
|
| 1075 |
+
##ि
|
| 1076 |
+
##ჲ
|
| 1077 |
+
##ר
|
| 1078 |
+
##セ
|
| 1079 |
+
##オ
|
| 1080 |
+
##ゆ
|
| 1081 |
+
##せ
|
| 1082 |
+
##ك
|
| 1083 |
+
##ʿ
|
| 1084 |
+
##ש
|
| 1085 |
+
##מ
|
| 1086 |
+
##צ
|
| 1087 |
+
##п
|
| 1088 |
+
##г
|
| 1089 |
+
##カ
|
| 1090 |
+
##ܠ
|
| 1091 |
+
##ܗ
|
| 1092 |
+
##ܐ
|
| 1093 |
+
##ナ
|
| 1094 |
+
##ミ
|
| 1095 |
+
##こ
|
| 1096 |
+
##を
|
| 1097 |
+
##ψ
|
| 1098 |
+
##サ
|
| 1099 |
+
##ォ
|
| 1100 |
+
##π
|
| 1101 |
+
##ト
|
| 1102 |
+
##у
|
| 1103 |
+
##ح
|
| 1104 |
+
##σ
|
| 1105 |
+
##เ
|
| 1106 |
+
##ป
|
| 1107 |
+
##ш
|
| 1108 |
+
##ゥ
|
| 1109 |
+
##ロ
|
| 1110 |
+
##া
|
| 1111 |
+
##হ
|
| 1112 |
+
##ɜ
|
| 1113 |
+
##ة
|
| 1114 |
+
##ص
|
| 1115 |
+
##ס
|
| 1116 |
+
##ث
|
| 1117 |
+
##ჳ
|
| 1118 |
+
##נ
|
| 1119 |
+
##ذ
|
| 1120 |
+
##ग
|
| 1121 |
+
##ɫ
|
| 1122 |
+
##ц
|
| 1123 |
+
##ь
|
| 1124 |
+
##ю
|