|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import math | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LayerNorm(nn.Module): | 
					
						
						|  | def __init__(self, ndim, bias): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(ndim)) | 
					
						
						|  | self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CausalSelfAttention(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | assert config.n_embd % config.n_head == 0 | 
					
						
						|  | self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) | 
					
						
						|  | self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) | 
					
						
						|  | self.attn_dropout = nn.Dropout(config.dropout) | 
					
						
						|  | self.resid_dropout = nn.Dropout(config.dropout) | 
					
						
						|  | self.n_head = config.n_head | 
					
						
						|  | self.n_embd = config.n_embd | 
					
						
						|  | self.flash = hasattr(F, 'scaled_dot_product_attention') | 
					
						
						|  | if not self.flash: | 
					
						
						|  | self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) | 
					
						
						|  | .view(1, 1, config.block_size, config.block_size)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | B, T, C = x.size() | 
					
						
						|  | q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | 
					
						
						|  | k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | 
					
						
						|  | q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | 
					
						
						|  | v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | if self.flash: | 
					
						
						|  | y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_dropout.p if self.training else 0.0, is_causal=True) | 
					
						
						|  | else: | 
					
						
						|  | att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | 
					
						
						|  | att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) | 
					
						
						|  | att = F.softmax(att, dim=-1) | 
					
						
						|  | att = self.attn_dropout(att) | 
					
						
						|  | y = att @ v | 
					
						
						|  |  | 
					
						
						|  | y = y.transpose(1, 2).contiguous().view(B, T, C) | 
					
						
						|  | y = self.resid_dropout(self.c_proj(y)) | 
					
						
						|  | return y | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MLP(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) | 
					
						
						|  | self.gelu = nn.GELU() | 
					
						
						|  | self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) | 
					
						
						|  | self.dropout = nn.Dropout(config.dropout) | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return self.dropout(self.c_proj(self.gelu(self.c_fc(x)))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Block(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.ln1 = LayerNorm(config.n_embd, config.bias) | 
					
						
						|  | self.attn = CausalSelfAttention(config) | 
					
						
						|  | self.ln2 = LayerNorm(config.n_embd, config.bias) | 
					
						
						|  | self.mlp = MLP(config) | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = x + self.attn(self.ln1(x)) | 
					
						
						|  | x = x + self.mlp(self.ln2(x)) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class GPTConfig: | 
					
						
						|  | block_size: int | 
					
						
						|  | vocab_size: int | 
					
						
						|  | n_layer: int | 
					
						
						|  | n_head: int | 
					
						
						|  | n_embd: int | 
					
						
						|  | dropout: float = 0.0 | 
					
						
						|  | bias: bool = True | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GPT(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.transformer = nn.ModuleDict(dict( | 
					
						
						|  | wte=nn.Embedding(config.vocab_size, config.n_embd), | 
					
						
						|  | wpe=nn.Embedding(config.block_size, config.n_embd), | 
					
						
						|  | drop=nn.Dropout(config.dropout), | 
					
						
						|  | h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | 
					
						
						|  | ln_f=LayerNorm(config.n_embd, config.bias), | 
					
						
						|  | )) | 
					
						
						|  | self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | 
					
						
						|  | self.transformer.wte.weight = self.lm_head.weight | 
					
						
						|  |  | 
					
						
						|  | self.apply(self._init_weights) | 
					
						
						|  | for pn, p in self.named_parameters(): | 
					
						
						|  | if pn.endswith('c_proj.weight'): | 
					
						
						|  | nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer)) | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | nn.init.normal_(module.weight, mean=0.0, std=0.02) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | nn.init.zeros_(module.bias) | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | nn.init.normal_(module.weight, mean=0.0, std=0.02) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, idx, targets=None): | 
					
						
						|  | device = idx.device | 
					
						
						|  | b, t = idx.size() | 
					
						
						|  | assert t <= self.config.block_size | 
					
						
						|  | pos = torch.arange(0, t, dtype=torch.long, device=device) | 
					
						
						|  |  | 
					
						
						|  | tok_emb = self.transformer.wte(idx) | 
					
						
						|  | pos_emb = self.transformer.wpe(pos) | 
					
						
						|  | x = self.transformer.drop(tok_emb + pos_emb) | 
					
						
						|  | for block in self.transformer.h: | 
					
						
						|  | x = block(x) | 
					
						
						|  | x = self.transformer.ln_f(x) | 
					
						
						|  |  | 
					
						
						|  | if targets is not None: | 
					
						
						|  | logits = self.lm_head(x) | 
					
						
						|  | loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) | 
					
						
						|  | return logits, loss | 
					
						
						|  | else: | 
					
						
						|  | logits = self.lm_head(x[:, [-1], :]) | 
					
						
						|  | return logits, None | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): | 
					
						
						|  | for _ in range(max_new_tokens): | 
					
						
						|  | idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] | 
					
						
						|  | logits, _ = self(idx_cond) | 
					
						
						|  | logits = logits[:, -1, :] / temperature | 
					
						
						|  | if top_k is not None: | 
					
						
						|  | v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | 
					
						
						|  | logits[logits < v[:, [-1]]] = -float('Inf') | 
					
						
						|  | probs = F.softmax(logits, dim=-1) | 
					
						
						|  | idx_next = torch.multinomial(probs, num_samples=1) | 
					
						
						|  | idx = torch.cat((idx, idx_next), dim=1) | 
					
						
						|  | return idx | 
					
						
						|  |  |