File size: 21,542 Bytes
684363d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
"""
vLLM-compatible implementation of KORMo MoE

This file should be placed in: /usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/kormo_moe.py

Usage:
    from vllm import LLM

    llm = LLM(
        model="/path/to/kormo_moe_model",
        trust_remote_code=False,  # Not needed with this implementation
        dtype="float16",
    )
"""

from collections.abc import Iterable
from typing import Any, Optional, Union

import torch
import torch.nn.functional as F
from torch import nn

from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
    MergedColumnParallelLinear,
    QKVParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors

try:
    from transformers import PretrainedConfig
except ImportError:
    # Fallback for environments without transformers
    PretrainedConfig = object

from .interfaces import SupportsLoRA, SupportsPP
from .utils import (
    AutoWeightsLoader,
    extract_layer_index,
    is_pp_missing_parameter,
    make_empty_intermediate_tensors_factory,
    make_layers,
    maybe_prefix,
)

logger = init_logger(__name__)


class KORMoMoeConfig(PretrainedConfig):
    """Configuration class for KORMo MoE"""

    model_type = "kormo_moe"

    def __init__(
        self,
        vocab_size=112576,
        hidden_size=6144,
        intermediate_size=21504,
        num_hidden_layers=48,
        num_attention_heads=40,
        num_key_value_heads=8,
        hidden_act="silu",
        max_position_embeddings=131072,
        initializer_range=0.02,
        rms_norm_eps=1e-05,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=0,
        eos_token_id=1,
        tie_word_embeddings=False,
        rope_theta=500000.0,
        attention_dropout=0.0,
        rope_scaling=None,
        head_dim=128,
        # MoE specific
        num_experts=2,
        num_experts_per_tok=2,
        moe_intermediate_size=None,
        shared_expert_intermediate_size=None,
        norm_topk_prob=True,
        decoder_sparse_step=1,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads or num_attention_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_dropout = attention_dropout
        self.head_dim = head_dim or (self.hidden_size // self.num_attention_heads)

        # MoE specific
        self.num_experts = num_experts
        self.num_experts_per_tok = num_experts_per_tok
        self.moe_intermediate_size = (
            moe_intermediate_size if moe_intermediate_size is not None else intermediate_size
        )
        self.shared_expert_intermediate_size = shared_expert_intermediate_size
        self.norm_topk_prob = norm_topk_prob
        self.decoder_sparse_step = decoder_sparse_step

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


class KORMoMoEMLP(nn.Module):
    """MLP for KORMo, used for shared expert"""

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
        )
        if hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {hidden_act}. Only silu is supported.")
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class KORMoSparseMoeBlock(nn.Module):
    """KORMo Sparse MoE Block optimized for vLLM"""

    def __init__(
        self,
        config: KORMoMoeConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()

        if self.tp_size > config.num_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.num_experts}."
            )

        # Use vLLM's FusedMoE for optimized expert routing
        self.experts = FusedMoE(
            num_experts=config.num_experts,
            top_k=config.num_experts_per_tok,
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
            reduce_results=False,
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            prefix=f"{prefix}.experts",
        )

        # Router/gate
        self.gate = ReplicatedLinear(
            config.hidden_size,
            config.num_experts,
            bias=False,
            quant_config=None,
        )

        # Shared expert (optional)
        if config.shared_expert_intermediate_size and config.shared_expert_intermediate_size > 0:
            self.shared_expert = KORMoMoEMLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.shared_expert_intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=self.experts.must_reduce_shared_expert_outputs(),
            )
            self.shared_expert_gate = nn.Linear(config.hidden_size, 1, bias=False)
        else:
            self.shared_expert = None
            self.shared_expert_gate = None

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # NOTE: hidden_states can have either 1D or 2D shape.
        orig_shape = hidden_states.shape
        hidden_dim = hidden_states.shape[-1]
        hidden_states = hidden_states.view(-1, hidden_dim)

        # Shared expert처리
        shared_output = None
        if self.shared_expert is not None:
            shared_output = self.shared_expert(hidden_states)
            if self.shared_expert_gate is not None:
                shared_output = F.sigmoid(
                    self.shared_expert_gate(hidden_states)
                ) * shared_output

        # Router logits: (num_tokens, n_experts)
        router_logits, _ = self.gate(hidden_states)

        # FusedMoE에서 expert routing 수행
        final_hidden_states = self.experts(
            hidden_states=hidden_states,
            router_logits=router_logits,
        )

        # Shared expert 결과 추가
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output

        # Tensor parallel reduction
        if self.tp_size > 1:
            final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel(
                final_hidden_states
            )

        return final_hidden_states.view(orig_shape)


class KORMoMoeAttention(nn.Module):
    """KORMo MoE Attention mechanism"""

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        rope_theta: float = 500000,
        rope_scaling: Optional[dict[str, Any]] = None,
        max_position_embeddings: int = 131072,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()

        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size

        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            assert self.total_num_kv_heads % tp_size == 0
        else:
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)

        self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
            quant_config=quant_config,
        )

        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            quant_config=quant_config,
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
        )

        self.attn = Attention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            cache_config=cache_config,
            quant_config=quant_config,
            prefix=f"{prefix}.attn",
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v)
        output, _ = self.o_proj(attn_output)
        return output


class KORMoMoeDecoderLayer(nn.Module):
    """KORMo MoE Decoder Layer"""

    def __init__(
        self,
        config: KORMoMoeConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size

        # Attention
        self.self_attn = KORMoMoeAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            rope_theta=config.rope_theta,
            rope_scaling=config.rope_scaling,
            max_position_embeddings=config.max_position_embeddings,
            cache_config=cache_config,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn",
        )

        # MoE MLP
        self.mlp = KORMoSparseMoeBlock(
            config=config,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
        )

        # LayerNorms (using KORMo naming convention)
        self.pre_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.pre_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
    ) -> torch.Tensor:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.pre_attention_layernorm(hidden_states)
        else:
            hidden_states, residual = self.pre_attention_layernorm(hidden_states, residual)

        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
        )

        # MoE MLP
        hidden_states, residual = self.pre_mlp_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)

        return hidden_states, residual


@support_torch_compile
class KORMoMoeModel(nn.Module):
    """KORMo MoE Model"""

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config

        self.vocab_size = config.vocab_size
        self.config = config

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: KORMoMoeDecoderLayer(
                config=config,
                cache_config=cache_config,
                quant_config=quant_config,
                prefix=prefix,
            ),
            prefix=f"{prefix}.layers",
        )

        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
            ["hidden_states", "residual"], config.hidden_size
        )

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]

        for layer in self.layers[self.start_layer : self.end_layer]:
            hidden_states, residual = layer(positions, hidden_states, residual)

        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual,
            })

        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states

    def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
        """Return expert parameter mapping for weight loading"""
        return FusedMoE.make_expert_params_mapping(
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
            num_experts=self.config.num_experts,
        )

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        expert_params_mapping = self.get_expert_mapping()

        for name, loaded_weight in weights:
            # Handle stacked parameters
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                if "mlp.experts" in name:
                    continue
                name = name.replace(weight_name, param_name)
                if (name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                if name not in params_dict:
                    continue

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Handle expert parameters
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)

                    if is_pp_missing_parameter(name, self):
                        continue
                    if (name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict:
                        continue

                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
                        name,
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Handle regular parameters
                    if (name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict:
                        continue
                    if is_pp_missing_parameter(name, self):
                        continue

                    # Fix gate weight naming: gate.linear.weight -> gate.weight
                    if ".gate.linear.weight" in name:
                        name = name.replace(".gate.linear.weight", ".gate.weight")

                    if name not in params_dict:
                        logger.warning(f"Parameter {name} not found in model")
                        continue

                    param = params_dict[name]
                    weight_loader = getattr(param, "weight_loader", default_weight_loader)
                    weight_loader(param, loaded_weight)

            loaded_params.add(name)

        return loaded_params


class KORMoMoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
    """KORMo MoE for Causal Language Modeling"""

    fall_back_to_pt_during_load = False
    packed_modules_mapping = {
        "qkv_proj": ["q_proj", "k_proj", "v_proj"],
        "gate_up_proj": ["gate_proj", "up_proj"],
    }

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config

        self.config = config
        self.quant_config = quant_config

        self.model = KORMoMoeModel(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model"))
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
        )

        if self.config.tie_word_embeddings:
            self.lm_head.weight = self.model.embed_tokens.weight

        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.make_empty_intermediate_tensors = self.model.make_empty_intermediate_tensors

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        hidden_states = self.model(input_ids, positions, intermediate_tensors, inputs_embeds)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)

    def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
        return self.model.get_expert_mapping()