|  | from typing import Callable, List, Optional, Tuple, Union, Dict | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import Cache, DynamicCache | 
					
						
						|  | from transformers.generation import GenerationMixin | 
					
						
						|  | from transformers.integrations import use_kernel_forward_from_hub | 
					
						
						|  | from transformers.masking_utils import create_causal_mask | 
					
						
						|  | from transformers.modeling_flash_attention_utils import FlashAttentionKwargs | 
					
						
						|  | from transformers.modeling_layers import GradientCheckpointingLayer | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutputWithPast, | 
					
						
						|  | CausalLMOutputWithPast, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update | 
					
						
						|  | from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel | 
					
						
						|  | from transformers.processing_utils import Unpack | 
					
						
						|  | from transformers.utils import can_return_tuple, logging | 
					
						
						|  | from .configuration_kormo_moe import KORMoMoeConfig | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @use_kernel_forward_from_hub("RMSNorm") | 
					
						
						|  | class RMSNorm(nn.Module): | 
					
						
						|  | """KORMoRMSNorm is equivalent to T5LayerNorm""" | 
					
						
						|  | def __init__(self, hidden_size: int, eps: float = 1e-6): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return (self.weight * hidden_states).to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  | def extra_repr(self): | 
					
						
						|  | return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def eager_attention_forward( | 
					
						
						|  | module: nn.Module, | 
					
						
						|  | query: torch.Tensor, | 
					
						
						|  | key: torch.Tensor, | 
					
						
						|  | value: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor], | 
					
						
						|  | scaling: float, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | key_states = repeat_kv(key, module.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value, module.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | 
					
						
						|  | attn_weights = attn_weights + causal_mask | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1): | 
					
						
						|  | cos = cos.unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin.unsqueeze(unsqueeze_dim) | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | return q_embed.to(q.dtype), k_embed.to(k.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Attention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: KORMoMoeConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) | 
					
						
						|  | self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads | 
					
						
						|  | self.scaling = self.head_dim**-0.5 | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False) | 
					
						
						|  | self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) | 
					
						
						|  | self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) | 
					
						
						|  | self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | position_embeddings: tuple[torch.Tensor, torch.Tensor], | 
					
						
						|  | attention_mask: Optional[torch.Tensor], | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: | 
					
						
						|  | input_shape = hidden_states.shape[:-1] | 
					
						
						|  | hidden_shape = (*input_shape, -1, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) | 
					
						
						|  | key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) | 
					
						
						|  | value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | attention_interface: Callable = eager_attention_forward | 
					
						
						|  | if self.config._attn_implementation != "eager": | 
					
						
						|  | attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] | 
					
						
						|  |  | 
					
						
						|  | attn_output, attn_weights = attention_interface( | 
					
						
						|  | self, | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | dropout=0.0 if not self.training else self.attention_dropout, | 
					
						
						|  | scaling=self.scaling, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(*input_shape, -1).contiguous() | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @use_kernel_forward_from_hub("MLP") | 
					
						
						|  | class MLP(nn.Module): | 
					
						
						|  | """Basic MLP for experts""" | 
					
						
						|  | def __init__(self, config, intermediate_size=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size | 
					
						
						|  | self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MoEGate(nn.Module): | 
					
						
						|  | """MoE Gating mechanism""" | 
					
						
						|  | def __init__(self, config: KORMoMoeConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.top_k = config.num_experts_per_tok | 
					
						
						|  | self.n_routed_experts = config.num_experts | 
					
						
						|  | self.norm_topk_prob = config.norm_topk_prob | 
					
						
						|  |  | 
					
						
						|  | self.linear = nn.Linear(config.hidden_size, config.num_experts, bias=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  |  | 
					
						
						|  | batch_size, seq_len, hidden_dim = hidden_states.shape | 
					
						
						|  | hidden_states = hidden_states.view(-1, hidden_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | router_logits = self.linear(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float) | 
					
						
						|  | routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.norm_topk_prob: | 
					
						
						|  | routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True) | 
					
						
						|  |  | 
					
						
						|  | routing_weights = routing_weights.to(hidden_states.dtype) | 
					
						
						|  |  | 
					
						
						|  | return routing_weights, selected_experts | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KORMoSparseMoeBlock(nn.Module): | 
					
						
						|  | """KORMo Sparse MoE Block""" | 
					
						
						|  | def __init__(self, config: KORMoMoeConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_experts = config.num_experts | 
					
						
						|  | self.top_k = config.num_experts_per_tok | 
					
						
						|  |  | 
					
						
						|  | self.gate = MoEGate(config) | 
					
						
						|  | self.experts = nn.ModuleList([ | 
					
						
						|  | MLP(config, intermediate_size=config.moe_intermediate_size) | 
					
						
						|  | for _ in range(self.num_experts) | 
					
						
						|  | ]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.shared_expert = None | 
					
						
						|  | self.shared_expert_gate = None | 
					
						
						|  | if config.shared_expert_intermediate_size is not None: | 
					
						
						|  | self.shared_expert = MLP(config, intermediate_size=config.shared_expert_intermediate_size) | 
					
						
						|  | self.shared_expert_gate = nn.Linear(config.hidden_size, 1, bias=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | batch_size, seq_len, hidden_dim = hidden_states.shape | 
					
						
						|  | hidden_states_flat = hidden_states.view(-1, hidden_dim) | 
					
						
						|  |  | 
					
						
						|  | routing_weights, selected_experts = self.gate(hidden_states) | 
					
						
						|  | final_hidden_states = torch.zeros_like(hidden_states_flat) | 
					
						
						|  |  | 
					
						
						|  | expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) | 
					
						
						|  |  | 
					
						
						|  | for expert_idx in range(self.num_experts): | 
					
						
						|  | expert_layer = self.experts[expert_idx] | 
					
						
						|  | idx, top_x = torch.where(expert_mask[expert_idx]) | 
					
						
						|  |  | 
					
						
						|  | if top_x.shape[0] == 0: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | top_x_list = top_x.tolist() | 
					
						
						|  | idx_list = idx.tolist() | 
					
						
						|  |  | 
					
						
						|  | current_state = hidden_states_flat[None, top_x_list].reshape(-1, hidden_dim) | 
					
						
						|  | current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None] | 
					
						
						|  |  | 
					
						
						|  | final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) | 
					
						
						|  |  | 
					
						
						|  | final_hidden_states = final_hidden_states.reshape(batch_size, seq_len, hidden_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.shared_expert is not None: | 
					
						
						|  | hidden_states_flat = hidden_states.view(-1, hidden_dim) | 
					
						
						|  | shared_output = self.shared_expert(hidden_states_flat) | 
					
						
						|  | shared_gate = torch.sigmoid(self.shared_expert_gate(hidden_states_flat)) | 
					
						
						|  | final_hidden_states = final_hidden_states + (shared_gate * shared_output).reshape(batch_size, seq_len, hidden_dim) | 
					
						
						|  |  | 
					
						
						|  | return final_hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DecoderLayer(GradientCheckpointingLayer): | 
					
						
						|  | def __init__(self, config: KORMoMoeConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.self_attn = Attention(config=config, layer_idx=layer_idx) | 
					
						
						|  | self.mlp = KORMoSparseMoeBlock(config) | 
					
						
						|  | self.pre_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.pre_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs: Unpack[FlashAttentionKwargs], | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.pre_attention_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, self_attn_weights = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.pre_mlp_layernorm(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, config: KORMoMoeConfig, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if hasattr(config, "rope_scaling") and config.rope_scaling is not None: | 
					
						
						|  | self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) | 
					
						
						|  | else: | 
					
						
						|  | self.rope_type = "default" | 
					
						
						|  | self.max_seq_len_cached = config.max_position_embeddings | 
					
						
						|  | self.original_max_seq_len = config.max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | self.config = config | 
					
						
						|  | self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | 
					
						
						|  |  | 
					
						
						|  | inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  | self.original_inv_freq = self.inv_freq | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @dynamic_rope_update | 
					
						
						|  | def forward(self, x, position_ids): | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | cos = emb.cos() * self.attention_scaling | 
					
						
						|  | sin = emb.sin() * self.attention_scaling | 
					
						
						|  | return cos, sin | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KORMoMoePreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = KORMoMoeConfig | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["DecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = ["past_key_values"] | 
					
						
						|  | _supports_flash_attn_3 = True | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  | _supports_flex_attn = True | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  | _supports_quantized_cache = True | 
					
						
						|  | _supports_static_cache = True | 
					
						
						|  | _supports_attention_backend = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  | elif isinstance(module, RMSNorm): | 
					
						
						|  | module.weight.data.fill_(1.0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KORMoMoeModel(KORMoMoePreTrainedModel): | 
					
						
						|  | def __init__(self, config: KORMoMoeConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.rotary_emb = RotaryEmbedding(config=config) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @can_return_tuple | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Cache] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | **flash_attn_kwargs: Unpack[FlashAttentionKwargs], | 
					
						
						|  | ) -> BaseModelOutputWithPast: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  |  | 
					
						
						|  | if (input_ids is None) ^ (inputs_embeds is not None): | 
					
						
						|  | raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training and use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(past_key_values, (type(None), Cache)): | 
					
						
						|  | raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if use_cache and past_key_values is None: | 
					
						
						|  | past_key_values = DynamicCache() | 
					
						
						|  |  | 
					
						
						|  | if cache_position is None: | 
					
						
						|  | past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
						
						|  | cache_position = torch.arange( | 
					
						
						|  | past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | position_ids = cache_position.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | causal_mask = create_causal_mask( | 
					
						
						|  | config=self.config, | 
					
						
						|  | input_embeds=inputs_embeds, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  | position_embeddings = self.rotary_emb(hidden_states, position_ids) | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  | for decoder_layer in self.layers[: self.config.num_hidden_layers]: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=causal_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | **flash_attn_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=past_key_values if use_cache else None, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KORMoMoeForCausalLM(KORMoMoePreTrainedModel, GenerationMixin): | 
					
						
						|  | _tied_weights_keys = ["lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = KORMoMoeModel(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  | @can_return_tuple | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | logits_to_keep: int = 0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> CausalLMOutputWithPast: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | outputs: BaseModelOutputWithPast = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs.last_hidden_state | 
					
						
						|  |  | 
					
						
						|  | slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep | 
					
						
						|  | logits = self.lm_head(hidden_states[:, slice_indices, :]) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) |