| import argparse | |
| import torch | |
| import os | |
| from models.exaonepath import EXAONEPathV1p5Downstream | |
| from utils.constants import CLASS_NAMES | |
| from tokens import HF_TOKEN | |
| def infer(model, input_file): | |
| print("Processing", input_file, "...") | |
| probs = model(input_file) | |
| result_str = "Result -- " + " / ".join( | |
| [f"{name}: {probs[i].item():.4f}" for i, name in enumerate(CLASS_NAMES)] | |
| ) | |
| print(result_str + "\n") | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser(description="Inference") | |
| parser.add_argument('--svs_dir', type=str, default='./samples', help="") | |
| args = parser.parse_args() | |
| hf_token = HF_TOKEN | |
| model = EXAONEPathV1p5Downstream.from_pretrained("LGAI-EXAONE/EXAONE-Path-1.5", use_auth_token=hf_token) | |
| model.load_state_dict(torch.load('./pytorch_model.bin')) | |
| model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
| model.eval() | |
| model.feature_extractor = torch.compile(model.feature_extractor) | |
| model.agg_model = torch.compile(model.agg_model) | |
| for svs_name in os.listdir(args.svs_dir): | |
| infer(model, os.path.join(args.svs_dir, svs_name)) | |