Upload model
Browse files- CloneDetectionModel.py +96 -0
- config.json +5 -2
- pytorch_model.bin +2 -2
CloneDetectionModel.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Original work:
|
| 3 |
+
https://github.com/sangHa0411/CloneDetection/blob/main/models/codebert.py#L169
|
| 4 |
+
|
| 5 |
+
Copyright (c) 2022 Sangha Park(sangha110495), Young Jin Ahn(snoop2head)
|
| 6 |
+
|
| 7 |
+
All credits to the original authors.
|
| 8 |
+
"""
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
from transformers import (
|
| 11 |
+
RobertaPreTrainedModel,
|
| 12 |
+
RobertaModel,
|
| 13 |
+
)
|
| 14 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class CloneDetectionModel(RobertaPreTrainedModel):
|
| 18 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 19 |
+
|
| 20 |
+
def __init__(self, config):
|
| 21 |
+
super().__init__(config)
|
| 22 |
+
self.num_labels = config.num_labels
|
| 23 |
+
self.config = config
|
| 24 |
+
|
| 25 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
| 26 |
+
self.net = nn.Sequential(
|
| 27 |
+
nn.Dropout(config.hidden_dropout_prob),
|
| 28 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 29 |
+
nn.ReLU(),
|
| 30 |
+
)
|
| 31 |
+
self.classifier = nn.Linear(config.hidden_size * 4, config.num_labels)
|
| 32 |
+
|
| 33 |
+
def forward(
|
| 34 |
+
self,
|
| 35 |
+
input_ids=None,
|
| 36 |
+
attention_mask=None,
|
| 37 |
+
token_type_ids=None,
|
| 38 |
+
position_ids=None,
|
| 39 |
+
head_mask=None,
|
| 40 |
+
inputs_embeds=None,
|
| 41 |
+
labels=None,
|
| 42 |
+
output_attentions=None,
|
| 43 |
+
output_hidden_states=None,
|
| 44 |
+
return_dict=None,
|
| 45 |
+
):
|
| 46 |
+
|
| 47 |
+
return_dict = (
|
| 48 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
outputs = self.roberta(
|
| 52 |
+
input_ids,
|
| 53 |
+
attention_mask=attention_mask,
|
| 54 |
+
token_type_ids=token_type_ids,
|
| 55 |
+
position_ids=position_ids,
|
| 56 |
+
head_mask=head_mask,
|
| 57 |
+
inputs_embeds=inputs_embeds,
|
| 58 |
+
output_attentions=output_attentions,
|
| 59 |
+
output_hidden_states=output_hidden_states,
|
| 60 |
+
return_dict=return_dict,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
hidden_states = outputs[0]
|
| 64 |
+
batch_size, _, hidden_size = hidden_states.shape
|
| 65 |
+
|
| 66 |
+
# CLS code1 SEP SEP code2 SEP
|
| 67 |
+
cls_flag = input_ids == self.config.tokenizer_cls_token_id # cls token
|
| 68 |
+
sep_flag = input_ids == self.config.tokenizer_sep_token_id # sep token
|
| 69 |
+
|
| 70 |
+
special_token_states = hidden_states[cls_flag + sep_flag].view(
|
| 71 |
+
batch_size, -1, hidden_size
|
| 72 |
+
) # (batch_size, 4, hidden_size)
|
| 73 |
+
special_hidden_states = self.net(
|
| 74 |
+
special_token_states
|
| 75 |
+
) # (batch_size, 4, hidden_size)
|
| 76 |
+
|
| 77 |
+
pooled_output = special_hidden_states.view(
|
| 78 |
+
batch_size, -1
|
| 79 |
+
) # (batch_size, hidden_size * 4)
|
| 80 |
+
logits = self.classifier(pooled_output) # (batch_size, num_labels)
|
| 81 |
+
|
| 82 |
+
loss = None
|
| 83 |
+
if labels is not None:
|
| 84 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 85 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 86 |
+
|
| 87 |
+
if not return_dict:
|
| 88 |
+
output = (logits,) + outputs[2:]
|
| 89 |
+
return ((loss,) + output) if loss is not None else output
|
| 90 |
+
|
| 91 |
+
return SequenceClassifierOutput(
|
| 92 |
+
loss=loss,
|
| 93 |
+
logits=logits,
|
| 94 |
+
hidden_states=outputs.hidden_states,
|
| 95 |
+
attentions=outputs.attentions,
|
| 96 |
+
)
|
config.json
CHANGED
|
@@ -1,9 +1,12 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "
|
| 3 |
"architectures": [
|
| 4 |
-
"
|
| 5 |
],
|
| 6 |
"attention_probs_dropout_prob": 0.1,
|
|
|
|
|
|
|
|
|
|
| 7 |
"bos_token_id": 0,
|
| 8 |
"classifier_dropout": null,
|
| 9 |
"dropout_rate": 0.1,
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "./checkpoint",
|
| 3 |
"architectures": [
|
| 4 |
+
"CloneDetectionModel"
|
| 5 |
],
|
| 6 |
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoModel": "CloneDetectionModel.CloneDetectionModel"
|
| 9 |
+
},
|
| 10 |
"bos_token_id": 0,
|
| 11 |
"classifier_dropout": null,
|
| 12 |
"dropout_rate": 0.1,
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd61ea43ac55f9dcb691449f3489fbc90638a96a958289b24c7abf6306642f02
|
| 3 |
+
size 498675949
|