Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,58 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
metrics:
|
| 6 |
+
- accuracy
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
---
|
| 9 |
+
# MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning
|
| 10 |
+
|
| 11 |
+
Paper: [https://arxiv.org/pdf/2310.03731.pdf](https://arxiv.org/pdf/2310.03731.pdf)
|
| 12 |
+
|
| 13 |
+
Repo: [https://github.com/mathllm/MathCoder](https://github.com/mathllm/MathCoder)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
## Introduction
|
| 17 |
+
We introduce MathCoder, a series of open-source large language models (LLMs) specifically tailored for general math problem-solving.
|
| 18 |
+
|
| 19 |
+
| Base Model: Llama-2 | Base Model: Code Llama |
|
| 20 |
+
|-------------------------------------------------------------------|-----------------------------------------------------------------------|
|
| 21 |
+
| [MathCoder-L-7B](https://huggingface.co/MathLLM/MathCoder-L-7B) | [MathCoder-CL-7B](https://huggingface.co/MathLLM/MathCoder-CL-7B) |
|
| 22 |
+
| [MathCoder-L-13B](https://huggingface.co/MathLLM/MathCoder-L-13B) | [MathCoder-CL-34B](https://huggingface.co/MathLLM/MathCoder-CL-34B) |
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## Training Data
|
| 26 |
+
The models are trained on the [MathCodeInstruct](https://huggingface.co/datasets/MathLLM/MathCodeInstruct) Dataset.
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
## Training Procedure
|
| 30 |
+
The models are fine-tuned with the MathCodeInstruct dataset using the original Llama-2 and CodeLlama models as base models. Check out our paper and repo for more details.
|
| 31 |
+
|
| 32 |
+
## Evaluation
|
| 33 |
+
|
| 34 |
+
<br>
|
| 35 |
+
<div align="center">
|
| 36 |
+
<img src="result.png" width="100%" title="Result Figure">
|
| 37 |
+
</div>
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
## Usage
|
| 42 |
+
You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution.
|
| 43 |
+
Check our Github repo for datails.
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
## Citation
|
| 47 |
+
Please cite the paper if you use our data, model or code.
|
| 48 |
+
|
| 49 |
+
```
|
| 50 |
+
@misc{wang2023mathcoder,
|
| 51 |
+
title={MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning},
|
| 52 |
+
author={Ke Wang and Houxing Ren and Aojun Zhou and Zimu Lu and Sichun Luo and Weikang Shi and Renrui Zhang and Linqi Song and Mingjie Zhan and Hongsheng Li},
|
| 53 |
+
year={2023},
|
| 54 |
+
eprint={2310.03731},
|
| 55 |
+
archivePrefix={arXiv},
|
| 56 |
+
primaryClass={cs.CL}
|
| 57 |
+
}
|
| 58 |
+
```
|