|  |  | 
					
						
						|  | from typing import Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from .configuration_aimv2 import AIMv2Config | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import functional as F | 
					
						
						|  | from transformers.modeling_outputs import BaseModelOutputWithNoAttention | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  |  | 
					
						
						|  | __all__ = ["AIMv2Model"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, dim: int, eps: float = 1e-6): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(dim)) | 
					
						
						|  | self.eps = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | output = self._norm(x.float()).type_as(x) | 
					
						
						|  | return output * self.weight | 
					
						
						|  |  | 
					
						
						|  | def extra_repr(self) -> str: | 
					
						
						|  | return f"{tuple(self.weight.shape)}, eps={self.eps}" | 
					
						
						|  |  | 
					
						
						|  | def _norm(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AIMv2SwiGLUFFN(nn.Module): | 
					
						
						|  | def __init__(self, config: AIMv2Config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | hidden_features = config.intermediate_size | 
					
						
						|  | in_features = config.hidden_size | 
					
						
						|  | bias = config.use_bias | 
					
						
						|  |  | 
					
						
						|  | self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) | 
					
						
						|  | self.fc2 = nn.Linear(hidden_features, in_features, bias=bias) | 
					
						
						|  | self.fc3 = nn.Linear(in_features, hidden_features, bias=bias) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | x = F.silu(self.fc1(x)) * self.fc3(x) | 
					
						
						|  | x = self.fc2(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AIMv2PatchEmbed(nn.Module): | 
					
						
						|  | def __init__(self, config: AIMv2Config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.proj = nn.Conv2d( | 
					
						
						|  | config.num_channels, | 
					
						
						|  | config.hidden_size, | 
					
						
						|  | kernel_size=(config.patch_size, config.patch_size), | 
					
						
						|  | stride=(config.patch_size, config.patch_size), | 
					
						
						|  | ) | 
					
						
						|  | self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | x = self.proj(x).flatten(2).transpose(1, 2) | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AIMv2ViTPreprocessor(nn.Module): | 
					
						
						|  | def __init__(self, config: AIMv2Config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | num_patches = (config.image_size // config.patch_size) ** 2 | 
					
						
						|  |  | 
					
						
						|  | self.patchifier = AIMv2PatchEmbed(config) | 
					
						
						|  | self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size))) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | tokens = self.patchifier(x) | 
					
						
						|  | _, N, _ = tokens.shape | 
					
						
						|  | pos_embed = self.pos_embed.to(tokens.device) | 
					
						
						|  | tokens = tokens + pos_embed[:, :N] | 
					
						
						|  | return tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AIMv2Attention(nn.Module): | 
					
						
						|  | def __init__(self, config: AIMv2Config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | dim = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias) | 
					
						
						|  | self.attn_drop = nn.Dropout(config.attention_dropout) | 
					
						
						|  | self.proj = nn.Linear(dim, dim, bias=config.use_bias) | 
					
						
						|  | self.proj_drop = nn.Dropout(config.projection_dropout) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, x: torch.Tensor, mask: Optional[torch.Tensor] = None | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | B, N, C = x.shape | 
					
						
						|  | qkv = ( | 
					
						
						|  | self.qkv(x) | 
					
						
						|  | .reshape(B, N, 3, self.num_heads, C // self.num_heads) | 
					
						
						|  | .permute(2, 0, 3, 1, 4) | 
					
						
						|  | ) | 
					
						
						|  | q, k, v = qkv.unbind(0) | 
					
						
						|  |  | 
					
						
						|  | x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask) | 
					
						
						|  | x = x.transpose(1, 2).contiguous().reshape(B, N, C) | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | x = self.proj_drop(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AIMv2Block(nn.Module): | 
					
						
						|  | def __init__(self, config: AIMv2Config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.attn = AIMv2Attention(config) | 
					
						
						|  | self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.mlp = AIMv2SwiGLUFFN(config) | 
					
						
						|  | self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, x: torch.Tensor, mask: Optional[torch.Tensor] = None | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | x = x + self.attn(self.norm_1(x), mask) | 
					
						
						|  | x = x + self.mlp(self.norm_2(x)) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AIMv2Transformer(nn.Module): | 
					
						
						|  | def __init__(self, config: AIMv2Config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.blocks = nn.ModuleList( | 
					
						
						|  | [AIMv2Block(config) for _ in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | tokens: torch.Tensor, | 
					
						
						|  | mask: Optional[torch.Tensor] = None, | 
					
						
						|  | output_hidden_states: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]: | 
					
						
						|  | hidden_states = () if output_hidden_states else None | 
					
						
						|  | for block in self.blocks: | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | tokens = self._gradient_checkpointing_func(block.__call__, tokens, mask) | 
					
						
						|  | else: | 
					
						
						|  | tokens = block(tokens, mask) | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | hidden_states += (tokens,) | 
					
						
						|  | tokens = self.post_trunk_norm(tokens) | 
					
						
						|  | return tokens, hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AIMv2PretrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = AIMv2Config | 
					
						
						|  | base_model_prefix = "aimv2" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | main_input_name = "pixel_values" | 
					
						
						|  | _no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2Block"] | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AIMv2Model(AIMv2PretrainedModel): | 
					
						
						|  | def __init__(self, config: AIMv2Config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.preprocessor = AIMv2ViTPreprocessor(config) | 
					
						
						|  | self.trunk = AIMv2Transformer(config) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | pixel_values: torch.Tensor, | 
					
						
						|  | mask: Optional[torch.Tensor] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[ | 
					
						
						|  | Tuple[torch.Tensor], | 
					
						
						|  | Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], | 
					
						
						|  | BaseModelOutputWithNoAttention, | 
					
						
						|  | ]: | 
					
						
						|  | if output_hidden_states is None: | 
					
						
						|  | output_hidden_states = self.config.output_hidden_states | 
					
						
						|  | if return_dict is None: | 
					
						
						|  | return_dict = self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | x = self.preprocessor(pixel_values) | 
					
						
						|  | x, hidden_states = self.trunk( | 
					
						
						|  | x, mask, output_hidden_states=output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | res = (x,) | 
					
						
						|  | res += (hidden_states,) if output_hidden_states else () | 
					
						
						|  | return res | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithNoAttention( | 
					
						
						|  | last_hidden_state=x, | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  |