File size: 6,235 Bytes
11f5b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  george.drettakis@inria.fr
#

import os
import random
import torch
from torch import nn
from utils.loss_utils import l1_loss, ssim, msssim
from gaussian_renderer import render
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state, knn
import uuid
from tqdm import tqdm
from utils.image_utils import psnr, easy_cmap
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from torchvision.utils import make_grid
import numpy as np
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from torch.utils.data import DataLoader
try:
    from torch.utils.tensorboard import SummaryWriter
    TENSORBOARD_FOUND = True
except ImportError:
    TENSORBOARD_FOUND = False
from PIL import Image
import torchvision.transforms as T
import numpy as np
import os
import torchvision.transforms as T
import torch
import lzma
import pickle


def test_comp(dataset, opt, pipe, gaussian_dim, time_duration, num_pts, num_pts_ratio, rot_4d, force_sh_3d, comp_checkpoint):
    

    if dataset.frame_ratio > 1:
        time_duration = [time_duration[0] / dataset.frame_ratio,  time_duration[1] / dataset.frame_ratio]
    
    first_iter = 0
    gaussians = GaussianModel(dataset.sh_degree, gaussian_dim=gaussian_dim, time_duration=time_duration, rot_4d=rot_4d, force_sh_3d=force_sh_3d, sh_degree_t=2 if pipe.eval_shfs_4d else 0)
    scene = Scene(dataset, gaussians, num_pts=num_pts, num_pts_ratio=num_pts_ratio, time_duration=time_duration)
    gaussians.training_setup(opt)
    
    os.makedirs(scene.model_path, exist_ok=True)

    bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
    background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")


    #xz 파일 불러오기
    xz_path = comp_checkpoint
    print(xz_path)

    with lzma.open(xz_path, "rb") as f:
        load_dict = pickle.load(f)
    gaussians.decode(load_dict, decompress=True)
    gaussians.active_sh_degree = 3
    gaussians.active_sh_degree_t = 2
    if gaussians.env_map.device != "cuda":
        gaussians.env_map =  gaussians.env_map.to("cuda")


    psnr_sum = 0.0
    test_dataset = scene.getTestCameras()

    import time
    secs = 0.0
    pipe.env_map_res = 0
    for idx in range(len(test_dataset)):
        gt_image, viewpoint_cam = test_dataset[idx]
        gt_image = gt_image.cuda()
        viewpoint = viewpoint_cam.cuda()

        screenspace_points = torch.zeros_like(
            scene.gaussians.get_xyz,
            dtype=scene.gaussians.get_xyz.dtype,
           requires_grad=False,
            device="cuda"
        )

        torch.cuda.synchronize()
        with torch.no_grad():
            st = time.time()
            render_pkg  = render(viewpoint, scene.gaussians, pipe =pipe, bg_color = background)
            ed = time.time()
        secs += (ed - st)

        torch.cuda.synchronize()

        image = torch.clamp(render_pkg["render"], 0.0, 1.0)
        test_psnr = psnr(image, gt_image).mean().item() 
        psnr_sum += test_psnr



    mean_psnr = psnr_sum / len(test_dataset)
    print(secs,  len(test_dataset), (( len(test_dataset)) / secs))
    print(f"[INFO] Mean PSNR: {mean_psnr:.2f} dB")
    print(f"[INFO] Avg Render Time: {secs/len(test_dataset):.4f} sec/frame")






def setup_seed(seed):
     torch.manual_seed(seed)
     torch.cuda.manual_seed_all(seed)
     np.random.seed(seed)
     random.seed(seed)
     torch.backends.cudnn.deterministic = True

if __name__ == "__main__":
    # Set up command line argument parser
    parser = ArgumentParser(description="Training script parameters")
    lp = ModelParams(parser)
    op = OptimizationParams(parser)
    pp = PipelineParams(parser)
    parser.add_argument("--config", type=str)
    parser.add_argument('--debug_from', type=int, default=-1)
    parser.add_argument('--detect_anomaly', action='store_true', default=False)
    parser.add_argument("--test_iterations", nargs="+", type=int, default=[])
    parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
    parser.add_argument("--quiet", action="store_true")

    
    parser.add_argument("--gaussian_dim", type=int, default=3)
    parser.add_argument("--time_duration", nargs=2, type=float, default=[-0.5, 0.5])
    parser.add_argument('--num_pts', type=int, default=100_000)
    parser.add_argument('--num_pts_ratio', type=float, default=1.0)
    parser.add_argument("--rot_4d", action="store_true")
    parser.add_argument("--force_sh_3d", action="store_true")
    parser.add_argument("--batch_size", type=int, default=1)
    parser.add_argument("--seed", type=int, default=6666)
    parser.add_argument("--exhaust_test", action="store_true")
    parser.add_argument("--start_checkpoint", type=str, default = None)
    parser.add_argument("--comp_checkpoint", type=str, default = None)
    parser.add_argument("--out_path", type=str, default = None)

    args = parser.parse_args(sys.argv[1:])
    args.save_iterations.append(args.iterations)
        
    cfg = OmegaConf.load(args.config)
    def recursive_merge(key, host):
        if isinstance(host[key], DictConfig):
            for key1 in host[key].keys():
                recursive_merge(key1, host[key])
        else:
            assert hasattr(args, key), key
            setattr(args, key, host[key])
    for k in cfg.keys():
        recursive_merge(k, cfg)
        
    if args.exhaust_test:
        args.test_iterations = args.test_iterations + [i for i in range(0,op.iterations,3000)]
    
    setup_seed(args.seed)
    
    print("Optimizing " + args.model_path)

    # Initialize system state (RNG)
    safe_state(args.quiet)

    torch.autograd.set_detect_anomaly(args.detect_anomaly)
    test_comp(lp.extract(args), op.extract(args), pp.extract(args), args.gaussian_dim, args.time_duration, args.num_pts, args.num_pts_ratio, args.rot_4d, args.force_sh_3d, args.comp_checkpoint)

    # All done
    print("\nTraining complete.")