File size: 26,066 Bytes
11f5b0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import random
import sys
import uuid
import torch
import numpy as np
import torchvision.transforms as T
import imageio
import lpips
from torch import nn
from utils.loss_utils import l1_loss, ssim, msssim
from gaussian_renderer import render
from scene import Scene, GaussianModel
from utils.general_utils import safe_state, knn
from tqdm import tqdm
from utils.image_utils import psnr, easy_cmap
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from torchvision.utils import make_grid
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from torch.utils.data import DataLoader
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
from PIL import Image
from compute_gradient import calc_gradient
from utils.compress_utils import save_comp
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint, debug_from,
gaussian_dim, time_duration, num_pts, num_pts_ratio, rot_4d, force_sh_3d, batch_size):
if dataset.frame_ratio > 1:
time_duration = [time_duration[0] / dataset.frame_ratio, time_duration[1] / dataset.frame_ratio]
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree, gaussian_dim=gaussian_dim, time_duration=time_duration, rot_4d=rot_4d, force_sh_3d=force_sh_3d, sh_degree_t=2 if pipe.eval_shfs_4d else 0)
scene = Scene(dataset, gaussians, num_pts=num_pts, num_pts_ratio=num_pts_ratio, time_duration=time_duration)
gaussians.training_setup(opt)
os.makedirs(scene.model_path, exist_ok=True)
loss_log_path = os.path.join(scene.model_path, "loss_log.txt")
loss_log_file = open(loss_log_path, "a")
tau_sim = opt.tau_sim
sim_cutoff = opt.sim_cutoff
grid_size = opt.grid_size
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint, weights_only=False)
gaussians.restore(model_params, opt)
first_iter = 30000
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
os.makedirs(os.path.join(dataset.model_path, "train"), exist_ok=True)
os.makedirs(os.path.join(dataset.model_path, "test"), exist_ok=True)
num_merge = opt.num_merge
compression_start = 30000 # After 4DGS training
grad_pruning_iter = compression_start + opt.grad_pruning_iter
first_merge_iter = grad_pruning_iter + opt.grad_pruning_opt_iter
svq3d_iter = first_merge_iter + opt.merge_opt_iter * num_merge + opt.net_opt_iter
svq4d_iter = svq3d_iter + opt.svq3d_opt_iter
encode_iter = svq4d_iter + opt.svq4d_opt_iter
final_iteration = encode_iter
testing_iterations.append(final_iteration)
if args.grad:
view_grad = np.load(os.path.join(args.grad,'view_grad.npy'))
t_grad = np.load(os.path.join(args.grad,'t_grad.npy'))
else:
view_grad, t_grad = calc_gradient(dataset, opt, pipe, scene, gaussians, batch_size, bg_color, background)
#gradient sampling
mask = gaussians.gradient_sampling(opt.tau_GS, view_grad, t_grad, args)
torch.cuda.empty_cache()
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
ema_loss_for_log = 0.0
ema_l1loss_for_log = 0.0
ema_ssimloss_for_log = 0.0
lambda_all = [key for key in opt.__dict__.keys() if key.startswith('lambda') and key!='lambda_dssim']
for lambda_name in lambda_all:
vars()[f"ema_{lambda_name.replace('lambda_','')}_for_log"] = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
if pipe.env_map_res:
env_map = nn.Parameter(torch.zeros((3,pipe.env_map_res, pipe.env_map_res),dtype=torch.float, device="cuda").requires_grad_(True))
env_map_optimizer = torch.optim.Adam([env_map], lr=opt.feature_lr, eps=1e-15)
else:
env_map = None
gaussians.env_map = env_map
training_dataset = scene.getTrainCameras()
training_dataloader = DataLoader(training_dataset, batch_size=batch_size, shuffle=True, num_workers=12 if dataset.dataloader else 0, collate_fn=lambda x: x, drop_last=True)
iteration = first_iter
lpips_model = lpips.LPIPS(net='alex') # vgg for Bartender
lpips_model.eval()
lpips_model.requires_grad_(False)
lpips_model = lpips_model.to("cuda")
actual_storage = 0.0
while iteration < opt.iterations + 1:
for batch_data in training_dataloader:
iteration += 1
if iteration > opt.iterations:
break
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % opt.sh_increase_interval == 0:
gaussians.oneupSHdegree()
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
batch_point_grad = []
batch_visibility_filter = []
batch_radii = []
for batch_idx in range(batch_size):
gt_image, viewpoint_cam = batch_data[batch_idx]
gt_image = gt_image.cuda()
viewpoint_cam = viewpoint_cam.cuda()
render_pkg = render(viewpoint_cam, gaussians, pipe, background)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
depth = render_pkg["depth"]
alpha = render_pkg["alpha"]
# Loss
Ll1 = l1_loss(image, gt_image)
Lssim = 1.0 - ssim(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * Lssim
loss = loss / batch_size
loss.backward()
if iteration<=first_merge_iter:
batch_point_grad.append(torch.norm(viewspace_point_tensor.grad[:,:2], dim=-1))
batch_radii.append(radii)
batch_visibility_filter.append(visibility_filter)
if iteration %100 ==0 :
img = image.detach().cpu().clamp(0, 1)
img = T.ToPILImage()(img)
save_dir = os.path.join(scene.model_path, "renders")
os.makedirs(save_dir, exist_ok=True)
if batch_size > 1:
visibility_count = torch.stack(batch_visibility_filter,1).sum(1)
visibility_filter = visibility_count > 0
radii = torch.stack(batch_radii,1).max(1)[0]
if iteration<=first_merge_iter:
batch_viewspace_point_grad = torch.stack(batch_point_grad,1).sum(1)
batch_viewspace_point_grad[visibility_filter] = batch_viewspace_point_grad[visibility_filter] * batch_size / visibility_count[visibility_filter]
batch_viewspace_point_grad = batch_viewspace_point_grad.unsqueeze(1)
if gaussians.gaussian_dim == 4:
batch_t_grad = gaussians._t.grad.clone()[:,0].detach()
batch_t_grad[visibility_filter] = batch_t_grad[visibility_filter] * batch_size / visibility_count[visibility_filter]
batch_t_grad = batch_t_grad.unsqueeze(1)
else:
if gaussians.gaussian_dim == 4:
batch_t_grad = gaussians._t.grad.clone().detach()
iter_end.record()
loss_dict = {"Ll1": Ll1,
"Lssim": Lssim}
with torch.no_grad():
psnr_for_log = psnr(image, gt_image).mean().double()
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
ema_l1loss_for_log = 0.4 * Ll1.item() + 0.6 * ema_l1loss_for_log
ema_ssimloss_for_log = 0.4 * Lssim.item() + 0.6 * ema_ssimloss_for_log
for lambda_name in lambda_all:
if opt.__dict__[lambda_name] > 0:
ema = vars()[f"ema_{lambda_name.replace('lambda_', '')}_for_log"]
vars()[f"ema_{lambda_name.replace('lambda_', '')}_for_log"] = 0.4 * vars()[f"L{lambda_name.replace('lambda_', '')}"].item() + 0.6*ema
loss_dict[lambda_name.replace("lambda_", "L")] = vars()[lambda_name.replace("lambda_", "L")]
if iteration % 10 == 0:
postfix = {"Loss": f"{ema_loss_for_log:.{7}f}",
"PSNR": f"{psnr_for_log:.{2}f}",
"Ll1": f"{ema_l1loss_for_log:.{4}f}",
"N": f"{gaussians._xyz.shape[0]:.1f}",
"Lssim": f"{ema_ssimloss_for_log:.{4}f}"}
for lambda_name in lambda_all:
if opt.__dict__[lambda_name] > 0:
ema_loss = vars()[f"ema_{lambda_name.replace('lambda_', '')}_for_log"]
postfix[lambda_name.replace("lambda_", "L")] = f"{ema_loss:.{4}f}"
progress_bar.set_postfix(postfix)
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
#gradient pruning
if iteration == grad_pruning_iter:
gaussians.gradient_pruning(view_grad, t_grad, opt.tau_GP, opt.tau_GP, args, mask)
torch.cuda.empty_cache()
#gaussian merging
if iteration == first_merge_iter:
gaussians.calc_clusters(grid_size=grid_size, tau_sim=tau_sim, sim_cutoff=sim_cutoff, t_grid_size=opt.t_grid_size)
if opt.grid_exp_ratio:
grid_size *= opt.grid_exp_ratio
gaussians.set_alpha_groups()
if num_merge and iteration % 1000 == 0 and iteration > first_merge_iter:
print(iteration,"Pruning merged Gaussians using learned alpha...")
num_merge -= 1
gaussians.training_alpha = False
N = gaussians.get_xyz.shape[0]
gaussians.alpha_pruning_groups()
loss_log_file.write(f"Merge done. {N} -> {gaussians._xyz.shape[0]}\n")
print(f"Merge done. {N} -> {gaussians._xyz.shape[0]}\n")
if num_merge: # should prepare for next merge
gaussians.calc_clusters(grid_size=grid_size, tau_sim=tau_sim, sim_cutoff=sim_cutoff, t_grid_size=opt.t_grid_size)
gaussians.set_alpha_groups()
else: # merging is done, construct net
print("start training network")
loss_log_file.write(f"Start training network.\n")
gaussians.construct_net()
#3d svq
if iteration == svq3d_iter:
loss_log_file.write(f"3D svq start\n.")
gaussians.apply_svq_3d(args)
#4d svq
if iteration == svq4d_iter:
loss_log_file.write(f"4D svq start\n.")
gaussians.apply_svq_4d(args)
if iteration == encode_iter:
print("comp")
save_dict = gaussians.encode()
save_comp(scene.model_path + "/comp.xz", save_dict)
actual_storage = os.path.getsize(scene.model_path + "/comp.xz") / 1024 / 1024 # header is included (Not 100% actual storage).
gaussians.decode(save_dict, decompress=True)
# Log and save
test_psnr = training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background), loss_dict, lpips_model, loss_log_file, actual_storage)
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter and (opt.densify_until_num_points < 0 or gaussians.get_xyz.shape[0] < opt.densify_until_num_points):
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
if batch_size == 1:
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter, batch_t_grad if gaussians.gaussian_dim == 4 else None)
else:
gaussians.add_densification_stats_grad(batch_viewspace_point_grad, visibility_filter, batch_t_grad if gaussians.gaussian_dim == 4 else None)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, opt.thresh_opa_prune, scene.cameras_extent, size_threshold, opt.densify_grad_t_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
if iteration % 100 == 0 and loss_log_file:
log_line = f"[ITER {iteration}] Loss: {ema_loss_for_log:.6f} | PSNR: {psnr_for_log:.2f} | Ll1: {ema_l1loss_for_log:.4f} | xyz: {gaussians._xyz.shape[0]:.4f} | Lssim: {ema_ssimloss_for_log:.4f}"
for lambda_name in lambda_all:
if opt.__dict__[lambda_name] > 0:
ema_val = vars()[f"ema_{lambda_name.replace('lambda_', '')}_for_log"]
log_line += f" | L{lambda_name.replace('lambda_', '')}: {ema_val:.4f}"
loss_log_file.write(log_line + "\n")
if iteration in testing_iterations and loss_log_file:
loss_log_file.write(f"[ITER {iteration}] test_psnr: {test_psnr:.4f}\n")
if loss_log_file:
loss_log_file.flush()
# Optimizer step
if iteration < final_iteration:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if pipe.env_map_res and iteration < pipe.env_optimize_until:
env_map_optimizer.step()
env_map_optimizer.zero_grad(set_to_none = True)
if gaussians.net_enabled:
gaussians.optimizer_net.step()
gaussians.optimizer_net.zero_grad(set_to_none = True)
gaussians.scheduler_net.step()
if gaussians.vq_enabled:
if hasattr(gaussians, "optimizer_code") and gaussians.optimizer_code is not None:
gaussians.optimizer_code.step()
gaussians.optimizer_code.zero_grad()
if hasattr(gaussians, "optimizer_code_4d") and gaussians.optimizer_code_4d is not None:
gaussians.optimizer_code_4d.step()
gaussians.optimizer_code_4d.zero_grad()
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, loss_dict=None, lpips_model=None, log_file=None, actual_storage=0.0):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/ssim_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
if loss_dict is not None:
if "Lrigid" in loss_dict:
tb_writer.add_scalar('train_loss_patches/rigid_loss', loss_dict['Lrigid'].item(), iteration)
if "Ldepth" in loss_dict:
tb_writer.add_scalar('train_loss_patches/depth_loss', loss_dict['Ldepth'].item(), iteration)
if "Ltv" in loss_dict:
tb_writer.add_scalar('train_loss_patches/tv_loss', loss_dict['Ltv'].item(), iteration)
if "Lopa" in loss_dict:
tb_writer.add_scalar('train_loss_patches/opa_loss', loss_dict['Lopa'].item(), iteration)
if "Lptsopa" in loss_dict:
tb_writer.add_scalar('train_loss_patches/pts_opa_loss', loss_dict['Lptsopa'].item(), iteration)
if "Lsmooth" in loss_dict:
tb_writer.add_scalar('train_loss_patches/smooth_loss', loss_dict['Lsmooth'].item(), iteration)
if "Llaplacian" in loss_dict:
tb_writer.add_scalar('train_loss_patches/laplacian_loss', loss_dict['Llaplacian'].item(), iteration)
psnr_test_iter = 0.0
# Report test and samples of training set
if iteration in testing_iterations:
validation_configs = ({'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]},
{'name': 'test', 'cameras' : [scene.getTestCameras()[idx] for idx in range(len(scene.getTestCameras()))]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
ssim_test = 0.0
msssim_test = 0.0
lpips_test = 0.0
for idx, batch_data in enumerate(tqdm(config['cameras'])):
gt_image, viewpoint = batch_data
gt_image = gt_image.cuda()
viewpoint = viewpoint.cuda()
render_pkg = renderFunc(viewpoint, scene.gaussians, *renderArgs)
image = torch.clamp(render_pkg["render"], 0.0, 1.0)
depth = easy_cmap(render_pkg['depth'][0])
alpha = torch.clamp(render_pkg['alpha'], 0.0, 1.0).repeat(3,1,1)
if tb_writer and (idx < 5):
grid = [gt_image, image, alpha, depth]
grid = make_grid(grid, nrow=2)
tb_writer.add_images(config['name'] + "_view_{}/gt_vs_render".format(viewpoint.image_name), grid[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
lpips_test += lpips_model(image[None], gt_image[None]).squeeze().item()
if idx < 5:
try:
imageio.imwrite(os.path.join(scene.model_path, config['name'], "render_{:05d}_{}.png".format(iteration, viewpoint.image_name)), (image.permute(1,2,0).cpu().numpy() * 255).astype(np.uint8))
except:
pass
test_log_path = os.path.join(scene.model_path, "test.txt")
with open(test_log_path, "a") as test_log_file:
test_log_file.write(f"[Time {viewpoint.timestamp}] test_psnr: {psnr(image, gt_image).mean().double():.4f}\n")
ssim_test += ssim(image, gt_image).mean().double()
msssim_test += msssim(image[None].cpu(), gt_image[None].cpu())
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
ssim_test /= len(config['cameras'])
msssim_test /= len(config['cameras'])
lpips_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {} lpips {}".format(iteration, config['name'], l1_test, psnr_test, lpips_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - ssim', ssim_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - msssim', msssim_test, iteration)
if config['name'] == 'test':
psnr_test_iter = psnr_test.item()
log_file.write(f"psnr: {psnr_test_iter} ssim: {ssim_test} lpips: {lpips_test}\n")
log_file.flush()
if iteration == testing_iterations[-1]:
name = "_".join(scene.model_path.split("/")[-2:])
with open("./res.txt", "a") as f:
num_pts = scene.gaussians.get_xyz.shape[0]
f.write("{}: PSNR {:.3f}, SSIM {:.5f}, MS-SSIM {:.5f}, LPIPS {:.5f}, num_pts {}, MB {:.2f}\n".format(name, psnr_test, ssim_test, msssim_test, lpips_test, num_pts, actual_storage))
torch.cuda.empty_cache()
return psnr_test_iter
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument("--config", type=str)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--gaussian_dim", type=int, default=3)
parser.add_argument("--time_duration", nargs=2, type=float, default=[-0.5, 0.5])
parser.add_argument('--num_pts', type=int, default=100_000)
parser.add_argument('--num_pts_ratio', type=float, default=1.0)
parser.add_argument("--rot_4d", action="store_true")
parser.add_argument("--force_sh_3d", action="store_true")
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--seed", type=int, default=6666)
parser.add_argument("--exhaust_test", action="store_true")
parser.add_argument("--grad", type=str, default = None)
parser.add_argument("--out_path", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
cfg = OmegaConf.load(args.config)
def recursive_merge(key, host):
if isinstance(host[key], DictConfig):
for key1 in host[key].keys():
recursive_merge(key1, host[key])
else:
assert hasattr(args, key), key
setattr(args, key, host[key])
for k in cfg.keys():
recursive_merge(k, cfg)
if args.exhaust_test:
args.test_iterations = args.test_iterations + [i for i in range(0,op.iterations,3000)]
setup_seed(args.seed)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.start_checkpoint, args.debug_from,
args.gaussian_dim, args.time_duration, args.num_pts, args.num_pts_ratio, args.rot_4d, args.force_sh_3d, args.batch_size)
# All done
print("\nTraining complete.")
|