File size: 26,066 Bytes
11f5b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  george.drettakis@inria.fr
#

import os
import random
import sys
import uuid
import torch
import numpy as np
import torchvision.transforms as T
import imageio
import lpips

from torch import nn
from utils.loss_utils import l1_loss, ssim, msssim
from gaussian_renderer import render
from scene import Scene, GaussianModel
from utils.general_utils import safe_state, knn
from tqdm import tqdm
from utils.image_utils import psnr, easy_cmap
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from torchvision.utils import make_grid
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from torch.utils.data import DataLoader
try:
    from torch.utils.tensorboard import SummaryWriter
    TENSORBOARD_FOUND = True
except ImportError:
    TENSORBOARD_FOUND = False
from PIL import Image
from compute_gradient import calc_gradient
from utils.compress_utils import save_comp


def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint, debug_from,
             gaussian_dim, time_duration, num_pts, num_pts_ratio, rot_4d, force_sh_3d, batch_size):
    
    if dataset.frame_ratio > 1:
        time_duration = [time_duration[0] / dataset.frame_ratio,  time_duration[1] / dataset.frame_ratio]
    
    first_iter = 0
    tb_writer = prepare_output_and_logger(dataset)
    gaussians = GaussianModel(dataset.sh_degree, gaussian_dim=gaussian_dim, time_duration=time_duration, rot_4d=rot_4d, force_sh_3d=force_sh_3d, sh_degree_t=2 if pipe.eval_shfs_4d else 0)
    scene = Scene(dataset, gaussians, num_pts=num_pts, num_pts_ratio=num_pts_ratio, time_duration=time_duration)
    gaussians.training_setup(opt)
    
    os.makedirs(scene.model_path, exist_ok=True)
    loss_log_path = os.path.join(scene.model_path, "loss_log.txt")
    loss_log_file = open(loss_log_path, "a")
    
    tau_sim = opt.tau_sim
    sim_cutoff = opt.sim_cutoff
    grid_size = opt.grid_size

    if checkpoint:
        (model_params, first_iter) = torch.load(checkpoint, weights_only=False)
        gaussians.restore(model_params, opt)

    first_iter = 30000
    bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
    background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")

    os.makedirs(os.path.join(dataset.model_path, "train"), exist_ok=True)
    os.makedirs(os.path.join(dataset.model_path, "test"), exist_ok=True)

    num_merge = opt.num_merge

    compression_start = 30000   # After 4DGS training
    grad_pruning_iter = compression_start + opt.grad_pruning_iter
    first_merge_iter = grad_pruning_iter + opt.grad_pruning_opt_iter
    svq3d_iter = first_merge_iter + opt.merge_opt_iter * num_merge + opt.net_opt_iter
    svq4d_iter = svq3d_iter + opt.svq3d_opt_iter
    encode_iter = svq4d_iter + opt.svq4d_opt_iter
    final_iteration = encode_iter
    testing_iterations.append(final_iteration)

    if args.grad:
        view_grad = np.load(os.path.join(args.grad,'view_grad.npy'))
        t_grad =  np.load(os.path.join(args.grad,'t_grad.npy'))
    else: 
        view_grad, t_grad = calc_gradient(dataset, opt, pipe, scene, gaussians, batch_size, bg_color, background)

    #gradient sampling
    mask = gaussians.gradient_sampling(opt.tau_GS, view_grad, t_grad, args)
    torch.cuda.empty_cache() 

    iter_start = torch.cuda.Event(enable_timing = True)
    iter_end = torch.cuda.Event(enable_timing = True)
    
    ema_loss_for_log = 0.0
    ema_l1loss_for_log = 0.0
    ema_ssimloss_for_log = 0.0
    lambda_all = [key for key in opt.__dict__.keys() if key.startswith('lambda') and key!='lambda_dssim']
    for lambda_name in lambda_all:
        vars()[f"ema_{lambda_name.replace('lambda_','')}_for_log"] = 0.0
    
    progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
    first_iter += 1
        
    if pipe.env_map_res:
        env_map = nn.Parameter(torch.zeros((3,pipe.env_map_res, pipe.env_map_res),dtype=torch.float, device="cuda").requires_grad_(True))
        env_map_optimizer = torch.optim.Adam([env_map], lr=opt.feature_lr, eps=1e-15)
    else:
        env_map = None
        
    gaussians.env_map = env_map
        
    training_dataset = scene.getTrainCameras()
    training_dataloader = DataLoader(training_dataset, batch_size=batch_size, shuffle=True, num_workers=12 if dataset.dataloader else 0, collate_fn=lambda x: x, drop_last=True)
     
    iteration = first_iter
    lpips_model = lpips.LPIPS(net='alex')   # vgg for Bartender
    lpips_model.eval()                   
    lpips_model.requires_grad_(False)  
    lpips_model = lpips_model.to("cuda")
    actual_storage = 0.0
    
    while iteration < opt.iterations + 1:
        for batch_data in training_dataloader:
            iteration += 1
            if iteration > opt.iterations:
                break

            iter_start.record()
            gaussians.update_learning_rate(iteration)
            
            # Every 1000 its we increase the levels of SH up to a maximum degree
            if iteration % opt.sh_increase_interval == 0:
                gaussians.oneupSHdegree()
                
            # Render
            if (iteration - 1) == debug_from:
                pipe.debug = True
            
            batch_point_grad = []
            batch_visibility_filter = []
            batch_radii = []
            
            for batch_idx in range(batch_size):
                gt_image, viewpoint_cam = batch_data[batch_idx]
                gt_image = gt_image.cuda()
                viewpoint_cam = viewpoint_cam.cuda()

                render_pkg = render(viewpoint_cam, gaussians, pipe, background)
                image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
                depth = render_pkg["depth"]
                alpha = render_pkg["alpha"]

                # Loss
                Ll1 = l1_loss(image, gt_image)
                Lssim = 1.0 - ssim(image, gt_image)
                loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * Lssim
                
                loss = loss / batch_size
                loss.backward()
                if iteration<=first_merge_iter:
                    batch_point_grad.append(torch.norm(viewspace_point_tensor.grad[:,:2], dim=-1))
                batch_radii.append(radii)
                batch_visibility_filter.append(visibility_filter)
                
            if iteration %100 ==0 :
                img = image.detach().cpu().clamp(0, 1)
                img = T.ToPILImage()(img)

                save_dir = os.path.join(scene.model_path, "renders")
                os.makedirs(save_dir, exist_ok=True)

            if batch_size > 1:
                visibility_count = torch.stack(batch_visibility_filter,1).sum(1)
                visibility_filter = visibility_count > 0
                radii = torch.stack(batch_radii,1).max(1)[0]
                if iteration<=first_merge_iter:
                    batch_viewspace_point_grad = torch.stack(batch_point_grad,1).sum(1)
                    batch_viewspace_point_grad[visibility_filter] = batch_viewspace_point_grad[visibility_filter] * batch_size / visibility_count[visibility_filter]
                    batch_viewspace_point_grad = batch_viewspace_point_grad.unsqueeze(1)
                    
                    if gaussians.gaussian_dim == 4:
                        batch_t_grad = gaussians._t.grad.clone()[:,0].detach()
                        batch_t_grad[visibility_filter] = batch_t_grad[visibility_filter] * batch_size / visibility_count[visibility_filter]
                        batch_t_grad = batch_t_grad.unsqueeze(1)
            else:
                if gaussians.gaussian_dim == 4:
                    batch_t_grad = gaussians._t.grad.clone().detach()
        
            iter_end.record()
            loss_dict = {"Ll1": Ll1,
                        "Lssim": Lssim}

            with torch.no_grad():
                psnr_for_log = psnr(image, gt_image).mean().double()
                # Progress bar
                ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
                ema_l1loss_for_log = 0.4 * Ll1.item() + 0.6 * ema_l1loss_for_log
                ema_ssimloss_for_log = 0.4 * Lssim.item() + 0.6 * ema_ssimloss_for_log
                
                for lambda_name in lambda_all:
                    if opt.__dict__[lambda_name] > 0:
                        ema = vars()[f"ema_{lambda_name.replace('lambda_', '')}_for_log"]
                        vars()[f"ema_{lambda_name.replace('lambda_', '')}_for_log"] = 0.4 * vars()[f"L{lambda_name.replace('lambda_', '')}"].item() + 0.6*ema
                        loss_dict[lambda_name.replace("lambda_", "L")] = vars()[lambda_name.replace("lambda_", "L")]
                        
                if iteration % 10 == 0:
                    postfix = {"Loss": f"{ema_loss_for_log:.{7}f}",
                                            "PSNR": f"{psnr_for_log:.{2}f}",
                                            "Ll1": f"{ema_l1loss_for_log:.{4}f}",
                                            "N": f"{gaussians._xyz.shape[0]:.1f}",
                                            "Lssim": f"{ema_ssimloss_for_log:.{4}f}"}
                    
                    for lambda_name in lambda_all:
                        if opt.__dict__[lambda_name] > 0:
                            ema_loss = vars()[f"ema_{lambda_name.replace('lambda_', '')}_for_log"]
                            postfix[lambda_name.replace("lambda_", "L")] = f"{ema_loss:.{4}f}"
                            
                    progress_bar.set_postfix(postfix)
                    progress_bar.update(10)
                if iteration == opt.iterations:
                    progress_bar.close()

                #gradient pruning
                if iteration == grad_pruning_iter:
                    gaussians.gradient_pruning(view_grad, t_grad, opt.tau_GP, opt.tau_GP, args, mask)
                    torch.cuda.empty_cache() 

                #gaussian merging
                if iteration == first_merge_iter:
                    gaussians.calc_clusters(grid_size=grid_size, tau_sim=tau_sim, sim_cutoff=sim_cutoff, t_grid_size=opt.t_grid_size)
                    if opt.grid_exp_ratio:
                        grid_size *= opt.grid_exp_ratio
                    gaussians.set_alpha_groups()

                if num_merge and iteration % 1000 == 0 and iteration > first_merge_iter:
                    print(iteration,"Pruning merged Gaussians using learned alpha...")
                    num_merge -= 1
                    gaussians.training_alpha = False
                    N = gaussians.get_xyz.shape[0]
                    gaussians.alpha_pruning_groups()
                    loss_log_file.write(f"Merge done. {N} ->  {gaussians._xyz.shape[0]}\n")
                    print(f"Merge done. {N} ->  {gaussians._xyz.shape[0]}\n")
                    if num_merge:   # should prepare for next merge
                        gaussians.calc_clusters(grid_size=grid_size, tau_sim=tau_sim, sim_cutoff=sim_cutoff, t_grid_size=opt.t_grid_size)
                        gaussians.set_alpha_groups()
                    
                    else:   # merging is done, construct net
                        print("start training network")
                        loss_log_file.write(f"Start training network.\n")
                        gaussians.construct_net()

                #3d svq
                if iteration == svq3d_iter:
                    loss_log_file.write(f"3D svq start\n.")
                    gaussians.apply_svq_3d(args)
                #4d svq
                if iteration == svq4d_iter:
                    loss_log_file.write(f"4D svq start\n.")
                    gaussians.apply_svq_4d(args)

                if iteration == encode_iter:
                    print("comp")
                    save_dict = gaussians.encode()     
                    save_comp(scene.model_path + "/comp.xz", save_dict)
                    
                    actual_storage = os.path.getsize(scene.model_path + "/comp.xz") / 1024 / 1024   # header is included (Not 100% actual storage).
                    gaussians.decode(save_dict, decompress=True)


                # Log and save
                test_psnr = training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background), loss_dict, lpips_model, loss_log_file, actual_storage)
                if (iteration in saving_iterations):
                    print("\n[ITER {}] Saving Gaussians".format(iteration))
                    scene.save(iteration)

                # Densification
                if iteration < opt.densify_until_iter and (opt.densify_until_num_points < 0 or gaussians.get_xyz.shape[0] < opt.densify_until_num_points):
                    # Keep track of max radii in image-space for pruning
                    gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
                    if batch_size == 1:
                        gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter, batch_t_grad if gaussians.gaussian_dim == 4 else None)
                    else:
                        gaussians.add_densification_stats_grad(batch_viewspace_point_grad, visibility_filter, batch_t_grad if gaussians.gaussian_dim == 4 else None)
                        
                    if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
                        size_threshold = 20 if iteration > opt.opacity_reset_interval else None
                        gaussians.densify_and_prune(opt.densify_grad_threshold, opt.thresh_opa_prune, scene.cameras_extent, size_threshold, opt.densify_grad_t_threshold)
                    
                    if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
                        gaussians.reset_opacity()
                        
                if iteration % 100 == 0 and loss_log_file:
                    log_line = f"[ITER {iteration}] Loss: {ema_loss_for_log:.6f} | PSNR: {psnr_for_log:.2f} | Ll1: {ema_l1loss_for_log:.4f} | xyz: {gaussians._xyz.shape[0]:.4f} | Lssim: {ema_ssimloss_for_log:.4f}"
                    for lambda_name in lambda_all:
                        if opt.__dict__[lambda_name] > 0:
                            ema_val = vars()[f"ema_{lambda_name.replace('lambda_', '')}_for_log"]
                            log_line += f" | L{lambda_name.replace('lambda_', '')}: {ema_val:.4f}"
                    loss_log_file.write(log_line + "\n")

                if iteration in testing_iterations and loss_log_file:
                    loss_log_file.write(f"[ITER {iteration}] test_psnr: {test_psnr:.4f}\n")


                if loss_log_file:
                    loss_log_file.flush()

                # Optimizer step
                if iteration < final_iteration:
                    gaussians.optimizer.step()
                    gaussians.optimizer.zero_grad(set_to_none = True)
                    if pipe.env_map_res and iteration < pipe.env_optimize_until:
                        env_map_optimizer.step()
                        env_map_optimizer.zero_grad(set_to_none = True)
                    if gaussians.net_enabled:
                        gaussians.optimizer_net.step()
                        gaussians.optimizer_net.zero_grad(set_to_none = True)
                        gaussians.scheduler_net.step()
                    if gaussians.vq_enabled:
                        if hasattr(gaussians, "optimizer_code") and gaussians.optimizer_code is not None:
                            gaussians.optimizer_code.step()
                            gaussians.optimizer_code.zero_grad()
                        
                        if hasattr(gaussians, "optimizer_code_4d") and gaussians.optimizer_code_4d is not None:
                            gaussians.optimizer_code_4d.step()
                            gaussians.optimizer_code_4d.zero_grad()

def prepare_output_and_logger(args):    
    if not args.model_path:
        if os.getenv('OAR_JOB_ID'):
            unique_str=os.getenv('OAR_JOB_ID')
        else:
            unique_str = str(uuid.uuid4())
        args.model_path = os.path.join("./output/", unique_str[0:10])
        
    # Set up output folder
    print("Output folder: {}".format(args.model_path))
    os.makedirs(args.model_path, exist_ok = True)
    with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
        cfg_log_f.write(str(Namespace(**vars(args))))

    # Create Tensorboard writer
    tb_writer = None
    if TENSORBOARD_FOUND:
        tb_writer = SummaryWriter(args.model_path)
    else:
        print("Tensorboard not available: not logging progress")
    return tb_writer

def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, loss_dict=None, lpips_model=None, log_file=None, actual_storage=0.0):
    if tb_writer:
        tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
        tb_writer.add_scalar('train_loss_patches/ssim_loss', Ll1.item(), iteration)
        tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
        tb_writer.add_scalar('iter_time', elapsed, iteration)
        tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
        tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
        if loss_dict is not None:
            if "Lrigid" in loss_dict:
                tb_writer.add_scalar('train_loss_patches/rigid_loss', loss_dict['Lrigid'].item(), iteration)
            if "Ldepth" in loss_dict:
                tb_writer.add_scalar('train_loss_patches/depth_loss', loss_dict['Ldepth'].item(), iteration)
            if "Ltv" in loss_dict:
                tb_writer.add_scalar('train_loss_patches/tv_loss', loss_dict['Ltv'].item(), iteration)
            if "Lopa" in loss_dict:
                tb_writer.add_scalar('train_loss_patches/opa_loss', loss_dict['Lopa'].item(), iteration)
            if "Lptsopa" in loss_dict:
                tb_writer.add_scalar('train_loss_patches/pts_opa_loss', loss_dict['Lptsopa'].item(), iteration)
            if "Lsmooth" in loss_dict:
                tb_writer.add_scalar('train_loss_patches/smooth_loss', loss_dict['Lsmooth'].item(), iteration)
            if "Llaplacian" in loss_dict:
                tb_writer.add_scalar('train_loss_patches/laplacian_loss', loss_dict['Llaplacian'].item(), iteration)

    psnr_test_iter = 0.0
    # Report test and samples of training set
    if iteration in testing_iterations:
        validation_configs = ({'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]},
                              {'name': 'test', 'cameras' : [scene.getTestCameras()[idx] for idx in range(len(scene.getTestCameras()))]})

        for config in validation_configs:
            if config['cameras'] and len(config['cameras']) > 0:
                l1_test = 0.0
                psnr_test = 0.0
                ssim_test = 0.0
                msssim_test = 0.0
                lpips_test = 0.0
                for idx, batch_data in enumerate(tqdm(config['cameras'])):
                    gt_image, viewpoint = batch_data
                    gt_image = gt_image.cuda()
                    viewpoint = viewpoint.cuda()
                    
                    render_pkg = renderFunc(viewpoint, scene.gaussians, *renderArgs)
                    image = torch.clamp(render_pkg["render"], 0.0, 1.0)
                    
                    depth = easy_cmap(render_pkg['depth'][0])
                    alpha = torch.clamp(render_pkg['alpha'], 0.0, 1.0).repeat(3,1,1)
                    if tb_writer and (idx < 5):
                        grid = [gt_image, image, alpha, depth]
                        grid = make_grid(grid, nrow=2)
                        tb_writer.add_images(config['name'] + "_view_{}/gt_vs_render".format(viewpoint.image_name), grid[None], global_step=iteration)
                            
                    l1_test += l1_loss(image, gt_image).mean().double()
                    psnr_test += psnr(image, gt_image).mean().double()

                    lpips_test += lpips_model(image[None], gt_image[None]).squeeze().item()

                    if idx < 5:
                        try:
                            imageio.imwrite(os.path.join(scene.model_path, config['name'], "render_{:05d}_{}.png".format(iteration, viewpoint.image_name)), (image.permute(1,2,0).cpu().numpy() * 255).astype(np.uint8))
                        except:
                            pass
                    

                    test_log_path = os.path.join(scene.model_path, "test.txt")
                    with open(test_log_path, "a") as test_log_file:
                        test_log_file.write(f"[Time {viewpoint.timestamp}] test_psnr: {psnr(image, gt_image).mean().double():.4f}\n")

                    ssim_test += ssim(image, gt_image).mean().double()
                    msssim_test += msssim(image[None].cpu(), gt_image[None].cpu())
                psnr_test /= len(config['cameras'])
                l1_test /= len(config['cameras']) 
                ssim_test /= len(config['cameras'])     
                msssim_test /= len(config['cameras'])        
                lpips_test /= len(config['cameras'])        
                print("\n[ITER {}] Evaluating {}: L1 {} PSNR {} lpips {}".format(iteration, config['name'], l1_test, psnr_test, lpips_test))
                if tb_writer:
                    tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
                    tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
                    tb_writer.add_scalar(config['name'] + '/loss_viewpoint - ssim', ssim_test, iteration)
                    tb_writer.add_scalar(config['name'] + '/loss_viewpoint - msssim', msssim_test, iteration)
                if config['name'] == 'test':
                    psnr_test_iter = psnr_test.item()
                    log_file.write(f"psnr: {psnr_test_iter}  ssim: {ssim_test}   lpips: {lpips_test}\n")
                    log_file.flush()
                    if iteration == testing_iterations[-1]:
                        name = "_".join(scene.model_path.split("/")[-2:])
                        with open("./res.txt", "a") as f:
                            num_pts = scene.gaussians.get_xyz.shape[0]
                            f.write("{}: PSNR {:.3f}, SSIM {:.5f}, MS-SSIM {:.5f}, LPIPS {:.5f}, num_pts {}, MB {:.2f}\n".format(name, psnr_test, ssim_test, msssim_test, lpips_test, num_pts, actual_storage))
    torch.cuda.empty_cache()
    return psnr_test_iter

def setup_seed(seed):
     torch.manual_seed(seed)
     torch.cuda.manual_seed_all(seed)
     np.random.seed(seed)
     random.seed(seed)
     torch.backends.cudnn.deterministic = True

if __name__ == "__main__":
    # Set up command line argument parser
    parser = ArgumentParser(description="Training script parameters")
    lp = ModelParams(parser)
    op = OptimizationParams(parser)
    pp = PipelineParams(parser)
    parser.add_argument("--config", type=str)
    parser.add_argument('--debug_from', type=int, default=-1)
    parser.add_argument('--detect_anomaly', action='store_true', default=False)
    parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000])
    parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000])
    parser.add_argument("--quiet", action="store_true")
    parser.add_argument("--start_checkpoint", type=str, default = None)
    
    parser.add_argument("--gaussian_dim", type=int, default=3)
    parser.add_argument("--time_duration", nargs=2, type=float, default=[-0.5, 0.5])
    parser.add_argument('--num_pts', type=int, default=100_000)
    parser.add_argument('--num_pts_ratio', type=float, default=1.0)
    parser.add_argument("--rot_4d", action="store_true")
    parser.add_argument("--force_sh_3d", action="store_true")
    parser.add_argument("--batch_size", type=int, default=1)
    parser.add_argument("--seed", type=int, default=6666)
    parser.add_argument("--exhaust_test", action="store_true")
    parser.add_argument("--grad", type=str, default = None)
    parser.add_argument("--out_path", type=str, default = None)
        
    args = parser.parse_args(sys.argv[1:])
    args.save_iterations.append(args.iterations)
        
    cfg = OmegaConf.load(args.config)
    def recursive_merge(key, host):
        if isinstance(host[key], DictConfig):
            for key1 in host[key].keys():
                recursive_merge(key1, host[key])
        else:
            assert hasattr(args, key), key
            setattr(args, key, host[key])
    for k in cfg.keys():
        recursive_merge(k, cfg)


    if args.exhaust_test:
        args.test_iterations = args.test_iterations + [i for i in range(0,op.iterations,3000)]
    
    setup_seed(args.seed)
    
    print("Optimizing " + args.model_path)

    # Initialize system state (RNG)
    safe_state(args.quiet)

    torch.autograd.set_detect_anomaly(args.detect_anomaly)
    training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.start_checkpoint, args.debug_from,
             args.gaussian_dim, args.time_duration, args.num_pts, args.num_pts_ratio, args.rot_4d, args.force_sh_3d, args.batch_size)

    # All done
    print("\nTraining complete.")