File size: 16,570 Bytes
7496e98 33605fc a970723 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 79891b6 33605fc 79891b6 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 7496e98 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 7496e98 33605fc 7496e98 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 79891b6 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 33605fc 7496e98 3af90e1 c2b7e11 3af90e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
# MiniMax-M2 工具调用指南
[英文版](./tool_calling_guide.md) | [中文版](./tool_calling_guide_cn.md)
## 简介
MiniMax-M2 模型支持工具调用功能,使模型能够识别何时需要调用外部工具,并以结构化格式输出工具调用参数。本文档提供了有关如何使用 MiniMax-M2 工具调用功能的详细说明。
## 基础示例
以下 Python 脚本基于 OpenAI SDK 实现了一个天气查询工具调用示例:
```python
from openai import OpenAI
import json
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
def get_weather(location: str, unit: str):
return f"Getting the weather for {location} in {unit}..."
tool_functions = {"get_weather": get_weather}
tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
},
"required": ["location", "unit"]
}
}
}]
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[{"role": "user", "content": "What's the weather like in San Francisco? use celsius."}],
tools=tools,
tool_choice="auto"
)
print(response)
tool_call = response.choices[0].message.tool_calls[0].function
print(f"Function called: {tool_call.name}")
print(f"Arguments: {tool_call.arguments}")
print(f"Result: {get_weather(**json.loads(tool_call.arguments))}")
```
**输出示例:**
```
Function called: get_weather
Arguments: {"location": "San Francisco, CA", "unit": "celsius"}
Result: Getting the weather for San Francisco, CA in celsius...
```
## 手动解析模型输出
**我们强烈建议使用 vLLM 或 SGLnag 来解析工具调用。** 如果您无法使用支持 MiniMax-M2 的推理引擎(如 vLLM 和 SGLang)的内置解析器,或需要使用其他推理框架(如 transformers、TGI 等),您可以使用以下方法手动解析模型的原始输出。这种方法需要您自己解析模型输出的 XML 标签格式。
### 使用 Transformers 的示例
这是一个使用 transformers 库的完整示例:
```python
from transformers import AutoTokenizer
def get_default_tools():
return [
{
"name": "get_current_weather",
"description": "Get the latest weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "A certain city, such as Beijing, Shanghai"
}
},
}
"required": ["location"],
"type": "object"
}
]
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "What's the weather like in Shanghai today?"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
]
# Enable function calling tools
tools = get_default_tools()
# Apply chat template and include tool definitions
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
tools=tools
)
# Send request (using any inference service)
import requests
payload = {
"model": "MiniMaxAI/MiniMax-M2",
"prompt": text,
"max_tokens": 4096
}
response = requests.post(
"http://localhost:8000/v1/completions",
headers={"Content-Type": "application/json"},
json=payload,
stream=False,
)
# Model output needs manual parsing
raw_output = response.json()["choices"][0]["text"]
print("Raw output:", raw_output)
# Use the parsing function below to process the output
tool_calls = parse_tool_calls(raw_output, tools)
```
## 🛠️ 工具调用定义
### 工具结构
工具调用需要在请求体中定义 `tools` 字段。每个工具由以下部分组成:
```json
{
"tools": [
{
"name": "search_web",
"description": "Search function.",
"parameters": {
"properties": {
"query_list": {
"description": "Keywords for search, list should contain 1 element.",
"items": { "type": "string" },
"type": "array"
},
"query_tag": {
"description": "Category of query",
"items": { "type": "string" },
"type": "array"
}
},
"required": [ "query_list", "query_tag" ],
"type": "object"
}
}
]
}
```
**字段说明:**
- `name`:函数名称
- `description`:函数描述
- `parameters`:函数参数定义
- `properties`:参数属性定义,其中键是参数名称,值包含详细的参数描述
- `required`:必需参数列表
- `type`:参数类型(通常为 "object")
### 内部处理格式
在 MiniMax-M2 模型内部处理时,工具定义会被转换为特殊格式并连接到输入文本中。以下是一个完整示例:
```
]~!b[]~b]system
You are a helpful assistant.
# Tools
You may call one or more tools to assist with the user query.
Here are the tools available in JSONSchema format:
<tools>
<tool>{"name": "search_web", "description": "Search function.", "parameters": {"type": "object", "properties": {"query_list": {"type": "array", "items": {"type": "string"}, "description": "Keywords for search, list should contain 1 element."}, "query_tag": {"type": "array", "items": {"type": "string"}, "description": "Category of query"}}, "required": ["query_list", "query_tag"]}}</tool>
</tools>
When making tool calls, use XML format to invoke tools and pass parameters:
<minimax:tool_call>
<invoke name="tool-name-1">
<parameter name="param-key-1">param-value-1</parameter>
<parameter name="param-key-2">param-value-2</parameter>
...
</invoke>
[e~[
]~b]user
When were the latest announcements from OpenAI and Gemini?[e~[
]~b]ai
<think>
```
**格式说明:**
- `]~!b[]~b]system`:系统消息开始标记
- `[e~[`:消息结束标记
- `]~b]user`:用户消息开始标记
- `]~b]ai`:助手消息开始标记
- `]~b]tool`:工具结果消息开始标记
- `<tools>...</tools>`:工具定义区域,每个工具都用 `<tool>` 标签包装,内容为 JSON Schema
- `<minimax:tool_call>...</minimax:tool_call>`:工具调用区域
- `<think>...</think>`:生成过程中的思考过程标记
### 模型输出格式
MiniMax-M2 使用结构化的 XML 标签格式:
```xml
<minimax:tool_call>
<invoke name="search_web">
<parameter name="query_tag">["technology", "events"]</parameter>
<parameter name="query_list">["\"OpenAI\" \"latest\" \"release\""]</parameter>
</invoke>
<invoke name="search_web">
<parameter name="query_tag">["technology", "events"]</parameter>
<parameter name="query_list">["\"Gemini\" \"latest\" \"release\""]</parameter>
</invoke>
</minimax:tool_call>
```
每个工具调用使用 `<invoke name="function_name">` 标签,参数使用 `<parameter name="parameter_name">` 标签包装。
## 手动解析工具调用结果
### 解析工具调用
MiniMax-M2 使用结构化的 XML 标签,这需要一种不同的解析方法。核心函数如下:
```python
import re
import json
from typing import Any, Optional, List, Dict
def extract_name(name_str: str) -> str:
"""Extract name from quoted string"""
name_str = name_str.strip()
if name_str.startswith('"') and name_str.endswith('"'):
return name_str[1:-1]
elif name_str.startswith("'") and name_str.endswith("'"):
return name_str[1:-1]
return name_str
def convert_param_value(value: str, param_type: str) -> Any:
"""Convert parameter value based on parameter type"""
if value.lower() == "null":
return None
param_type = param_type.lower()
if param_type in ["string", "str", "text"]:
return value
elif param_type in ["integer", "int"]:
try:
return int(value)
except (ValueError, TypeError):
return value
elif param_type in ["number", "float"]:
try:
val = float(value)
return val if val != int(val) else int(val)
except (ValueError, TypeError):
return value
elif param_type in ["boolean", "bool"]:
return value.lower() in ["true", "1"]
elif param_type in ["object", "array"]:
try:
return json.loads(value)
except json.JSONDecodeError:
return value
else:
# Try JSON parsing, return string if failed
try:
return json.loads(value)
except json.JSONDecodeError:
return value
def parse_tool_calls(model_output: str, tools: Optional[List[Dict]] = None) -> List[Dict]:
"""
Extract all tool calls from model output
Args:
model_output: Complete output text from the model
tools: Tool definition list for getting parameter type information, format can be:
- [{"name": "...", "parameters": {...}}]
- [{"type": "function", "function": {"name": "...", "parameters": {...}}}]
Returns:
Parsed tool call list, each element contains name and arguments fields
Example:
>>> tools = [{
... "name": "get_weather",
... "parameters": {
... "type": "object",
... "properties": {
... "location": {"type": "string"},
... "unit": {"type": "string"}
... }
... }
... }]
>>> output = '''<minimax:tool_call>
... <invoke name="get_weather">
... <parameter name="location">San Francisco</parameter>
... <parameter name="unit">celsius</parameter>
... </invoke>
... </minimax:tool_call>'''
>>> result = parse_tool_calls(output, tools)
>>> print(result)
[{'name': 'get_weather', 'arguments': {'location': 'San Francisco', 'unit': 'celsius'}}]
"""
# Quick check if tool call marker is present
if "<minimax:tool_call>" not in model_output:
return []
tool_calls = []
try:
# Match all <minimax:tool_call> blocks
tool_call_regex = re.compile(r"<minimax:tool_call>(.*?)</minimax:tool_call>", re.DOTALL)
invoke_regex = re.compile(r"<invoke name=(.*?)</invoke>", re.DOTALL)
parameter_regex = re.compile(r"<parameter name=(.*?)</parameter>", re.DOTALL)
# Iterate through all tool_call blocks
for tool_call_match in tool_call_regex.findall(model_output):
# Iterate through all invokes in this block
for invoke_match in invoke_regex.findall(tool_call_match):
# Extract function name
name_match = re.search(r'^([^>]+)', invoke_match)
if not name_match:
continue
function_name = extract_name(name_match.group(1))
# Get parameter configuration
param_config = {}
if tools:
for tool in tools:
tool_name = tool.get("name") or tool.get("function", {}).get("name")
if tool_name == function_name:
params = tool.get("parameters") or tool.get("function", {}).get("parameters")
if isinstance(params, dict) and "properties" in params:
param_config = params["properties"]
break
# Extract parameters
param_dict = {}
for match in parameter_regex.findall(invoke_match):
param_match = re.search(r'^([^>]+)>(.*)', match, re.DOTALL)
if param_match:
param_name = extract_name(param_match.group(1))
param_value = param_match.group(2).strip()
# Remove leading and trailing newlines
if param_value.startswith('\n'):
param_value = param_value[1:]
if param_value.endswith('\n'):
param_value = param_value[:-1]
# Get parameter type and convert
param_type = "string"
if param_name in param_config:
if isinstance(param_config[param_name], dict) and "type" in param_config[param_name]:
param_type = param_config[param_name]["type"]
param_dict[param_name] = convert_param_value(param_value, param_type)
tool_calls.append({
"name": function_name,
"arguments": param_dict
})
except Exception as e:
print(f"Failed to parse tool calls: {e}")
return []
return tool_calls
```
**使用示例:**
```python
# Define tools
tools = [
{
"name": "get_weather",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"},
"unit": {"type": "string"}
},
"required": ["location", "unit"]
}
}
]
# Model output
model_output = """Let me help you query the weather.
<minimax:tool_call>
<invoke name="get_weather">
<parameter name="location">San Francisco</parameter>
<parameter name="unit">celsius</parameter>
</invoke>
</minimax:tool_call>"""
# Parse tool calls
tool_calls = parse_tool_calls(model_output, tools)
# Output results
for call in tool_calls:
print(f"Function called: {call['name']}")
print(f"Arguments: {call['arguments']}")
# Output: Function called: get_weather
# Arguments: {'location': 'San Francisco', 'unit': 'celsius'}
```
### 执行工具调用
完成解析后,您可以执行相应的工具并构造返回结果:
```python
def execute_function_call(function_name: str, arguments: dict):
"""Execute function call and return result"""
if function_name == "get_weather":
location = arguments.get("location", "Unknown location")
unit = arguments.get("unit", "celsius")
# Build function execution result
return {
"role": "tool",
"content": [
{
"name": function_name,
"type": "text",
"text": json.dumps({
"location": location,
"temperature": "25",
"unit": unit,
"weather": "Sunny"
}, ensure_ascii=False)
}
]
}
elif function_name == "search_web":
query_list = arguments.get("query_list", [])
query_tag = arguments.get("query_tag", [])
# Simulate search results
return {
"role": "tool",
"content": [
{
"name": function_name,
"type": "text",
"text": f"Search keywords: {query_list}, Category: {query_tag}\nSearch results: Relevant information found"
}
]
}
return None
```
### 将工具执行结果返回给模型
在成功解析工具调用后,您应该将工具执行结果添加到对话历史中,以便模型在后续交互中可以访问和利用这些信息。请参考 [chat_template.jinja](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/chat_template.jinja) 了解连接格式。
## 参考文献
- [MiniMax-M2 模型仓库](https://github.com/MiniMax-AI/MiniMax-M2)
- [vLLM 项目主页](https://github.com/vllm-project/vllm)
- [SGLang 项目主页](https://github.com/sgl-project/sglang)
- [OpenAI Python SDK](https://github.com/openai/openai-python)
## 获取支持
如果遇到任何问题:
- 通过邮箱 [model@minimax.io](mailto:model@minimax.io) 等官方渠道联系我们的技术支持团队
- 在我们的仓库提交 Issue
- 通过我们的 [官方企业微信交流群](https://github.com/MiniMax-AI/MiniMax-AI.github.io/blob/main/images/wechat-qrcode.jpeg) 反馈
我们会持续优化模型的使用体验,欢迎反馈! |