File size: 5,345 Bytes
3301395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b77379
 
3301395
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# SPDX-FileCopyrightText: 2024-2025 ModelCloud.ai
# SPDX-FileCopyrightText: 2024-2025 qubitium@modelcloud.ai
# SPDX-License-Identifier: Apache-2.0
# Contact: qubitium@modelcloud.ai, x.com/qubitium

"""Configuration for the MiniMax M2 architecture."""

from __future__ import annotations

from typing import List, Optional, Union

from transformers.configuration_utils import PretrainedConfig


class MiniMaxM2Config(PretrainedConfig):
    model_type = "minimax"

    def __init__(
        self,
        vocab_size: int = 200_064,
        hidden_size: int = 3_072,
        intermediate_size: int = 1_536,
        mlp_intermediate_size: int = 8_192,
        num_hidden_layers: int = 62,
        num_attention_heads: int = 48,
        num_key_value_heads: int = 8,
        head_dim: Optional[int] = 128,
        num_local_experts: int = 256,
        num_experts_per_tok: int = 8,
        attn_type_list: Optional[List[int]] = None,
        attention_dropout: float = 0.0,
        hidden_act: str = "silu",
        rms_norm_eps: float = 1e-6,
        max_position_embeddings: int = 196_608,
        rope_theta: float = 5_000_000.0,
        rotary_dim: int = 64,
        rope_scaling: Optional[dict] = None,
        use_qk_norm: bool = True,
        qk_norm_type: str = "per_layer",
        use_routing_bias: bool = True,
        scoring_func: str = "sigmoid",
        router_aux_loss_coef: float = 0.001,
        router_jitter_noise: float = 0.0,
        output_router_logits: bool = False,
        use_grouped_topk: bool = True,
        num_expert_group: Optional[int] = None,
        topk_group: Optional[int] = None,
        routed_scaling_factor: float = 1.0,
        layernorm_full_attention_beta: float = 1.0,
        layernorm_linear_attention_beta: float = 1.0,
        layernorm_mlp_beta: float = 1.0,
        shared_intermediate_size: int = 0,
        shared_moe_mode: str = "sigmoid",
        use_mtp: bool = True,
        num_mtp_modules: int = 3,
        mtp_transformer_layers: int = 1,
        attn_window_size: Optional[Union[int, List[int]]] = None,
        swa_rope_theta: float = -1.0,
        sliding_window: Optional[int] = None,
        initializer_range: float = 0.02,
        tie_word_embeddings: bool = False,
        max_model_len: Optional[int] = None,
        bos_token_id: Optional[int] = None,
        eos_token_id: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        use_cache: bool = True,
        **kwargs,
    ) -> None:
        quantization_config = kwargs.pop("quantization_config", None)
        transformers_version = kwargs.pop("transformers_version", None)

        super().__init__(
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            pad_token_id=pad_token_id,
            **kwargs,
        )

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.mlp_intermediate_size = mlp_intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.head_dim = head_dim or hidden_size // num_attention_heads
        self.num_local_experts = num_local_experts
        self.num_experts_per_tok = num_experts_per_tok
        self.attn_type_list = attn_type_list or [1] * num_hidden_layers
        self.attention_dropout = attention_dropout
        self.hidden_act = hidden_act
        self.rms_norm_eps = rms_norm_eps
        self.max_position_embeddings = max_position_embeddings
        self.rope_theta = rope_theta
        self.rotary_dim = rotary_dim
        self.rope_scaling = rope_scaling
        self.use_qk_norm = use_qk_norm
        self.qk_norm_type = qk_norm_type
        self.use_routing_bias = use_routing_bias
        self.scoring_func = scoring_func
        self.router_aux_loss_coef = router_aux_loss_coef
        self.router_jitter_noise = router_jitter_noise
        self.output_router_logits = output_router_logits
        self.use_grouped_topk = use_grouped_topk
        self.num_expert_group = num_expert_group
        self.topk_group = topk_group
        self.routed_scaling_factor = routed_scaling_factor
        self.layernorm_full_attention_beta = layernorm_full_attention_beta
        self.layernorm_linear_attention_beta = layernorm_linear_attention_beta
        self.layernorm_mlp_beta = layernorm_mlp_beta
        self.shared_intermediate_size = shared_intermediate_size
        self.shared_moe_mode = shared_moe_mode
        self.use_mtp = use_mtp
        self.num_mtp_modules = num_mtp_modules
        self.mtp_transformer_layers = mtp_transformer_layers
        self.attn_window_size = attn_window_size
        self.swa_rope_theta = swa_rope_theta
        self.sliding_window = sliding_window
        self.initializer_range = initializer_range
        self.max_model_len = max_model_len
        self.use_cache = use_cache

        # Convenient accessor used by rotary embedding helper
        self.partial_rotary_factor = float(self.rotary_dim) / float(self.head_dim)
        if quantization_config is not None:
            self.quantization_config = quantization_config
        self.transformers_version = transformers_version


__all__ = ["MiniMaxM2Config"]