File size: 16,519 Bytes
f1b3fcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# MiniMax-M2 Tool Calling Guide

[English Version](./tool_calling_guide.md) | [Chinese Version](./tool_calling_guide_cn.md)

## Introduction

The MiniMax-M2 model supports tool calling capabilities, enabling the model to identify when external tools need to be called and output tool call parameters in a structured format. This document provides detailed instructions on how to use the tool calling features of MiniMax-M2.

## Basic Example

The following Python script implements a weather query tool call example based on the OpenAI SDK:

```python
from openai import OpenAI
import json

client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")

def get_weather(location: str, unit: str):
    return f"Getting the weather for {location} in {unit}..."

tool_functions = {"get_weather": get_weather}

tools = [{
    "type": "function",
    "function": {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
                "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
            },
            "required": ["location", "unit"]
        }
    }
}]

response = client.chat.completions.create(
    model=client.models.list().data[0].id,
    messages=[{"role": "user", "content": "What's the weather like in San Francisco? use celsius."}],
    tools=tools,
    tool_choice="auto"
)

print(response)

tool_call = response.choices[0].message.tool_calls[0].function
print(f"Function called: {tool_call.name}")
print(f"Arguments: {tool_call.arguments}")
print(f"Result: {get_weather(**json.loads(tool_call.arguments))}")
```

**Output Example:**
```
Function called: get_weather
Arguments: {"location": "San Francisco, CA", "unit": "celsius"}
Result: Getting the weather for San Francisco, CA in celsius...
```

## Manually Parsing Model Output

**We strongly recommend using vLLM or SGLang for parsing tool calls.** If you cannot use the built-in parser of inference engines (e.g., vLLM and SGLang) that support MiniMax-M2, or need to use other inference frameworks (such as transformers, TGI, etc.), you can manually parse the model's raw output using the following method. This approach requires you to parse the XML tag format of the model output yourself.

### Example Using Transformers

Here is a complete example using the transformers library:

```python
from transformers import AutoTokenizer

def get_default_tools():
    return [
        {
          "name": "get_current_weather",
          "description": "Get the latest weather for a location",
          "parameters": {
              "type": "object", 
              "properties": {
                  "location": {
                      "type": "string", 
                      "description": "A certain city, such as Beijing, Shanghai"
                  }
              }, 
          }
          "required": ["location"],
          "type": "object"
        }
    ]

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "What's the weather like in Shanghai today?"
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt},
]

# Enable function calling tools
tools = get_default_tools()

# Apply chat template and include tool definitions
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    tools=tools
)

# Send request (using any inference service)
import requests
payload = {
    "model": "MiniMaxAI/MiniMax-M2",
    "prompt": text,
    "max_tokens": 4096
}
response = requests.post(
    "http://localhost:8000/v1/completions",
    headers={"Content-Type": "application/json"},
    json=payload,
    stream=False,
)

# Model output needs manual parsing
raw_output = response.json()["choices"][0]["text"]
print("Raw output:", raw_output)

# Use the parsing function below to process the output
tool_calls = parse_tool_calls(raw_output, tools)
```

## 🛠️ Tool Call Definition

### Tool Structure

Tool calls need to define the `tools` field in the request body. Each tool consists of the following parts:

```json
{
  "tools": [
    {
      "name": "search_web",
      "description": "Search function.",
      "parameters": {
        "properties": {
          "query_list": {
            "description": "Keywords for search, list should contain 1 element.",
            "items": { "type": "string" },
            "type": "array"
          },
          "query_tag": {
            "description": "Category of query",
            "items": { "type": "string" },
            "type": "array"
          }
        },
        "required": [ "query_list", "query_tag" ],
        "type": "object"
      }
    }
  ]
}
```

**Field Descriptions:**
- `name`: Function name
- `description`: Function description
- `parameters`: Function parameter definition
  - `properties`: Parameter property definition, where key is the parameter name and value contains detailed parameter description
  - `required`: List of required parameters
  - `type`: Parameter type (usually "object")

### Internal Processing Format

When processing within the MiniMax-M2 model, tool definitions are converted to a special format and concatenated to the input text. Here is a complete example:

```
]~!b[]~b]system
You are a helpful assistant.

# Tools
You may call one or more tools to assist with the user query.
Here are the tools available in JSONSchema format:

<tools>
<tool>{"name": "search_web", "description": "Search function.", "parameters": {"type": "object", "properties": {"query_list": {"type": "array", "items": {"type": "string"}, "description": "Keywords for search, list should contain 1 element."}, "query_tag": {"type": "array", "items": {"type": "string"}, "description": "Category of query"}}, "required": ["query_list", "query_tag"]}}</tool>
</tools>

When making tool calls, use XML format to invoke tools and pass parameters:

<minimax:tool_call>
<invoke name="tool-name-1">
<parameter name="param-key-1">param-value-1</parameter>
<parameter name="param-key-2">param-value-2</parameter>
...
</invoke>
[e~[
]~b]user
When were the latest announcements from OpenAI and Gemini?[e~[
]~b]ai
<think>
```

**Format Description:**

- `]~!b[]~b]system`: System message start marker
- `[e~[`: Message end marker
- `]~b]user`: User message start marker
- `]~b]ai`: Assistant message start marker
- `]~b]tool`: Tool result message start marker
- `<tools>...</tools>`: Tool definition area, each tool is wrapped with `<tool>` tag, content is JSON Schema
- `<minimax:tool_call>...</minimax:tool_call>`: Tool call area
- `<think>...</think>`: Thinking process marker during generation

### Model Output Format

MiniMax-M2 uses structured XML tag format:

```xml
<minimax:tool_call>
<invoke name="search_web">
<parameter name="query_tag">["technology", "events"]</parameter>
<parameter name="query_list">["\"OpenAI\" \"latest\" \"release\""]</parameter>
</invoke>
<invoke name="search_web">
<parameter name="query_tag">["technology", "events"]</parameter>
<parameter name="query_list">["\"Gemini\" \"latest\" \"release\""]</parameter>
</invoke>
</minimax:tool_call>
```

Each tool call uses the `<invoke name="function_name">` tag, and parameters use the `<parameter name="parameter_name">` tag wrapper.

## Manually Parsing Tool Call Results

### Parsing Tool Calls

MiniMax-M2 uses structured XML tags, which require a different parsing approach. The core function is as follows:

```python
import re
import json
from typing import Any, Optional, List, Dict


def extract_name(name_str: str) -> str:
    """Extract name from quoted string"""
    name_str = name_str.strip()
    if name_str.startswith('"') and name_str.endswith('"'):
        return name_str[1:-1]
    elif name_str.startswith("'") and name_str.endswith("'"):
        return name_str[1:-1]
    return name_str


def convert_param_value(value: str, param_type: str) -> Any:
    """Convert parameter value based on parameter type"""
    if value.lower() == "null":
        return None
        
    param_type = param_type.lower()
    
    if param_type in ["string", "str", "text"]:
        return value
    elif param_type in ["integer", "int"]:
        try:
            return int(value)
        except (ValueError, TypeError):
            return value
    elif param_type in ["number", "float"]:
        try:
            val = float(value)
            return val if val != int(val) else int(val)
        except (ValueError, TypeError):
            return value
    elif param_type in ["boolean", "bool"]:
        return value.lower() in ["true", "1"]
    elif param_type in ["object", "array"]:
        try:
            return json.loads(value)
        except json.JSONDecodeError:
            return value
    else:
        # Try JSON parsing, return string if failed
        try:
            return json.loads(value)
        except json.JSONDecodeError:
            return value


def parse_tool_calls(model_output: str, tools: Optional[List[Dict]] = None) -> List[Dict]:
    """
    Extract all tool calls from model output
    
    Args:
        model_output: Complete output text from the model
        tools: Tool definition list for getting parameter type information, format can be:
               - [{"name": "...", "parameters": {...}}]
               - [{"type": "function", "function": {"name": "...", "parameters": {...}}}]
    
    Returns:
        Parsed tool call list, each element contains name and arguments fields
    
    Example:
        >>> tools = [{
        ...     "name": "get_weather",
        ...     "parameters": {
        ...         "type": "object",
        ...         "properties": {
        ...             "location": {"type": "string"},
        ...             "unit": {"type": "string"}
        ...         }
        ...     }
        ... }]
        >>> output = '''<minimax:tool_call>
        ... <invoke name="get_weather">
        ... <parameter name="location">San Francisco</parameter>
        ... <parameter name="unit">celsius</parameter>
        ... </invoke>
        ... </minimax:tool_call>'''
        >>> result = parse_tool_calls(output, tools)
        >>> print(result)
        [{'name': 'get_weather', 'arguments': {'location': 'San Francisco', 'unit': 'celsius'}}]
    """
    # Quick check if tool call marker is present
    if "<minimax:tool_call>" not in model_output:
        return []
    
    tool_calls = []
    
    try:
        # Match all <minimax:tool_call> blocks
        tool_call_regex = re.compile(r"<minimax:tool_call>(.*?)</minimax:tool_call>", re.DOTALL)
        invoke_regex = re.compile(r"<invoke name=(.*?)</invoke>", re.DOTALL)
        parameter_regex = re.compile(r"<parameter name=(.*?)</parameter>", re.DOTALL)
        
        # Iterate through all tool_call blocks
        for tool_call_match in tool_call_regex.findall(model_output):
            # Iterate through all invokes in this block
            for invoke_match in invoke_regex.findall(tool_call_match):
                # Extract function name
                name_match = re.search(r'^([^>]+)', invoke_match)
                if not name_match:
                    continue
                
                function_name = extract_name(name_match.group(1))
                
                # Get parameter configuration
                param_config = {}
                if tools:
                    for tool in tools:
                        tool_name = tool.get("name") or tool.get("function", {}).get("name")
                        if tool_name == function_name:
                            params = tool.get("parameters") or tool.get("function", {}).get("parameters")
                            if isinstance(params, dict) and "properties" in params:
                                param_config = params["properties"]
                            break
                
                # Extract parameters
                param_dict = {}
                for match in parameter_regex.findall(invoke_match):
                    param_match = re.search(r'^([^>]+)>(.*)', match, re.DOTALL)
                    if param_match:
                        param_name = extract_name(param_match.group(1))
                        param_value = param_match.group(2).strip()
                        
                        # Remove leading and trailing newlines
                        if param_value.startswith('\n'):
                            param_value = param_value[1:]
                        if param_value.endswith('\n'):
                            param_value = param_value[:-1]
                        
                        # Get parameter type and convert
                        param_type = "string"
                        if param_name in param_config:
                            if isinstance(param_config[param_name], dict) and "type" in param_config[param_name]:
                                param_type = param_config[param_name]["type"]
                        
                        param_dict[param_name] = convert_param_value(param_value, param_type)
                
                tool_calls.append({
                    "name": function_name,
                    "arguments": param_dict
                })
    
    except Exception as e:
        print(f"Failed to parse tool calls: {e}")
        return []
    
    return tool_calls
```

**Usage Example:**

```python
# Define tools
tools = [
    {
        "name": "get_weather",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {"type": "string"},
                "unit": {"type": "string"}
            },
            "required": ["location", "unit"]
        }
    }
]

# Model output
model_output = """Let me help you query the weather.
<minimax:tool_call>
<invoke name="get_weather">
<parameter name="location">San Francisco</parameter>
<parameter name="unit">celsius</parameter>
</invoke>
</minimax:tool_call>"""

# Parse tool calls
tool_calls = parse_tool_calls(model_output, tools)

# Output results
for call in tool_calls:
    print(f"Function called: {call['name']}")
    print(f"Arguments: {call['arguments']}")
    # Output: Function called: get_weather
    #         Arguments: {'location': 'San Francisco', 'unit': 'celsius'}
```

### Executing Tool Calls

After parsing is complete, you can execute the corresponding tool and construct the return result:

```python
def execute_function_call(function_name: str, arguments: dict):
    """Execute function call and return result"""
    if function_name == "get_weather":
        location = arguments.get("location", "Unknown location")
        unit = arguments.get("unit", "celsius")
        # Build function execution result
        return {
            "role": "tool", 
            "content": [
              {
                "name": function_name,
                "type": "text",
                "text": json.dumps({
                    "location": location, 
                    "temperature": "25", 
                    "unit": unit, 
                    "weather": "Sunny"
                }, ensure_ascii=False)
              }
            ] 
          }
    elif function_name == "search_web":
        query_list = arguments.get("query_list", [])
        query_tag = arguments.get("query_tag", [])
        # Simulate search results
        return {
            "role": "tool",
            "content": [
              {
                "name": function_name,
                "type": "text",
                "text": f"Search keywords: {query_list}, Category: {query_tag}\nSearch results: Relevant information found"
              }
            ]
          }
    
    return None
```

### Returning Tool Execution Results to the Model

After successfully parsing tool calls, you should add the tool execution results to the conversation history so that the model can access and utilize this information in subsequent interactions. Refer to [chat_template.jinja](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/chat_template.jinja) for concatenation format.

## References

- [MiniMax-M2 Model Repository](https://github.com/MiniMax-AI/MiniMax-M2)
- [vLLM Project Homepage](https://github.com/vllm-project/vllm)
- [SGLang Project Homepage](https://github.com/sgl-project/sglang)
- [OpenAI Python SDK](https://github.com/openai/openai-python)