commit files to HF hub
Browse files- .gitattributes +1 -0
- config.json +41 -0
- pytorch_model.bin +3 -0
- ref_seg.py +292 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +20 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "MrPotato/ref-seg-ger_large_tokenized",
|
| 3 |
+
"alpha": 0.5,
|
| 4 |
+
"architectures": [
|
| 5 |
+
"XLMRobertaForReferenceSegmentation"
|
| 6 |
+
],
|
| 7 |
+
"attention_probs_dropout_prob": 0.1,
|
| 8 |
+
"bos_token_id": 0,
|
| 9 |
+
"classifier_dropout": null,
|
| 10 |
+
"custom_pipelines": {
|
| 11 |
+
"ref-seg": {
|
| 12 |
+
"impl": "ref_seg.RefSegPipeline",
|
| 13 |
+
"pt": [
|
| 14 |
+
"AutoModelForTokenClassification"
|
| 15 |
+
],
|
| 16 |
+
"tf": [
|
| 17 |
+
"TFAutoModelForTokenClassification"
|
| 18 |
+
]
|
| 19 |
+
}
|
| 20 |
+
},
|
| 21 |
+
"eos_token_id": 2,
|
| 22 |
+
"hidden_act": "gelu",
|
| 23 |
+
"hidden_dropout_prob": 0.1,
|
| 24 |
+
"hidden_size": 1024,
|
| 25 |
+
"initializer_range": 0.02,
|
| 26 |
+
"intermediate_size": 4096,
|
| 27 |
+
"layer_norm_eps": 1e-05,
|
| 28 |
+
"max_position_embeddings": 514,
|
| 29 |
+
"model_type": "xlm-roberta",
|
| 30 |
+
"num_attention_heads": 16,
|
| 31 |
+
"num_hidden_layers": 24,
|
| 32 |
+
"num_labels_first": 29,
|
| 33 |
+
"num_labels_second": 2,
|
| 34 |
+
"pad_token_id": 1,
|
| 35 |
+
"position_embedding_type": "absolute",
|
| 36 |
+
"torch_dtype": "float32",
|
| 37 |
+
"transformers_version": "4.25.1",
|
| 38 |
+
"type_vocab_size": 1,
|
| 39 |
+
"use_cache": true,
|
| 40 |
+
"vocab_size": 250002
|
| 41 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bc7dbcc9cd8cad6d81cba90b6b3e510410adfb3c9a8ab28fbca81708bd63688c
|
| 3 |
+
size 2235624885
|
ref_seg.py
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, XLMRobertaForTokenClassification, Pipeline, AutoModelForTokenClassification, AutoModel, XLMRobertaTokenizerFast
|
| 2 |
+
from tokenizers.pre_tokenizers import Whitespace
|
| 3 |
+
from transformers.pipelines import PIPELINE_REGISTRY
|
| 4 |
+
from itertools import chain
|
| 5 |
+
from colorama import Fore, Back
|
| 6 |
+
from colorama import Style
|
| 7 |
+
import numpy as np
|
| 8 |
+
from transformers.models.xlm_roberta import XLMRobertaPreTrainedModel, XLMRobertaModel
|
| 9 |
+
from transformers.models.roberta import RobertaConfig
|
| 10 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
| 11 |
+
from transformers import PretrainedConfig
|
| 12 |
+
import torch
|
| 13 |
+
from torch import nn
|
| 14 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 15 |
+
from typing import List, Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
class RefSegPipeline(Pipeline):
|
| 18 |
+
|
| 19 |
+
labels = [
|
| 20 |
+
'publisher', 'source', 'url', 'other', 'author', 'editor', 'lpage',
|
| 21 |
+
'volume', 'year', 'issue', 'title', 'fpage', 'edition'
|
| 22 |
+
]
|
| 23 |
+
iob_labels = list(chain.from_iterable([['B-' + x, 'I-' + x] for x in labels])) + ['O']
|
| 24 |
+
id2seg = {k: v for k, v in enumerate(iob_labels)}
|
| 25 |
+
id2ref = {k: v for k, v in enumerate(['B-ref', 'I-ref', ])}
|
| 26 |
+
|
| 27 |
+
def _sanitize_parameters(self, **kwargs):
|
| 28 |
+
if "id2seg" in kwargs:
|
| 29 |
+
self.id2seg = kwargs["id2seg"]
|
| 30 |
+
if "id2ref" in kwargs:
|
| 31 |
+
self.id2ref = kwargs["id2ref"]
|
| 32 |
+
return {}, {}, {}
|
| 33 |
+
|
| 34 |
+
def preprocess(self, sentence, offset_mapping=None):
|
| 35 |
+
model_inputs = self.tokenizer(
|
| 36 |
+
sentence,
|
| 37 |
+
return_offsets_mapping=True,
|
| 38 |
+
padding='max_length',
|
| 39 |
+
truncation=True,
|
| 40 |
+
max_length=512,
|
| 41 |
+
return_tensors="pt",
|
| 42 |
+
return_special_tokens_mask=True,
|
| 43 |
+
return_overflowing_tokens=True
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
if offset_mapping:
|
| 47 |
+
model_inputs["offset_mapping"] = offset_mapping
|
| 48 |
+
|
| 49 |
+
model_inputs["sentence"] = sentence
|
| 50 |
+
|
| 51 |
+
return model_inputs
|
| 52 |
+
|
| 53 |
+
def _forward(self, model_inputs):
|
| 54 |
+
special_tokens_mask = model_inputs.pop("special_tokens_mask")
|
| 55 |
+
offset_mapping = model_inputs.pop("offset_mapping", None)
|
| 56 |
+
sentence = model_inputs.pop("sentence")
|
| 57 |
+
overflow_mapping = model_inputs.pop("overflow_to_sample_mapping")
|
| 58 |
+
if self.framework == "tf":
|
| 59 |
+
logits = self.model(model_inputs.data)[0]
|
| 60 |
+
else:
|
| 61 |
+
logits = self.model(**model_inputs)[0]
|
| 62 |
+
|
| 63 |
+
return {
|
| 64 |
+
"logits": logits,
|
| 65 |
+
"special_tokens_mask": special_tokens_mask,
|
| 66 |
+
"offset_mapping": offset_mapping,
|
| 67 |
+
"overflow_mapping": overflow_mapping,
|
| 68 |
+
"sentence": sentence,
|
| 69 |
+
**model_inputs,
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
def postprocess(self, model_outputs):
|
| 73 |
+
# if ignore_labels is None:
|
| 74 |
+
ignore_labels = ["O"]
|
| 75 |
+
logits_seg = model_outputs["logits"][0].numpy()
|
| 76 |
+
logits_ref = model_outputs["logits"][1].numpy()
|
| 77 |
+
sentence = model_outputs["sentence"]
|
| 78 |
+
input_ids = model_outputs["input_ids"]
|
| 79 |
+
special_tokens_mask = model_outputs["special_tokens_mask"]
|
| 80 |
+
overflow_mapping = model_outputs["overflow_mapping"]
|
| 81 |
+
|
| 82 |
+
offset_mapping = model_outputs["offset_mapping"] if model_outputs["offset_mapping"] is not None else None
|
| 83 |
+
|
| 84 |
+
maxes_seg = np.max(logits_seg, axis=-1, keepdims=True)
|
| 85 |
+
shifted_exp_seg = np.exp(logits_seg - maxes_seg)
|
| 86 |
+
scores_seg = shifted_exp_seg / shifted_exp_seg.sum(axis=-1, keepdims=True)
|
| 87 |
+
|
| 88 |
+
maxes_ref = np.max(logits_ref, axis=-1, keepdims=True)
|
| 89 |
+
shifted_exp_ref = np.exp(logits_ref - maxes_ref)
|
| 90 |
+
scores_ref = shifted_exp_ref / shifted_exp_ref.sum(axis=-1, keepdims=True)
|
| 91 |
+
|
| 92 |
+
pre_entities = self.gather_pre_entities(
|
| 93 |
+
sentence, input_ids, scores_seg, scores_ref, offset_mapping, special_tokens_mask
|
| 94 |
+
)
|
| 95 |
+
grouped_entities = self.aggregate(pre_entities)
|
| 96 |
+
|
| 97 |
+
cleaned_groups = []
|
| 98 |
+
for group in grouped_entities:
|
| 99 |
+
entities = [
|
| 100 |
+
entity
|
| 101 |
+
for entity in group
|
| 102 |
+
if entity.get("entity_group", None) not in ignore_labels
|
| 103 |
+
]
|
| 104 |
+
cleaned_groups.append(entities)
|
| 105 |
+
return {
|
| 106 |
+
"number_of_references": len(cleaned_groups),
|
| 107 |
+
"references": cleaned_groups,
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
def gather_pre_entities(
|
| 111 |
+
self,
|
| 112 |
+
sentence: str,
|
| 113 |
+
input_ids: np.ndarray,
|
| 114 |
+
scores_seg: np.ndarray,
|
| 115 |
+
scores_ref: np.ndarray,
|
| 116 |
+
offset_mappings: Optional[List[Tuple[int, int]]],
|
| 117 |
+
special_tokens_masks: np.ndarray,
|
| 118 |
+
) -> List[dict]:
|
| 119 |
+
"""Fuse various numpy arrays into dicts with all the information needed for aggregation"""
|
| 120 |
+
pre_entities = []
|
| 121 |
+
for idx_list, (input_id, offset_mapping, special_tokens_mask, s_seg, s_ref) in enumerate(
|
| 122 |
+
zip(input_ids, offset_mappings, special_tokens_masks, scores_seg, scores_ref)):
|
| 123 |
+
for idx, iid in enumerate(input_id):
|
| 124 |
+
|
| 125 |
+
if special_tokens_mask[idx]:
|
| 126 |
+
continue
|
| 127 |
+
|
| 128 |
+
word = self.tokenizer.convert_ids_to_tokens(int(input_id[idx]))
|
| 129 |
+
if offset_mapping is not None:
|
| 130 |
+
start_ind, end_ind = offset_mapping[idx]
|
| 131 |
+
if not isinstance(start_ind, int):
|
| 132 |
+
if self.framework == "pt":
|
| 133 |
+
start_ind = start_ind.item()
|
| 134 |
+
end_ind = end_ind.item()
|
| 135 |
+
word_ref = sentence[start_ind:end_ind]
|
| 136 |
+
if getattr(self.tokenizer._tokenizer.model, "continuing_subword_prefix", None):
|
| 137 |
+
is_subword = len(word) != len(word_ref)
|
| 138 |
+
else:
|
| 139 |
+
is_subword = len(word) == len(word_ref)
|
| 140 |
+
|
| 141 |
+
if int(input_id[idx]) == self.tokenizer.unk_token_id:
|
| 142 |
+
word = word_ref
|
| 143 |
+
is_subword = False
|
| 144 |
+
else:
|
| 145 |
+
start_ind = None
|
| 146 |
+
end_ind = None
|
| 147 |
+
is_subword = False
|
| 148 |
+
|
| 149 |
+
pre_entity = {
|
| 150 |
+
"word": word,
|
| 151 |
+
"scores_seg": s_seg[idx],
|
| 152 |
+
"scores_ref": s_ref[idx],
|
| 153 |
+
"start": start_ind,
|
| 154 |
+
"end": end_ind,
|
| 155 |
+
"index": idx,
|
| 156 |
+
"is_subword": is_subword,
|
| 157 |
+
}
|
| 158 |
+
pre_entities.append(pre_entity)
|
| 159 |
+
return pre_entities
|
| 160 |
+
|
| 161 |
+
def aggregate(self, pre_entities: List[dict]) -> List[dict]:
|
| 162 |
+
entities = self.aggregate_words(pre_entities)
|
| 163 |
+
|
| 164 |
+
return self.group_entities(entities)
|
| 165 |
+
|
| 166 |
+
def aggregate_word(self, entities: List[dict]) -> dict:
|
| 167 |
+
word = self.tokenizer.convert_tokens_to_string([entity["word"] for entity in entities])
|
| 168 |
+
scores_seg = entities[0]["scores_seg"]
|
| 169 |
+
idx_seg = scores_seg.argmax()
|
| 170 |
+
score_seg = scores_seg[idx_seg]
|
| 171 |
+
entity_seg = self.id2seg[idx_seg]
|
| 172 |
+
|
| 173 |
+
scores_ref = np.stack([entity["scores_ref"] for entity in entities])
|
| 174 |
+
indices_ref = scores_ref.argmax(axis=1)
|
| 175 |
+
idx_ref = 1 if all(indices_ref) else 0
|
| 176 |
+
# score_ref = 1
|
| 177 |
+
entity_ref = self.id2ref[idx_ref]
|
| 178 |
+
|
| 179 |
+
new_entity = {
|
| 180 |
+
"entity_seg": entity_seg,
|
| 181 |
+
"score_seg": score_seg,
|
| 182 |
+
"entity_ref": entity_ref,
|
| 183 |
+
# "score_ref": score_ref,
|
| 184 |
+
"word": word,
|
| 185 |
+
"start": entities[0]["start"],
|
| 186 |
+
"end": entities[-1]["end"],
|
| 187 |
+
}
|
| 188 |
+
return new_entity
|
| 189 |
+
|
| 190 |
+
def aggregate_words(self, entities: List[dict]) -> List[dict]:
|
| 191 |
+
"""
|
| 192 |
+
Override tokens from a given word that disagree to force agreement on word boundaries.
|
| 193 |
+
Example: micro|soft| com|pany| B-ENT I-NAME I-ENT I-ENT will be rewritten with first strategy as microsoft|
|
| 194 |
+
company| B-ENT I-ENT
|
| 195 |
+
"""
|
| 196 |
+
word_entities = []
|
| 197 |
+
word_group = None
|
| 198 |
+
for entity in entities:
|
| 199 |
+
if word_group is None:
|
| 200 |
+
word_group = [entity]
|
| 201 |
+
elif entity["is_subword"]:
|
| 202 |
+
word_group.append(entity)
|
| 203 |
+
else:
|
| 204 |
+
word_entities.append(self.aggregate_word(word_group))
|
| 205 |
+
word_group = [entity]
|
| 206 |
+
word_entities.append(self.aggregate_word(word_group))
|
| 207 |
+
return word_entities
|
| 208 |
+
|
| 209 |
+
def group_entities(self, entities: List[dict]) -> List[dict]:
|
| 210 |
+
"""
|
| 211 |
+
Find and group together the adjacent tokens with the same entity predicted.
|
| 212 |
+
Args:
|
| 213 |
+
entities (`dict`): The entities predicted by the pipeline.
|
| 214 |
+
"""
|
| 215 |
+
entity_chunk = []
|
| 216 |
+
entity_chunk_disagg = []
|
| 217 |
+
|
| 218 |
+
for entity in entities:
|
| 219 |
+
if not entity_chunk_disagg:
|
| 220 |
+
entity_chunk_disagg.append(entity)
|
| 221 |
+
continue
|
| 222 |
+
|
| 223 |
+
bi_ref, tag_ref = self.get_tag(entity["entity_ref"])
|
| 224 |
+
last_bi_ref, last_tag_ref = self.get_tag(entity_chunk_disagg[-1]["entity_ref"])
|
| 225 |
+
|
| 226 |
+
if tag_ref == last_tag_ref and bi_ref != "B":
|
| 227 |
+
entity_chunk_disagg.append(entity)
|
| 228 |
+
else:
|
| 229 |
+
entity_chunk.append(entity_chunk_disagg)
|
| 230 |
+
entity_chunk_disagg = [entity]
|
| 231 |
+
|
| 232 |
+
if entity_chunk_disagg:
|
| 233 |
+
entity_chunk.append(entity_chunk_disagg)
|
| 234 |
+
|
| 235 |
+
entity_chunks_all = []
|
| 236 |
+
|
| 237 |
+
for chunk in entity_chunk:
|
| 238 |
+
|
| 239 |
+
entity_groups = []
|
| 240 |
+
entity_group_disagg = []
|
| 241 |
+
|
| 242 |
+
for entity in chunk:
|
| 243 |
+
if not entity_group_disagg:
|
| 244 |
+
entity_group_disagg.append(entity)
|
| 245 |
+
continue
|
| 246 |
+
|
| 247 |
+
bi_seg, tag_seg = self.get_tag(entity["entity_seg"])
|
| 248 |
+
last_bi_seg, last_tag_seg = self.get_tag(entity_group_disagg[-1]["entity_seg"])
|
| 249 |
+
|
| 250 |
+
if tag_seg == last_tag_seg and bi_seg != "B":
|
| 251 |
+
entity_group_disagg.append(entity)
|
| 252 |
+
else:
|
| 253 |
+
entity_groups.append(self.group_sub_entities(entity_group_disagg))
|
| 254 |
+
entity_group_disagg = [entity]
|
| 255 |
+
|
| 256 |
+
if entity_group_disagg:
|
| 257 |
+
entity_groups.append(self.group_sub_entities(entity_group_disagg))
|
| 258 |
+
|
| 259 |
+
entity_chunks_all.append(entity_groups)
|
| 260 |
+
|
| 261 |
+
return entity_chunks_all
|
| 262 |
+
|
| 263 |
+
def group_sub_entities(self, entities: List[dict]) -> dict:
|
| 264 |
+
"""
|
| 265 |
+
Group together the adjacent tokens with the same entity predicted.
|
| 266 |
+
Args:
|
| 267 |
+
entities (`dict`): The entities predicted by the pipeline.
|
| 268 |
+
"""
|
| 269 |
+
entity = entities[0]["entity_seg"].split("-")[-1]
|
| 270 |
+
scores = np.nanmean([entity["score_seg"] for entity in entities])
|
| 271 |
+
tokens = [entity["word"] for entity in entities]
|
| 272 |
+
|
| 273 |
+
entity_group = {
|
| 274 |
+
"entity_group": entity,
|
| 275 |
+
"score": np.mean(scores),
|
| 276 |
+
"word": " ".join(tokens),
|
| 277 |
+
"start": entities[0]["start"],
|
| 278 |
+
"end": entities[-1]["end"],
|
| 279 |
+
}
|
| 280 |
+
return entity_group
|
| 281 |
+
|
| 282 |
+
def get_tag(self, entity_name: str) -> Tuple[str, str]:
|
| 283 |
+
if entity_name.startswith("B-"):
|
| 284 |
+
bi = "B"
|
| 285 |
+
tag = entity_name[2:]
|
| 286 |
+
elif entity_name.startswith("I-"):
|
| 287 |
+
bi = "I"
|
| 288 |
+
tag = entity_name[2:]
|
| 289 |
+
else:
|
| 290 |
+
bi = "I"
|
| 291 |
+
tag = entity_name
|
| 292 |
+
return bi, tag
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62c24cdc13d4c9952d63718d6c9fa4c287974249e16b7ade6d5a85e7bbb75626
|
| 3 |
+
size 17082660
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"__type": "AddedToken",
|
| 7 |
+
"content": "<mask>",
|
| 8 |
+
"lstrip": true,
|
| 9 |
+
"normalized": true,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false
|
| 12 |
+
},
|
| 13 |
+
"model_max_length": 512,
|
| 14 |
+
"name_or_path": "xlm-roberta-large",
|
| 15 |
+
"pad_token": "<pad>",
|
| 16 |
+
"sep_token": "</s>",
|
| 17 |
+
"special_tokens_map_file": null,
|
| 18 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 19 |
+
"unk_token": "<unk>"
|
| 20 |
+
}
|