Delete code (test1,2,3).ipynb
Browse files- code (test1,2,3).ipynb +0 -548
code (test1,2,3).ipynb
DELETED
|
@@ -1,548 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 1,
|
| 6 |
-
"id": "6c9745be",
|
| 7 |
-
"metadata": {},
|
| 8 |
-
"outputs": [
|
| 9 |
-
{
|
| 10 |
-
"name": "stderr",
|
| 11 |
-
"output_type": "stream",
|
| 12 |
-
"text": [
|
| 13 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/urllib3/__init__.py:35: NotOpenSSLWarning: urllib3 v2 only supports OpenSSL 1.1.1+, currently the 'ssl' module is compiled with 'LibreSSL 2.8.3'. See: https://github.com/urllib3/urllib3/issues/3020\n",
|
| 14 |
-
" warnings.warn(\n"
|
| 15 |
-
]
|
| 16 |
-
},
|
| 17 |
-
{
|
| 18 |
-
"name": "stdout",
|
| 19 |
-
"output_type": "stream",
|
| 20 |
-
"text": [
|
| 21 |
-
"\n",
|
| 22 |
-
"LSTM training...\n",
|
| 23 |
-
"LSTM Epoch 1: Train loss 0.9225 | Validation loss 0.9003\n",
|
| 24 |
-
"LSTM Epoch 5: Train loss 0.9064 | Validation loss 0.8971\n",
|
| 25 |
-
"LSTM Epoch 10: Train loss 0.9024 | Validation loss 0.8979\n",
|
| 26 |
-
"LSTM Epoch 15: Train loss 0.9013 | Validation loss 0.8975\n",
|
| 27 |
-
"LSTM Epoch 20: Train loss 0.9458 | Validation loss 0.9297\n",
|
| 28 |
-
"LSTM Epoch 25: Train loss 0.9019 | Validation loss 0.9019\n",
|
| 29 |
-
"LSTM Epoch 30: Train loss 0.9034 | Validation loss 0.9004\n",
|
| 30 |
-
"LSTM Epoch 35: Train loss 0.9002 | Validation loss 0.9023\n",
|
| 31 |
-
"LSTM Epoch 40: Train loss 0.8989 | Validation loss 0.9054\n",
|
| 32 |
-
"LSTM Epoch 45: Train loss 0.8987 | Validation loss 0.9030\n",
|
| 33 |
-
"LSTM Epoch 50: Train loss 0.8978 | Validation loss 0.9007\n"
|
| 34 |
-
]
|
| 35 |
-
},
|
| 36 |
-
{
|
| 37 |
-
"name": "stderr",
|
| 38 |
-
"output_type": "stream",
|
| 39 |
-
"text": [
|
| 40 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 41 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 42 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 43 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 44 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 45 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 46 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 47 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 48 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 49 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 50 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 51 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 52 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 53 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 54 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 55 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 56 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 57 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
| 58 |
-
]
|
| 59 |
-
},
|
| 60 |
-
{
|
| 61 |
-
"name": "stdout",
|
| 62 |
-
"output_type": "stream",
|
| 63 |
-
"text": [
|
| 64 |
-
"\n",
|
| 65 |
-
"LSTM on test1 Classification report:\n",
|
| 66 |
-
" precision recall f1-score support\n",
|
| 67 |
-
"\n",
|
| 68 |
-
" positive 0.0000 0.0000 0.0000 165\n",
|
| 69 |
-
" neutral 0.6585 1.0000 0.7941 430\n",
|
| 70 |
-
" negative 0.0000 0.0000 0.0000 58\n",
|
| 71 |
-
"\n",
|
| 72 |
-
" accuracy 0.6585 653\n",
|
| 73 |
-
" macro avg 0.2195 0.3333 0.2647 653\n",
|
| 74 |
-
"weighted avg 0.4336 0.6585 0.5229 653\n",
|
| 75 |
-
"\n",
|
| 76 |
-
"LSTM on test1 Confusion matrix:\n",
|
| 77 |
-
" [[ 0 165 0]\n",
|
| 78 |
-
" [ 0 430 0]\n",
|
| 79 |
-
" [ 0 58 0]]\n"
|
| 80 |
-
]
|
| 81 |
-
},
|
| 82 |
-
{
|
| 83 |
-
"name": "stderr",
|
| 84 |
-
"output_type": "stream",
|
| 85 |
-
"text": [
|
| 86 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 87 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 88 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 89 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 90 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 91 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 92 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 93 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 94 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 95 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 96 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 97 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 98 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 99 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 100 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 101 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 102 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 103 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
| 104 |
-
]
|
| 105 |
-
},
|
| 106 |
-
{
|
| 107 |
-
"name": "stdout",
|
| 108 |
-
"output_type": "stream",
|
| 109 |
-
"text": [
|
| 110 |
-
"\n",
|
| 111 |
-
"LSTM on test2 Classification report:\n",
|
| 112 |
-
" precision recall f1-score support\n",
|
| 113 |
-
"\n",
|
| 114 |
-
" positive 0.0000 0.0000 0.0000 216\n",
|
| 115 |
-
" neutral 0.5816 1.0000 0.7355 431\n",
|
| 116 |
-
" negative 0.0000 0.0000 0.0000 94\n",
|
| 117 |
-
"\n",
|
| 118 |
-
" accuracy 0.5816 741\n",
|
| 119 |
-
" macro avg 0.1939 0.3333 0.2452 741\n",
|
| 120 |
-
"weighted avg 0.3383 0.5816 0.4278 741\n",
|
| 121 |
-
"\n",
|
| 122 |
-
"LSTM on test2 Confusion matrix:\n",
|
| 123 |
-
" [[ 0 216 0]\n",
|
| 124 |
-
" [ 0 431 0]\n",
|
| 125 |
-
" [ 0 94 0]]\n"
|
| 126 |
-
]
|
| 127 |
-
},
|
| 128 |
-
{
|
| 129 |
-
"name": "stderr",
|
| 130 |
-
"output_type": "stream",
|
| 131 |
-
"text": [
|
| 132 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 133 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 134 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 135 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 136 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 137 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 138 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 139 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 140 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 141 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 142 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 143 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 144 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 145 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 146 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 147 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
|
| 148 |
-
"/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 149 |
-
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
| 150 |
-
]
|
| 151 |
-
},
|
| 152 |
-
{
|
| 153 |
-
"name": "stdout",
|
| 154 |
-
"output_type": "stream",
|
| 155 |
-
"text": [
|
| 156 |
-
"\n",
|
| 157 |
-
"LSTM on test3 Classification report:\n",
|
| 158 |
-
" precision recall f1-score support\n",
|
| 159 |
-
"\n",
|
| 160 |
-
" positive 0.0000 0.0000 0.0000 267\n",
|
| 161 |
-
" neutral 0.3317 1.0000 0.4981 263\n",
|
| 162 |
-
" negative 0.0000 0.0000 0.0000 263\n",
|
| 163 |
-
"\n",
|
| 164 |
-
" accuracy 0.3317 793\n",
|
| 165 |
-
" macro avg 0.1106 0.3333 0.1660 793\n",
|
| 166 |
-
"weighted avg 0.1100 0.3317 0.1652 793\n",
|
| 167 |
-
"\n",
|
| 168 |
-
"LSTM on test3 Confusion matrix:\n",
|
| 169 |
-
" [[ 0 267 0]\n",
|
| 170 |
-
" [ 0 263 0]\n",
|
| 171 |
-
" [ 0 263 0]]\n",
|
| 172 |
-
"\n",
|
| 173 |
-
"GRU training...\n",
|
| 174 |
-
"GRU Epoch 1: Train loss 0.9163 | Validation loss 0.8981\n",
|
| 175 |
-
"GRU Epoch 5: Train loss 0.9048 | Validation loss 0.8972\n",
|
| 176 |
-
"GRU Epoch 10: Train loss 0.8214 | Validation loss 0.8023\n",
|
| 177 |
-
"GRU Epoch 15: Train loss 0.7494 | Validation loss 0.7687\n",
|
| 178 |
-
"GRU Epoch 20: Train loss 0.6789 | Validation loss 0.7580\n",
|
| 179 |
-
"GRU Epoch 25: Train loss 0.5857 | Validation loss 0.8096\n",
|
| 180 |
-
"GRU Epoch 30: Train loss 0.4784 | Validation loss 0.9778\n",
|
| 181 |
-
"GRU Epoch 35: Train loss 0.3589 | Validation loss 1.1809\n",
|
| 182 |
-
"GRU Epoch 40: Train loss 0.2612 | Validation loss 1.3460\n",
|
| 183 |
-
"GRU Epoch 45: Train loss 0.1947 | Validation loss 1.4596\n",
|
| 184 |
-
"GRU Epoch 50: Train loss 0.1336 | Validation loss 1.7536\n",
|
| 185 |
-
"\n",
|
| 186 |
-
"GRU on test1 Classification report:\n",
|
| 187 |
-
" precision recall f1-score support\n",
|
| 188 |
-
"\n",
|
| 189 |
-
" positive 0.4322 0.5212 0.4725 165\n",
|
| 190 |
-
" neutral 0.7457 0.7023 0.7234 430\n",
|
| 191 |
-
" negative 0.1633 0.1379 0.1495 58\n",
|
| 192 |
-
"\n",
|
| 193 |
-
" accuracy 0.6064 653\n",
|
| 194 |
-
" macro avg 0.4470 0.4538 0.4485 653\n",
|
| 195 |
-
"weighted avg 0.6147 0.6064 0.6090 653\n",
|
| 196 |
-
"\n",
|
| 197 |
-
"GRU on test1 Confusion matrix:\n",
|
| 198 |
-
" [[ 86 69 10]\n",
|
| 199 |
-
" [ 97 302 31]\n",
|
| 200 |
-
" [ 16 34 8]]\n",
|
| 201 |
-
"\n",
|
| 202 |
-
"GRU on test2 Classification report:\n",
|
| 203 |
-
" precision recall f1-score support\n",
|
| 204 |
-
"\n",
|
| 205 |
-
" positive 0.8682 0.8843 0.8761 216\n",
|
| 206 |
-
" neutral 0.9211 0.9211 0.9211 431\n",
|
| 207 |
-
" negative 0.7778 0.7447 0.7609 94\n",
|
| 208 |
-
"\n",
|
| 209 |
-
" accuracy 0.8880 741\n",
|
| 210 |
-
" macro avg 0.8557 0.8500 0.8527 741\n",
|
| 211 |
-
"weighted avg 0.8875 0.8880 0.8877 741\n",
|
| 212 |
-
"\n",
|
| 213 |
-
"GRU on test2 Confusion matrix:\n",
|
| 214 |
-
" [[191 19 6]\n",
|
| 215 |
-
" [ 20 397 14]\n",
|
| 216 |
-
" [ 9 15 70]]\n",
|
| 217 |
-
"\n",
|
| 218 |
-
"GRU on test3 Classification report:\n",
|
| 219 |
-
" precision recall f1-score support\n",
|
| 220 |
-
"\n",
|
| 221 |
-
" positive 0.7510 0.7004 0.7248 267\n",
|
| 222 |
-
" neutral 0.5524 0.9011 0.6850 263\n",
|
| 223 |
-
" negative 0.7652 0.3346 0.4656 263\n",
|
| 224 |
-
"\n",
|
| 225 |
-
" accuracy 0.6456 793\n",
|
| 226 |
-
" macro avg 0.6896 0.6454 0.6251 793\n",
|
| 227 |
-
"weighted avg 0.6899 0.6456 0.6256 793\n",
|
| 228 |
-
"\n",
|
| 229 |
-
"GRU on test3 Confusion matrix:\n",
|
| 230 |
-
" [[187 58 22]\n",
|
| 231 |
-
" [ 21 237 5]\n",
|
| 232 |
-
" [ 41 134 88]]\n",
|
| 233 |
-
"\n",
|
| 234 |
-
"CNN training...\n",
|
| 235 |
-
"CNN Epoch 1: Train loss 0.9112 | Validation loss 0.8838\n",
|
| 236 |
-
"CNN Epoch 5: Train loss 0.8149 | Validation loss 0.8114\n",
|
| 237 |
-
"CNN Epoch 10: Train loss 0.7071 | Validation loss 0.7645\n",
|
| 238 |
-
"CNN Epoch 15: Train loss 0.6159 | Validation loss 0.7597\n",
|
| 239 |
-
"CNN Epoch 20: Train loss 0.5508 | Validation loss 0.7568\n",
|
| 240 |
-
"CNN Epoch 25: Train loss 0.4648 | Validation loss 0.7638\n",
|
| 241 |
-
"CNN Epoch 30: Train loss 0.4148 | Validation loss 0.7818\n",
|
| 242 |
-
"CNN Epoch 35: Train loss 0.3572 | Validation loss 0.8047\n",
|
| 243 |
-
"CNN Epoch 40: Train loss 0.3099 | Validation loss 0.8082\n",
|
| 244 |
-
"CNN Epoch 45: Train loss 0.2741 | Validation loss 0.8595\n",
|
| 245 |
-
"CNN Epoch 50: Train loss 0.2376 | Validation loss 0.9191\n",
|
| 246 |
-
"\n",
|
| 247 |
-
"CNN on test1 Classification report:\n",
|
| 248 |
-
" precision recall f1-score support\n",
|
| 249 |
-
"\n",
|
| 250 |
-
" positive 0.4656 0.3697 0.4122 165\n",
|
| 251 |
-
" neutral 0.7224 0.8535 0.7825 430\n",
|
| 252 |
-
" negative 0.6429 0.1552 0.2500 58\n",
|
| 253 |
-
"\n",
|
| 254 |
-
" accuracy 0.6692 653\n",
|
| 255 |
-
" macro avg 0.6103 0.4595 0.4816 653\n",
|
| 256 |
-
"weighted avg 0.6505 0.6692 0.6416 653\n",
|
| 257 |
-
"\n",
|
| 258 |
-
"CNN on test1 Confusion matrix:\n",
|
| 259 |
-
" [[ 61 103 1]\n",
|
| 260 |
-
" [ 59 367 4]\n",
|
| 261 |
-
" [ 11 38 9]]\n",
|
| 262 |
-
"\n",
|
| 263 |
-
"CNN on test2 Classification report:\n",
|
| 264 |
-
" precision recall f1-score support\n",
|
| 265 |
-
"\n",
|
| 266 |
-
" positive 0.9000 0.8333 0.8654 216\n",
|
| 267 |
-
" neutral 0.8936 0.9745 0.9323 431\n",
|
| 268 |
-
" negative 0.9296 0.7021 0.8000 94\n",
|
| 269 |
-
"\n",
|
| 270 |
-
" accuracy 0.8988 741\n",
|
| 271 |
-
" macro avg 0.9077 0.8366 0.8659 741\n",
|
| 272 |
-
"weighted avg 0.9000 0.8988 0.8960 741\n",
|
| 273 |
-
"\n",
|
| 274 |
-
"CNN on test2 Confusion matrix:\n",
|
| 275 |
-
" [[180 33 3]\n",
|
| 276 |
-
" [ 9 420 2]\n",
|
| 277 |
-
" [ 11 17 66]]\n",
|
| 278 |
-
"\n",
|
| 279 |
-
"CNN on test3 Classification report:\n",
|
| 280 |
-
" precision recall f1-score support\n",
|
| 281 |
-
"\n",
|
| 282 |
-
" positive 0.8352 0.5693 0.6771 267\n",
|
| 283 |
-
" neutral 0.4674 0.9810 0.6331 263\n",
|
| 284 |
-
" negative 0.8983 0.2015 0.3292 263\n",
|
| 285 |
-
"\n",
|
| 286 |
-
" accuracy 0.5839 793\n",
|
| 287 |
-
" macro avg 0.7336 0.5839 0.5465 793\n",
|
| 288 |
-
"weighted avg 0.7341 0.5839 0.5471 793\n",
|
| 289 |
-
"\n",
|
| 290 |
-
"CNN on test3 Confusion matrix:\n",
|
| 291 |
-
" [[152 109 6]\n",
|
| 292 |
-
" [ 5 258 0]\n",
|
| 293 |
-
" [ 25 185 53]]\n"
|
| 294 |
-
]
|
| 295 |
-
}
|
| 296 |
-
],
|
| 297 |
-
"source": [
|
| 298 |
-
"# !pip install gensim scikit-learn pandas numpy torch tqdm\n",
|
| 299 |
-
"\n",
|
| 300 |
-
"import pandas as pd\n",
|
| 301 |
-
"import numpy as np\n",
|
| 302 |
-
"import torch\n",
|
| 303 |
-
"import torch.nn as nn\n",
|
| 304 |
-
"from torch.utils.data import Dataset, DataLoader\n",
|
| 305 |
-
"from sklearn.metrics import classification_report, confusion_matrix\n",
|
| 306 |
-
"from sklearn.model_selection import train_test_split\n",
|
| 307 |
-
"from collections import Counter\n",
|
| 308 |
-
"import gensim\n",
|
| 309 |
-
"\n",
|
| 310 |
-
"# --- UČITAVANJE I PODJELA PODATAKA ---\n",
|
| 311 |
-
"full_df = pd.read_csv('TRAIN.csv')\n",
|
| 312 |
-
"\n",
|
| 313 |
-
"# Učitaj sve test skupove\n",
|
| 314 |
-
"test1_df = pd.read_csv('test-1.csv')\n",
|
| 315 |
-
"test2_df = pd.read_csv('test-2.csv')\n",
|
| 316 |
-
"test3_df = pd.read_csv('test-3.csv')\n",
|
| 317 |
-
"\n",
|
| 318 |
-
"def get_text_column(df):\n",
|
| 319 |
-
" for col in df.columns:\n",
|
| 320 |
-
" if col.lower() in ['sentence', 'text']:\n",
|
| 321 |
-
" return col\n",
|
| 322 |
-
" raise ValueError(\"Nema stupca 'Sentence' ili 'Text'!\")\n",
|
| 323 |
-
"\n",
|
| 324 |
-
"text_col = get_text_column(full_df)\n",
|
| 325 |
-
"\n",
|
| 326 |
-
"# Stratified split: 95% train, 5% valid\n",
|
| 327 |
-
"train_df, valid_df = train_test_split(full_df, test_size=0.05, stratify=full_df['Label'], random_state=42)\n",
|
| 328 |
-
"\n",
|
| 329 |
-
"# --- TOKENIZACIJA I VOKABULAR ---\n",
|
| 330 |
-
"def tokenize(text):\n",
|
| 331 |
-
" return text.lower().split()\n",
|
| 332 |
-
"\n",
|
| 333 |
-
"counter = Counter()\n",
|
| 334 |
-
"for text in train_df[text_col]:\n",
|
| 335 |
-
" counter.update(tokenize(text))\n",
|
| 336 |
-
"vocab = {word: idx+2 for idx, (word, _) in enumerate(counter.most_common())}\n",
|
| 337 |
-
"vocab['<unk>'] = 0\n",
|
| 338 |
-
"vocab['<pad>'] = 1\n",
|
| 339 |
-
"\n",
|
| 340 |
-
"# --- EMBEDDING ---\n",
|
| 341 |
-
"from gensim.models.fasttext import load_facebook_model\n",
|
| 342 |
-
"\n",
|
| 343 |
-
"embedding_path = 'cc.hr.300.bin'\n",
|
| 344 |
-
"ft_model = load_facebook_model(embedding_path)\n",
|
| 345 |
-
"embeddings = ft_model.wv \n",
|
| 346 |
-
"\n",
|
| 347 |
-
"embedding_dim = embeddings.vector_size\n",
|
| 348 |
-
"embedding_matrix = np.zeros((len(vocab), embedding_dim))\n",
|
| 349 |
-
"for word, idx in vocab.items():\n",
|
| 350 |
-
" if word in embeddings:\n",
|
| 351 |
-
" embedding_matrix[idx] = embeddings[word]\n",
|
| 352 |
-
" else:\n",
|
| 353 |
-
" embedding_matrix[idx] = np.random.normal(scale=0.6, size=(embedding_dim, ))\n",
|
| 354 |
-
"\n",
|
| 355 |
-
"# --- DATASET ---\n",
|
| 356 |
-
"class TextDataset(Dataset):\n",
|
| 357 |
-
" def __init__(self, df, text_col, vocab, max_len=50):\n",
|
| 358 |
-
" self.texts = df[text_col].tolist()\n",
|
| 359 |
-
" self.labels = df['Label'].tolist()\n",
|
| 360 |
-
" self.vocab = vocab\n",
|
| 361 |
-
" self.max_len = max_len\n",
|
| 362 |
-
" def __len__(self):\n",
|
| 363 |
-
" return len(self.texts)\n",
|
| 364 |
-
" def __getitem__(self, idx):\n",
|
| 365 |
-
" tokens = tokenize(self.texts[idx])\n",
|
| 366 |
-
" ids = [self.vocab.get(token, self.vocab['<unk>']) for token in tokens][:self.max_len]\n",
|
| 367 |
-
" ids += [self.vocab['<pad>']] * (self.max_len - len(ids))\n",
|
| 368 |
-
" return torch.tensor(ids), torch.tensor(self.labels[idx])\n",
|
| 369 |
-
"\n",
|
| 370 |
-
"max_len = 50\n",
|
| 371 |
-
"batch_size = 32\n",
|
| 372 |
-
"train_ds = TextDataset(train_df, text_col, vocab, max_len)\n",
|
| 373 |
-
"valid_ds = TextDataset(valid_df, text_col, vocab, max_len)\n",
|
| 374 |
-
"\n",
|
| 375 |
-
"test1_text_col = get_text_column(test1_df)\n",
|
| 376 |
-
"test2_text_col = get_text_column(test2_df)\n",
|
| 377 |
-
"test3_text_col = get_text_column(test3_df)\n",
|
| 378 |
-
"\n",
|
| 379 |
-
"test1_ds = TextDataset(test1_df, test1_text_col, vocab, max_len)\n",
|
| 380 |
-
"test2_ds = TextDataset(test2_df, test2_text_col, vocab, max_len)\n",
|
| 381 |
-
"test3_ds = TextDataset(test3_df, test3_text_col, vocab, max_len)\n",
|
| 382 |
-
"\n",
|
| 383 |
-
"train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)\n",
|
| 384 |
-
"valid_dl = DataLoader(valid_ds, batch_size=batch_size)\n",
|
| 385 |
-
"test1_dl = DataLoader(test1_ds, batch_size=batch_size)\n",
|
| 386 |
-
"test2_dl = DataLoader(test2_ds, batch_size=batch_size)\n",
|
| 387 |
-
"test3_dl = DataLoader(test3_ds, batch_size=batch_size)\n",
|
| 388 |
-
"\n",
|
| 389 |
-
"# --- MODELI ---\n",
|
| 390 |
-
"class LSTMClassifier(nn.Module):\n",
|
| 391 |
-
" def __init__(self, embedding_matrix, hidden_dim=256, num_classes=3, dropout=0.8):\n",
|
| 392 |
-
" super().__init__()\n",
|
| 393 |
-
" num_embeddings, embedding_dim = embedding_matrix.shape\n",
|
| 394 |
-
" self.embedding = nn.Embedding(num_embeddings, embedding_dim)\n",
|
| 395 |
-
" self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n",
|
| 396 |
-
" self.embedding.weight.requires_grad = False\n",
|
| 397 |
-
" self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)\n",
|
| 398 |
-
" self.dropout = nn.Dropout(dropout)\n",
|
| 399 |
-
" self.fc = nn.Linear(hidden_dim, num_classes)\n",
|
| 400 |
-
" def forward(self, x):\n",
|
| 401 |
-
" x = self.embedding(x)\n",
|
| 402 |
-
" _, (hidden, _) = self.lstm(x)\n",
|
| 403 |
-
" out = self.dropout(hidden[-1])\n",
|
| 404 |
-
" return self.fc(out)\n",
|
| 405 |
-
"\n",
|
| 406 |
-
"class GRUClassifier(nn.Module):\n",
|
| 407 |
-
" def __init__(self, embedding_matrix, hidden_dim=256, num_classes=3, dropout=0.8):\n",
|
| 408 |
-
" super().__init__()\n",
|
| 409 |
-
" num_embeddings, embedding_dim = embedding_matrix.shape\n",
|
| 410 |
-
" self.embedding = nn.Embedding(num_embeddings, embedding_dim)\n",
|
| 411 |
-
" self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n",
|
| 412 |
-
" self.embedding.weight.requires_grad = False\n",
|
| 413 |
-
" self.gru = nn.GRU(embedding_dim, hidden_dim, batch_first=True)\n",
|
| 414 |
-
" self.dropout = nn.Dropout(dropout)\n",
|
| 415 |
-
" self.fc = nn.Linear(hidden_dim, num_classes)\n",
|
| 416 |
-
" def forward(self, x):\n",
|
| 417 |
-
" x = self.embedding(x)\n",
|
| 418 |
-
" _, hidden = self.gru(x)\n",
|
| 419 |
-
" out = self.dropout(hidden[-1])\n",
|
| 420 |
-
" return self.fc(out)\n",
|
| 421 |
-
"\n",
|
| 422 |
-
"class CNNClassifier(nn.Module):\n",
|
| 423 |
-
" def __init__(self, embedding_matrix, num_filters=128, kernel_sizes=[3,4,5], num_classes=3, dropout=0.8):\n",
|
| 424 |
-
" super().__init__()\n",
|
| 425 |
-
" num_embeddings, embedding_dim = embedding_matrix.shape\n",
|
| 426 |
-
" self.embedding = nn.Embedding(num_embeddings, embedding_dim)\n",
|
| 427 |
-
" self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n",
|
| 428 |
-
" self.embedding.weight.requires_grad = False\n",
|
| 429 |
-
" self.convs = nn.ModuleList([\n",
|
| 430 |
-
" nn.Conv2d(1, num_filters, (k, embedding_dim)) for k in kernel_sizes\n",
|
| 431 |
-
" ])\n",
|
| 432 |
-
" self.dropout = nn.Dropout(dropout)\n",
|
| 433 |
-
" self.fc = nn.Linear(num_filters * len(kernel_sizes), num_classes)\n",
|
| 434 |
-
" def forward(self, x):\n",
|
| 435 |
-
" x = self.embedding(x)\n",
|
| 436 |
-
" x = x.unsqueeze(1)\n",
|
| 437 |
-
" x = [torch.relu(conv(x)).squeeze(3) for conv in self.convs]\n",
|
| 438 |
-
" x = [torch.max(pool, dim=2)[0] for pool in x]\n",
|
| 439 |
-
" x = torch.cat(x, dim=1)\n",
|
| 440 |
-
" x = self.dropout(x)\n",
|
| 441 |
-
" return self.fc(x)\n",
|
| 442 |
-
"\n",
|
| 443 |
-
"# --- TRENING I VALIDACIJA ---\n",
|
| 444 |
-
"def train_epoch(model, dataloader, optimizer, criterion, device):\n",
|
| 445 |
-
" model.train()\n",
|
| 446 |
-
" total_loss = 0\n",
|
| 447 |
-
" for x, y in dataloader:\n",
|
| 448 |
-
" x, y = x.to(device), y.to(device)\n",
|
| 449 |
-
" optimizer.zero_grad()\n",
|
| 450 |
-
" logits = model(x)\n",
|
| 451 |
-
" loss = criterion(logits, y)\n",
|
| 452 |
-
" loss.backward()\n",
|
| 453 |
-
" optimizer.step()\n",
|
| 454 |
-
" total_loss += loss.item()\n",
|
| 455 |
-
" return total_loss / len(dataloader)\n",
|
| 456 |
-
"\n",
|
| 457 |
-
"def eval_model(model, dataloader, device, criterion=None, return_loss=False):\n",
|
| 458 |
-
" model.eval()\n",
|
| 459 |
-
" preds, targets = [], []\n",
|
| 460 |
-
" total_loss = 0\n",
|
| 461 |
-
" with torch.no_grad():\n",
|
| 462 |
-
" for x, y in dataloader:\n",
|
| 463 |
-
" x, y = x.to(device), y.to(device)\n",
|
| 464 |
-
" logits = model(x)\n",
|
| 465 |
-
" if criterion and return_loss:\n",
|
| 466 |
-
" loss = criterion(logits, y)\n",
|
| 467 |
-
" total_loss += loss.item()\n",
|
| 468 |
-
" pred = logits.argmax(1).cpu().numpy()\n",
|
| 469 |
-
" preds.extend(pred)\n",
|
| 470 |
-
" targets.extend(y.cpu().numpy())\n",
|
| 471 |
-
" if return_loss and criterion:\n",
|
| 472 |
-
" return np.array(preds), np.array(targets), total_loss / len(dataloader)\n",
|
| 473 |
-
" return np.array(preds), np.array(targets)\n",
|
| 474 |
-
"\n",
|
| 475 |
-
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
| 476 |
-
"\n",
|
| 477 |
-
"def run_training(model_class, name, epochs=50, dropout=0.8, lr=5e-4):\n",
|
| 478 |
-
" print(f\"\\n{name} training...\")\n",
|
| 479 |
-
" model = model_class(embedding_matrix, dropout=dropout).to(device)\n",
|
| 480 |
-
" optimizer = torch.optim.Adam(model.parameters(), lr=lr)\n",
|
| 481 |
-
" criterion = nn.CrossEntropyLoss()\n",
|
| 482 |
-
" for epoch in range(epochs):\n",
|
| 483 |
-
" train_loss = train_epoch(model, train_dl, optimizer, criterion, device)\n",
|
| 484 |
-
" _, _, val_loss = eval_model(model, valid_dl, device, criterion, return_loss=True)\n",
|
| 485 |
-
" if (epoch+1) % 5 == 0 or epoch == 0:\n",
|
| 486 |
-
" print(f\"{name} Epoch {epoch+1}: Train loss {train_loss:.4f} | Validation loss {val_loss:.4f}\")\n",
|
| 487 |
-
" results = {}\n",
|
| 488 |
-
" for test_name, test_dl in zip(\n",
|
| 489 |
-
" ['test1', 'test2', 'test3'],\n",
|
| 490 |
-
" [test1_dl, test2_dl, test3_dl]\n",
|
| 491 |
-
" ):\n",
|
| 492 |
-
" preds, targets = eval_model(model, test_dl, device)\n",
|
| 493 |
-
" report = classification_report(targets, preds, digits=4, output_dict=True, target_names=[\"positive\", \"neutral\", \"negative\"])\n",
|
| 494 |
-
" matrix = confusion_matrix(targets, preds)\n",
|
| 495 |
-
" print(f\"\\n{name} on {test_name} Classification report:\\n\", classification_report(targets, preds, digits=4, target_names=[\"positive\", \"neutral\", \"negative\"]))\n",
|
| 496 |
-
" print(f\"{name} on {test_name} Confusion matrix:\\n\", matrix)\n",
|
| 497 |
-
" results[test_name] = {\n",
|
| 498 |
-
" 'precision': report['macro avg']['precision'],\n",
|
| 499 |
-
" 'recall': report['macro avg']['recall'],\n",
|
| 500 |
-
" 'f1': report['macro avg']['f1-score'],\n",
|
| 501 |
-
" 'accuracy': report['accuracy'],\n",
|
| 502 |
-
" 'confusion_matrix': matrix.tolist(),\n",
|
| 503 |
-
" 'full_report': classification_report(targets, preds, digits=4, target_names=[\"positive\", \"neutral\", \"negative\"])\n",
|
| 504 |
-
" }\n",
|
| 505 |
-
" return results\n",
|
| 506 |
-
"\n",
|
| 507 |
-
"# --- POKRETANJE ---\n",
|
| 508 |
-
"lstm_results = run_training(LSTMClassifier, \"LSTM\", epochs=50, dropout=0.8, lr=5e-4)\n",
|
| 509 |
-
"gru_results = run_training(GRUClassifier, \"GRU\", epochs=50, dropout=0.8, lr=5e-4)\n",
|
| 510 |
-
"cnn_results = run_training(CNNClassifier, \"CNN\", epochs=50, dropout=0.8, lr=5e-4)\n",
|
| 511 |
-
"\n",
|
| 512 |
-
"# --- SPREMANJE ---\n",
|
| 513 |
-
"with open('results.md', 'w', encoding='utf-8') as f:\n",
|
| 514 |
-
" for model_name, results in [('LSTM', lstm_results), ('GRU', gru_results), ('CNN', cnn_results)]:\n",
|
| 515 |
-
" f.write(f\"## {model_name}\\n\\n\")\n",
|
| 516 |
-
" for test_name, res in results.items():\n",
|
| 517 |
-
" f.write(f\"### {test_name}\\n\")\n",
|
| 518 |
-
" f.write(f\"- Precision: {res['precision']:.4f}\\n\")\n",
|
| 519 |
-
" f.write(f\"- Recall: {res['recall']:.4f}\\n\")\n",
|
| 520 |
-
" f.write(f\"- F1: {res['f1']:.4f}\\n\")\n",
|
| 521 |
-
" f.write(f\"- Accuracy: {res['accuracy']:.4f}\\n\")\n",
|
| 522 |
-
" f.write(f\"- Confusion matrix: {res['confusion_matrix']}\\n\\n\")\n",
|
| 523 |
-
" f.write(f\"Full classification report:\\n{res['full_report']}\\n\\n\")\n"
|
| 524 |
-
]
|
| 525 |
-
}
|
| 526 |
-
],
|
| 527 |
-
"metadata": {
|
| 528 |
-
"kernelspec": {
|
| 529 |
-
"display_name": "Python 3",
|
| 530 |
-
"language": "python",
|
| 531 |
-
"name": "python3"
|
| 532 |
-
},
|
| 533 |
-
"language_info": {
|
| 534 |
-
"codemirror_mode": {
|
| 535 |
-
"name": "ipython",
|
| 536 |
-
"version": 3
|
| 537 |
-
},
|
| 538 |
-
"file_extension": ".py",
|
| 539 |
-
"mimetype": "text/x-python",
|
| 540 |
-
"name": "python",
|
| 541 |
-
"nbconvert_exporter": "python",
|
| 542 |
-
"pygments_lexer": "ipython3",
|
| 543 |
-
"version": "3.9.6"
|
| 544 |
-
}
|
| 545 |
-
},
|
| 546 |
-
"nbformat": 4,
|
| 547 |
-
"nbformat_minor": 5
|
| 548 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|