File size: 31,604 Bytes
5a4d956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
---
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:640000
- loss:Distillation
base_model: google/bert_uncased_L-2_H-128_A-2
datasets:
- lightonai/ms-marco-en-bge-gemma-unnormalized
pipeline_tag: sentence-similarity
library_name: PyLate
license: apache-2.0
metrics:
- MaxSim_accuracy@1
- MaxSim_accuracy@3
- MaxSim_accuracy@5
- MaxSim_accuracy@10
- MaxSim_precision@1
- MaxSim_precision@3
- MaxSim_precision@5
- MaxSim_precision@10
- MaxSim_recall@1
- MaxSim_recall@3
- MaxSim_recall@5
- MaxSim_recall@10
- MaxSim_ndcg@10
- MaxSim_mrr@10
- MaxSim_map@100
model-index:
- name: ColBERT MUVERA Micro
  results:
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.26
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.36
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.4
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.58
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.26
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.12666666666666665
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.092
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.07800000000000001
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.11233333333333333
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.16066666666666665
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.184
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.3206666666666667
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.24408616743142095
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.33196825396825397
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.18128382432733356
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.68
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.86
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.92
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.94
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.68
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.6066666666666667
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.56
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.502
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.05322585293904511
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.16789568954347403
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.22988072374930787
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.35043982767195947
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.6003406576207015
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.7850000000000001
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.4687280514608297
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.72
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.78
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.84
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.9
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.72
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.2733333333333333
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.18
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.1
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.6866666666666668
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.7633333333333333
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.82
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.89
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.7955242043086649
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.7731666666666667
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.7676133768765347
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.3
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.54
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.58
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.66
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.3
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.2333333333333333
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.17200000000000004
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.10800000000000001
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.1770793650793651
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.3453492063492064
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.4009047619047619
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.4740952380952381
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.38709436118795515
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.4288015873015872
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.3297000135708943
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.94
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.94
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.98
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 1.0
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.94
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.5
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.31200000000000006
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.16599999999999995
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.47
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.75
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.78
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.83
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.8179728241272247
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.9512222222222222
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.7611883462001594
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.42
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.66
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.68
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.78
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.42
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.22
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.136
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.07800000000000001
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.42
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.66
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.68
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.78
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.5976880189340548
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.5393809523809523
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.5531015913611822
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.46
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.58
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.62
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.68
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.46
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.38
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.324
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.272
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.04276439372638386
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.07977851865112022
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.11439841040272719
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.1391695106171535
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.34241148621124995
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.5320000000000001
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.14897381866568696
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.42
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.68
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.74
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.84
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.42
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.23333333333333328
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.15200000000000002
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.086
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.4
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.66
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.72
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.79
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.6184738987111722
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.5763888888888888
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.5642312927870203
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.8
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.92
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.94
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.96
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.8
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.3399999999999999
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.22399999999999998
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.11999999999999998
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.7239999999999999
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.8473333333333334
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.9006666666666666
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.9373333333333334
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.863105292852843
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.8611904761904764
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.8312823701317842
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.42
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.58
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.64
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.7
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.42
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.2866666666666667
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.20799999999999996
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.138
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.085
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.17666666666666664
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.21366666666666667
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.2826666666666667
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.2889801789850345
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.5005
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.21685607444339383
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.2
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.44
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.5
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.64
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.2
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.14666666666666664
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.1
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.064
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.2
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.44
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.5
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.64
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.4151392430544827
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.3440555555555555
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.3521906424035335
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.58
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.76
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.82
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.86
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.58
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.2733333333333333
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.18
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.09399999999999999
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.555
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.735
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.8
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.84
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.7153590631749926
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.6798333333333333
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.6760413640032285
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.7551020408163265
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 1.0
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 1.0
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 1.0
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.7551020408163265
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.6734693877551019
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.6000000000000001
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.5285714285714286
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.050375728116040484
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.13379303377518686
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.19744749683082305
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.3328396127707909
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.5927407647152685
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.8639455782312924
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.4115661843314275
      name: Maxsim Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.5350078492935635
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.7000000000000001
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.743076923076923
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.8107692307692307
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.5350078492935635
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.33026687598116167
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.24923076923076928
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.1795824175824176
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.3058804107585258
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.45537049602453755
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.5031511327862271
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.5851700658324468
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.5599166277934665
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.6282656549799407
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.4817505346586929
      name: Maxsim Map@100
---

# ColBERT MUVERA Micro

This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the [msmarco-en-bge-gemma-unnormalized](https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma-unnormalized) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

This model is trained with un-normalized scores, making it compatible with [MUVERA fixed-dimensional encoding](https://arxiv.org/abs/2405.19504).

## Usage (txtai)

This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG).

_Note: txtai 9.0+ is required for late interaction model support_

```python
import txtai

embeddings = txtai.Embeddings(
  sparse="neuml/colbert-muvera-micro",
  content=True
)
embeddings.index(documents())

# Run a query
embeddings.search("query to run")
```

Late interaction models excel as reranker pipelines.

```python
from txtai.pipeline import Reranker, Similarity

similarity = Similarity(path="neuml/colbert-muvera-micro", lateencode=True)
ranker = Reranker(embeddings, similarity)
ranker("query to run")
```

## Usage (PyLate)

Alternatively, the model can be loaded with [PyLate](https://github.com/lightonai/pylate).

```python
from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path="neuml/colbert-muvera-micro",
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)
```

### Full Model Architecture

```
ColBERT(
  (0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Dense({'in_features': 128, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```

## Evaluation

### BEIR Subset

The following table shows a subset of BEIR scored with the [txtai benchmarks script](https://github.com/neuml/txtai/blob/master/examples/benchmarks.py). 

Scores reported are `ndcg@10` and grouped into the following three categories.

#### FULL multi-vector maxsim

| Model             | Parameters | ArguAna  | NFCorpus | SciFact | Average |
|:------------------|:-----------|:---------|:---------|:--------|:--------|
| [AnswerAI ColBERT Small v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) | 33M | 0.4440 | 0.3649 | 0.7423 | 0.5171 |
| [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.4595 | 0.3165 | 0.6456 | 0.4739 |
| [**ColBERT MUVERA Micro**](https://huggingface.co/neuml/colbert-muvera-micro) | **4M** | **0.3947** | **0.3235** | **0.6676** | **0.4619** |
| [ColBERT MUVERA Small](https://huggingface.co/neuml/colbert-muvera-small) | 33M | 0.4455 | 0.3502 | 0.7145 | 0.5034 |
| [GTE ModernColBERT v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) | 149M | 0.4946 | 0.3717 | 0.7529 | 0.5397 |

#### MUVERA encoding + maxsim re-ranking of the top 100 results per MUVERA paper

| Model             | Parameters | ArguAna  | NFCorpus | SciFact | Average |
|:------------------|:-----------|:---------|:---------|:--------|:--------|
| [AnswerAI ColBERT Small v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) | 33M | 0.0317 | 0.1135 | 0.0836 | 0.0763 |
| [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.4562 | 0.3025 | 0.6278 | 0.4622 |
| [**ColBERT MUVERA Micro**](https://huggingface.co/neuml/colbert-muvera-micro) | **4M** | **0.3849** | **0.3095** | **0.6464** | **0.4469** |
| [ColBERT MUVERA Small](https://huggingface.co/neuml/colbert-muvera-small) | 33M | 0.4451 | 0.3537 | 0.7148 | 0.5045 |
| [GTE ModernColBERT v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) | 149M | 0.0265 | 0.1052 | 0.0556 | 0.0624 | 

#### MUVERA encoding only

| Model             | Parameters | ArguAna  | NFCorpus | SciFact | Average |
|:------------------|:-----------|:---------|:---------|:--------|:--------|
| [AnswerAI ColBERT Small v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) | 33M | 0.0024 | 0.0201 | 0.0047 | 0.0091 |
| [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.3463 | 0.2356 | 0.5002 | 0.3607 |
| [**ColBERT MUVERA Micro**](https://huggingface.co/neuml/colbert-muvera-micro) | **4M** | **0.2795** | **0.2348** | **0.4875** | **0.3339** |
| [ColBERT MUVERA Small](https://huggingface.co/neuml/colbert-muvera-small) | 33M | 0.3850 | 0.2928 | 0.6357 | 0.4378 | 
| [GTE ModernColBERT v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) | 149M | 0.0003 | 0.0203 |0.0013 | 0.0073 | 

_Note: The scores reported don't match scores reported in the respective papers due to different default settings in the txtai benchmark scripts._

As noted earlier, models trained with min-max score normalization don't perform well with MUVERA encoding. See this [GitHub Issue](https://github.com/lightonai/pylate/issues/142) for more.

**In reviewing the scores, this model is surprisingly and unreasonably competitive with the original ColBERT v2 model at only 3% of the size!**

### Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with <code>pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator</code>

| Metric              | Value      |
|:--------------------|:-----------|
| MaxSim_accuracy@1   | 0.535      |
| MaxSim_accuracy@3   | 0.7        |
| MaxSim_accuracy@5   | 0.7431     |
| MaxSim_accuracy@10  | 0.8108     |
| MaxSim_precision@1  | 0.535      |
| MaxSim_precision@3  | 0.3303     |
| MaxSim_precision@5  | 0.2492     |
| MaxSim_precision@10 | 0.1796     |
| MaxSim_recall@1     | 0.3059     |
| MaxSim_recall@3     | 0.4554     |
| MaxSim_recall@5     | 0.5032     |
| MaxSim_recall@10    | 0.5852     |
| **MaxSim_ndcg@10**  | **0.5599** |
| MaxSim_mrr@10       | 0.6283     |
| MaxSim_map@100      | 0.4818     |

## Training Details

### Training Hyperparameters

#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `learning_rate`: 0.0003
- `num_train_epochs`: 1
- `warmup_ratio`: 0.05
- `bf16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0003
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 4.0.2
- PyLate: 1.3.0
- Transformers: 4.52.3
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}
```

#### PyLate
```bibtex
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
```