File size: 31,604 Bytes
			
			| 5a4d956 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 | ---
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:640000
- loss:Distillation
base_model: google/bert_uncased_L-2_H-128_A-2
datasets:
- lightonai/ms-marco-en-bge-gemma-unnormalized
pipeline_tag: sentence-similarity
library_name: PyLate
license: apache-2.0
metrics:
- MaxSim_accuracy@1
- MaxSim_accuracy@3
- MaxSim_accuracy@5
- MaxSim_accuracy@10
- MaxSim_precision@1
- MaxSim_precision@3
- MaxSim_precision@5
- MaxSim_precision@10
- MaxSim_recall@1
- MaxSim_recall@3
- MaxSim_recall@5
- MaxSim_recall@10
- MaxSim_ndcg@10
- MaxSim_mrr@10
- MaxSim_map@100
model-index:
- name: ColBERT MUVERA Micro
  results:
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.26
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.36
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.4
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.58
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.26
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.12666666666666665
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.092
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.07800000000000001
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.11233333333333333
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.16066666666666665
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.184
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.3206666666666667
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.24408616743142095
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.33196825396825397
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.18128382432733356
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.68
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.86
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.92
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.94
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.68
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.6066666666666667
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.56
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.502
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.05322585293904511
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.16789568954347403
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.22988072374930787
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.35043982767195947
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.6003406576207015
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.7850000000000001
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.4687280514608297
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.72
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.78
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.84
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.9
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.72
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.2733333333333333
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.18
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.1
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.6866666666666668
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.7633333333333333
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.82
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.89
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.7955242043086649
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.7731666666666667
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.7676133768765347
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.3
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.54
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.58
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.66
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.3
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.2333333333333333
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.17200000000000004
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.10800000000000001
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.1770793650793651
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.3453492063492064
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.4009047619047619
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.4740952380952381
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.38709436118795515
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.4288015873015872
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.3297000135708943
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.94
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.94
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.98
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 1.0
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.94
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.5
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.31200000000000006
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.16599999999999995
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.47
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.75
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.78
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.83
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.8179728241272247
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.9512222222222222
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.7611883462001594
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.42
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.66
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.68
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.78
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.42
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.22
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.136
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.07800000000000001
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.42
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.66
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.68
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.78
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.5976880189340548
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.5393809523809523
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.5531015913611822
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.46
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.58
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.62
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.68
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.46
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.38
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.324
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.272
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.04276439372638386
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.07977851865112022
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.11439841040272719
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.1391695106171535
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.34241148621124995
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.5320000000000001
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.14897381866568696
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.42
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.68
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.74
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.84
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.42
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.23333333333333328
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.15200000000000002
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.086
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.4
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.66
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.72
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.79
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.6184738987111722
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.5763888888888888
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.5642312927870203
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.8
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.92
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.94
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.96
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.8
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.3399999999999999
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.22399999999999998
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.11999999999999998
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.7239999999999999
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.8473333333333334
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.9006666666666666
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.9373333333333334
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.863105292852843
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.8611904761904764
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.8312823701317842
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.42
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.58
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.64
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.7
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.42
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.2866666666666667
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.20799999999999996
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.138
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.085
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.17666666666666664
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.21366666666666667
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.2826666666666667
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.2889801789850345
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.5005
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.21685607444339383
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.2
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.44
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.5
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.64
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.2
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.14666666666666664
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.1
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.064
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.2
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.44
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.5
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.64
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.4151392430544827
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.3440555555555555
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.3521906424035335
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.58
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.76
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.82
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.86
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.58
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.2733333333333333
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.18
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.09399999999999999
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.555
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.735
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.8
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.84
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.7153590631749926
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.6798333333333333
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.6760413640032285
      name: Maxsim Map@100
  - task:
      type: py-late-information-retrieval
      name: Py Late Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.7551020408163265
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 1.0
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 1.0
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 1.0
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.7551020408163265
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.6734693877551019
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.6000000000000001
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.5285714285714286
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.050375728116040484
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.13379303377518686
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.19744749683082305
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.3328396127707909
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.5927407647152685
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.8639455782312924
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.4115661843314275
      name: Maxsim Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: MaxSim_accuracy@1
      value: 0.5350078492935635
      name: Maxsim Accuracy@1
    - type: MaxSim_accuracy@3
      value: 0.7000000000000001
      name: Maxsim Accuracy@3
    - type: MaxSim_accuracy@5
      value: 0.743076923076923
      name: Maxsim Accuracy@5
    - type: MaxSim_accuracy@10
      value: 0.8107692307692307
      name: Maxsim Accuracy@10
    - type: MaxSim_precision@1
      value: 0.5350078492935635
      name: Maxsim Precision@1
    - type: MaxSim_precision@3
      value: 0.33026687598116167
      name: Maxsim Precision@3
    - type: MaxSim_precision@5
      value: 0.24923076923076928
      name: Maxsim Precision@5
    - type: MaxSim_precision@10
      value: 0.1795824175824176
      name: Maxsim Precision@10
    - type: MaxSim_recall@1
      value: 0.3058804107585258
      name: Maxsim Recall@1
    - type: MaxSim_recall@3
      value: 0.45537049602453755
      name: Maxsim Recall@3
    - type: MaxSim_recall@5
      value: 0.5031511327862271
      name: Maxsim Recall@5
    - type: MaxSim_recall@10
      value: 0.5851700658324468
      name: Maxsim Recall@10
    - type: MaxSim_ndcg@10
      value: 0.5599166277934665
      name: Maxsim Ndcg@10
    - type: MaxSim_mrr@10
      value: 0.6282656549799407
      name: Maxsim Mrr@10
    - type: MaxSim_map@100
      value: 0.4817505346586929
      name: Maxsim Map@100
---
# ColBERT MUVERA Micro
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the [msmarco-en-bge-gemma-unnormalized](https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma-unnormalized) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
This model is trained with un-normalized scores, making it compatible with [MUVERA fixed-dimensional encoding](https://arxiv.org/abs/2405.19504).
## Usage (txtai)
This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG).
_Note: txtai 9.0+ is required for late interaction model support_
```python
import txtai
embeddings = txtai.Embeddings(
  sparse="neuml/colbert-muvera-micro",
  content=True
)
embeddings.index(documents())
# Run a query
embeddings.search("query to run")
```
Late interaction models excel as reranker pipelines.
```python
from txtai.pipeline import Reranker, Similarity
similarity = Similarity(path="neuml/colbert-muvera-micro", lateencode=True)
ranker = Reranker(embeddings, similarity)
ranker("query to run")
```
## Usage (PyLate)
Alternatively, the model can be loaded with [PyLate](https://github.com/lightonai/pylate).
```python
from pylate import rank, models
queries = [
    "query A",
    "query B",
]
documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]
documents_ids = [
    [1, 2],
    [1, 3, 2],
]
model = models.ColBERT(
    model_name_or_path="neuml/colbert-muvera-micro",
)
queries_embeddings = model.encode(
    queries,
    is_query=True,
)
documents_embeddings = model.encode(
    documents,
    is_query=False,
)
reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)
```
### Full Model Architecture
```
ColBERT(
  (0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Dense({'in_features': 128, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```
## Evaluation
### BEIR Subset
The following table shows a subset of BEIR scored with the [txtai benchmarks script](https://github.com/neuml/txtai/blob/master/examples/benchmarks.py). 
Scores reported are `ndcg@10` and grouped into the following three categories.
#### FULL multi-vector maxsim
| Model             | Parameters | ArguAna  | NFCorpus | SciFact | Average |
|:------------------|:-----------|:---------|:---------|:--------|:--------|
| [AnswerAI ColBERT Small v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) | 33M | 0.4440 | 0.3649 | 0.7423 | 0.5171 |
| [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.4595 | 0.3165 | 0.6456 | 0.4739 |
| [**ColBERT MUVERA Micro**](https://huggingface.co/neuml/colbert-muvera-micro) | **4M** | **0.3947** | **0.3235** | **0.6676** | **0.4619** |
| [ColBERT MUVERA Small](https://huggingface.co/neuml/colbert-muvera-small) | 33M | 0.4455 | 0.3502 | 0.7145 | 0.5034 |
| [GTE ModernColBERT v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) | 149M | 0.4946 | 0.3717 | 0.7529 | 0.5397 |
#### MUVERA encoding + maxsim re-ranking of the top 100 results per MUVERA paper
| Model             | Parameters | ArguAna  | NFCorpus | SciFact | Average |
|:------------------|:-----------|:---------|:---------|:--------|:--------|
| [AnswerAI ColBERT Small v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) | 33M | 0.0317 | 0.1135 | 0.0836 | 0.0763 |
| [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.4562 | 0.3025 | 0.6278 | 0.4622 |
| [**ColBERT MUVERA Micro**](https://huggingface.co/neuml/colbert-muvera-micro) | **4M** | **0.3849** | **0.3095** | **0.6464** | **0.4469** |
| [ColBERT MUVERA Small](https://huggingface.co/neuml/colbert-muvera-small) | 33M | 0.4451 | 0.3537 | 0.7148 | 0.5045 |
| [GTE ModernColBERT v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) | 149M | 0.0265 | 0.1052 | 0.0556 | 0.0624 | 
#### MUVERA encoding only
| Model             | Parameters | ArguAna  | NFCorpus | SciFact | Average |
|:------------------|:-----------|:---------|:---------|:--------|:--------|
| [AnswerAI ColBERT Small v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) | 33M | 0.0024 | 0.0201 | 0.0047 | 0.0091 |
| [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.3463 | 0.2356 | 0.5002 | 0.3607 |
| [**ColBERT MUVERA Micro**](https://huggingface.co/neuml/colbert-muvera-micro) | **4M** | **0.2795** | **0.2348** | **0.4875** | **0.3339** |
| [ColBERT MUVERA Small](https://huggingface.co/neuml/colbert-muvera-small) | 33M | 0.3850 | 0.2928 | 0.6357 | 0.4378 | 
| [GTE ModernColBERT v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) | 149M | 0.0003 | 0.0203 |0.0013 | 0.0073 | 
_Note: The scores reported don't match scores reported in the respective papers due to different default settings in the txtai benchmark scripts._
As noted earlier, models trained with min-max score normalization don't perform well with MUVERA encoding. See this [GitHub Issue](https://github.com/lightonai/pylate/issues/142) for more.
**In reviewing the scores, this model is surprisingly and unreasonably competitive with the original ColBERT v2 model at only 3% of the size!**
### Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with <code>pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator</code>
| Metric              | Value      |
|:--------------------|:-----------|
| MaxSim_accuracy@1   | 0.535      |
| MaxSim_accuracy@3   | 0.7        |
| MaxSim_accuracy@5   | 0.7431     |
| MaxSim_accuracy@10  | 0.8108     |
| MaxSim_precision@1  | 0.535      |
| MaxSim_precision@3  | 0.3303     |
| MaxSim_precision@5  | 0.2492     |
| MaxSim_precision@10 | 0.1796     |
| MaxSim_recall@1     | 0.3059     |
| MaxSim_recall@3     | 0.4554     |
| MaxSim_recall@5     | 0.5032     |
| MaxSim_recall@10    | 0.5852     |
| **MaxSim_ndcg@10**  | **0.5599** |
| MaxSim_mrr@10       | 0.6283     |
| MaxSim_map@100      | 0.4818     |
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `learning_rate`: 0.0003
- `num_train_epochs`: 1
- `warmup_ratio`: 0.05
- `bf16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0003
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 4.0.2
- PyLate: 1.3.0
- Transformers: 4.52.3
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}
```
#### PyLate
```bibtex
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
```
 | 
