uyzhang commited on
Commit
e79665e
·
verified ·
1 Parent(s): ea0bb52

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<image>": 151669,
6
+ "<think>": 151667,
7
+ "<tool_call>": 151657,
8
+ "<tool_response>": 151665,
9
+ "<video>": 151670,
10
+ "<|box_end|>": 151649,
11
+ "<|box_start|>": 151648,
12
+ "<|endoftext|>": 151643,
13
+ "<|file_sep|>": 151664,
14
+ "<|fim_middle|>": 151660,
15
+ "<|fim_pad|>": 151662,
16
+ "<|fim_prefix|>": 151659,
17
+ "<|fim_suffix|>": 151661,
18
+ "<|im_end|>": 151645,
19
+ "<|im_start|>": 151644,
20
+ "<|image_pad|>": 151655,
21
+ "<|object_ref_end|>": 151647,
22
+ "<|object_ref_start|>": 151646,
23
+ "<|quad_end|>": 151651,
24
+ "<|quad_start|>": 151650,
25
+ "<|repo_name|>": 151663,
26
+ "<|video_pad|>": 151656,
27
+ "<|vision_end|>": 151653,
28
+ "<|vision_pad|>": 151654,
29
+ "<|vision_start|>": 151652
30
+ }
chat_template.jinja ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {% if messages | selectattr('role', 'equalto', 'system') | list | length == 0 %}<|im_start|>system
2
+ You are a helpful assistant.<|im_end|>
3
+ {% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '
4
+ '}}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>
5
+ ' }}{% endfor %}{# Render all video then #}{% for content in message['content'] | selectattr('type', 'equalto', 'video') %}{{ '<video>
6
+ ' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] }}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{% endif %}{{'<|im_end|>' + '
7
+ '}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
8
+ <think>' }}{% endif %}{%- if add_generation_prompt %}{%- if enable_thinking is defined and not enable_thinking %}{{- '
9
+
10
+ </think>
11
+
12
+ ' }}{%- else %}{{- '
13
+ ' }}{%- endif %}{%- endif %}
config.json ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoConfig": "configuration_bee.BeeConfig",
4
+ "AutoModel": "modeling_bee.BeeForConditionalGeneration",
5
+ "AutoModelForCausalLM": "modeling_bee.BeeForConditionalGeneration"
6
+ },
7
+ "architectures": [
8
+ "BeeForConditionalGeneration"
9
+ ],
10
+ "eos_token_id": 151645,
11
+ "image_grid_pinpoints": [
12
+ [
13
+ 384,
14
+ 384
15
+ ],
16
+ [
17
+ 384,
18
+ 768
19
+ ],
20
+ [
21
+ 384,
22
+ 1152
23
+ ],
24
+ [
25
+ 384,
26
+ 1536
27
+ ],
28
+ [
29
+ 384,
30
+ 1920
31
+ ],
32
+ [
33
+ 384,
34
+ 2304
35
+ ],
36
+ [
37
+ 768,
38
+ 384
39
+ ],
40
+ [
41
+ 768,
42
+ 768
43
+ ],
44
+ [
45
+ 768,
46
+ 1152
47
+ ],
48
+ [
49
+ 768,
50
+ 1536
51
+ ],
52
+ [
53
+ 768,
54
+ 1920
55
+ ],
56
+ [
57
+ 768,
58
+ 2304
59
+ ],
60
+ [
61
+ 1152,
62
+ 384
63
+ ],
64
+ [
65
+ 1152,
66
+ 768
67
+ ],
68
+ [
69
+ 1152,
70
+ 1152
71
+ ],
72
+ [
73
+ 1152,
74
+ 1536
75
+ ],
76
+ [
77
+ 1152,
78
+ 1920
79
+ ],
80
+ [
81
+ 1152,
82
+ 2304
83
+ ],
84
+ [
85
+ 1536,
86
+ 384
87
+ ],
88
+ [
89
+ 1536,
90
+ 768
91
+ ],
92
+ [
93
+ 1536,
94
+ 1152
95
+ ],
96
+ [
97
+ 1536,
98
+ 1536
99
+ ],
100
+ [
101
+ 1536,
102
+ 1920
103
+ ],
104
+ [
105
+ 1536,
106
+ 2304
107
+ ],
108
+ [
109
+ 1920,
110
+ 384
111
+ ],
112
+ [
113
+ 1920,
114
+ 768
115
+ ],
116
+ [
117
+ 1920,
118
+ 1152
119
+ ],
120
+ [
121
+ 1920,
122
+ 1536
123
+ ],
124
+ [
125
+ 1920,
126
+ 1920
127
+ ],
128
+ [
129
+ 1920,
130
+ 2304
131
+ ],
132
+ [
133
+ 2304,
134
+ 384
135
+ ],
136
+ [
137
+ 2304,
138
+ 768
139
+ ],
140
+ [
141
+ 2304,
142
+ 1152
143
+ ],
144
+ [
145
+ 2304,
146
+ 1536
147
+ ],
148
+ [
149
+ 2304,
150
+ 1920
151
+ ],
152
+ [
153
+ 2304,
154
+ 2304
155
+ ]
156
+ ],
157
+ "image_token_index": 151669,
158
+ "model_type": "Bee",
159
+ "multimodal_projector_bias": true,
160
+ "pad_token_id": 151643,
161
+ "projector_hidden_act": "gelu",
162
+ "text_config": {
163
+ "_name_or_path": "Qwen/Qwen3-8B",
164
+ "architectures": [
165
+ "Qwen3ForCausalLM"
166
+ ],
167
+ "attention_bias": false,
168
+ "attention_dropout": 0.0,
169
+ "bos_token_id": 151643,
170
+ "eos_token_id": 151645,
171
+ "head_dim": 128,
172
+ "hidden_act": "silu",
173
+ "hidden_size": 4096,
174
+ "initializer_range": 0.02,
175
+ "intermediate_size": 12288,
176
+ "max_position_embeddings": 40960,
177
+ "max_window_layers": 36,
178
+ "model_type": "qwen3",
179
+ "num_attention_heads": 32,
180
+ "num_hidden_layers": 36,
181
+ "num_key_value_heads": 8,
182
+ "rms_norm_eps": 1e-06,
183
+ "rope_scaling": null,
184
+ "rope_theta": 1000000,
185
+ "sliding_window": null,
186
+ "torch_dtype": "float32",
187
+ "use_cache": true,
188
+ "use_sliding_window": false,
189
+ "vocab_size": 152000
190
+ },
191
+ "tie_word_embeddings": false,
192
+ "torch_dtype": "float32",
193
+ "transformers_version": "4.55.0",
194
+ "use_image_newline_parameter": true,
195
+ "video_token_index": 151670,
196
+ "vision_aspect_ratio": "anyres_max_6",
197
+ "vision_config": {
198
+ "auto_map": {
199
+ "AutoConfig": "configuration_bee.BeeConfig"
200
+ },
201
+ "attention_dropout": 0.0,
202
+ "hidden_act": "gelu_pytorch_tanh",
203
+ "hidden_size": 1152,
204
+ "image_size": 384,
205
+ "intermediate_size": 4304,
206
+ "layer_norm_eps": 1e-06,
207
+ "model_type": "siglip_vision_model",
208
+ "num_attention_heads": 16,
209
+ "num_channels": 3,
210
+ "num_hidden_layers": 26,
211
+ "patch_size": 14,
212
+ "torch_dtype": "float32",
213
+ "vision_use_head": false
214
+ },
215
+ "vision_feature_layer": -1,
216
+ "vision_feature_select_strategy": "full"
217
+ }
configuration_bee.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from transformers.configuration_utils import PretrainedConfig
17
+ from transformers.utils import (
18
+ logging, )
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ class BeeConfig(PretrainedConfig):
24
+ model_type = "Bee"
25
+ attribute_map = {
26
+ "image_token_id": "image_token_index",
27
+ }
28
+
29
+ def __init__(
30
+ self,
31
+ vision_config=None,
32
+ text_config=None,
33
+ image_token_index=151646,
34
+ projector_hidden_act="gelu",
35
+ vision_feature_select_strategy="full",
36
+ vision_feature_layer=-1,
37
+ vision_aspect_ratio="anyres_max_6",
38
+ image_grid_pinpoints=None,
39
+ tie_word_embeddings=False,
40
+ multimodal_projector_bias=True,
41
+ max_position_embeddings=32768,
42
+ **kwargs,
43
+ ):
44
+
45
+ from transformers.models.auto import CONFIG_MAPPING
46
+ self.image_token_index = image_token_index
47
+ self.projector_hidden_act = projector_hidden_act
48
+ self.multimodal_projector_bias = multimodal_projector_bias
49
+
50
+ if vision_feature_select_strategy not in ["default", "full"]:
51
+ raise ValueError(
52
+ "vision_feature_select_strategy should be one of 'default', 'full'."
53
+ f"Got: {vision_feature_select_strategy}")
54
+
55
+ self.vision_feature_select_strategy = vision_feature_select_strategy
56
+ self.vision_feature_layer = vision_feature_layer
57
+ self.vision_aspect_ratio = vision_aspect_ratio
58
+
59
+ image_grid_pinpoints = (
60
+ image_grid_pinpoints if image_grid_pinpoints is not None else
61
+ [[384, 768], [768, 384], [768, 768], [1152, 384], [384, 1152]])
62
+ self.image_grid_pinpoints = image_grid_pinpoints
63
+
64
+ if isinstance(vision_config, dict):
65
+ vision_config["model_type"] = (vision_config["model_type"]
66
+ if "model_type" in vision_config
67
+ else "siglip_vision_model")
68
+ vision_config = CONFIG_MAPPING[vision_config["model_type"]](
69
+ **vision_config)
70
+ elif vision_config is None:
71
+ vision_config = CONFIG_MAPPING["siglip_vision_model"](
72
+ hidden_size=1152,
73
+ intermediate_size=4304,
74
+ patch_size=14,
75
+ image_size=384,
76
+ num_hidden_layers=26,
77
+ num_attention_heads=14,
78
+ vision_use_head=False,
79
+ )
80
+
81
+ self.vision_config = vision_config
82
+
83
+ if isinstance(text_config, dict):
84
+ text_config["model_type"] = text_config[
85
+ "model_type"] if "model_type" in text_config else "qwen2"
86
+ text_config = CONFIG_MAPPING[text_config["model_type"]](
87
+ **text_config)
88
+ elif text_config is None:
89
+ text_config = CONFIG_MAPPING["qwen2"]()
90
+
91
+ self.text_config = text_config
92
+
93
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
94
+
95
+
96
+ __all__ = ["BeeConfig"]
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "transformers_version": "4.55.0"
6
+ }
image_processing_bee.py ADDED
@@ -0,0 +1,541 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from collections.abc import Iterable
17
+ from typing import Optional, Union
18
+
19
+ import numpy as np
20
+
21
+ from transformers.image_processing_utils import (
22
+ BaseImageProcessor,
23
+ BatchFeature,
24
+ get_patch_output_size,
25
+ get_size_dict,
26
+ select_best_resolution,
27
+ )
28
+ from transformers.image_transforms import (
29
+ PaddingMode,
30
+ convert_to_rgb,
31
+ pad,
32
+ resize,
33
+ to_channel_dimension_format,
34
+ )
35
+ from transformers.image_utils import (
36
+ OPENAI_CLIP_MEAN,
37
+ OPENAI_CLIP_STD,
38
+ ChannelDimension,
39
+ ImageInput,
40
+ PILImageResampling,
41
+ get_image_size,
42
+ infer_channel_dimension_format,
43
+ is_scaled_image,
44
+ make_flat_list_of_images,
45
+ to_numpy_array,
46
+ valid_images,
47
+ validate_preprocess_arguments,
48
+ )
49
+ from transformers.utils import TensorType, is_vision_available, logging
50
+
51
+ logger = logging.get_logger(__name__)
52
+
53
+ if is_vision_available():
54
+ from PIL import Image
55
+
56
+
57
+ # Copied from transformers.models.llava_next.image_processing_llava_next.divide_to_patches
58
+ def divide_to_patches(image: np.array, patch_size: int,
59
+ input_data_format) -> list[np.array]:
60
+ """
61
+ Divides an image into patches of a specified size.
62
+
63
+ Args:
64
+ image (`np.array`):
65
+ The input image.
66
+ patch_size (`int`):
67
+ The size of each patch.
68
+ input_data_format (`ChannelDimension` or `str`):
69
+ The channel dimension format of the input image.
70
+
71
+ Returns:
72
+ list: A list of np.array representing the patches.
73
+ """
74
+ patches = []
75
+ height, width = get_image_size(image, channel_dim=input_data_format)
76
+ for i in range(0, height, patch_size):
77
+ for j in range(0, width, patch_size):
78
+ if input_data_format == ChannelDimension.LAST:
79
+ patch = image[i:i + patch_size, j:j + patch_size]
80
+ else:
81
+ patch = image[:, i:i + patch_size, j:j + patch_size]
82
+ patches.append(patch)
83
+
84
+ return patches
85
+
86
+
87
+ # Copied from transformers.models.llava_next.image_processing_llava_next.expand_to_square
88
+ def expand_to_square(image: np.array, background_color,
89
+ input_data_format) -> np.array:
90
+ """
91
+ Expands an image to a square by adding a background color.
92
+ """
93
+
94
+ height, width = get_image_size(image, channel_dim=input_data_format)
95
+ if width == height:
96
+ return image
97
+ elif width > height:
98
+ result = np.ones((width, width, image.shape[2]),
99
+ dtype=image.dtype) * background_color
100
+ result[(width - height) // 2:(width - height) // 2 + height, :] = image
101
+ return result
102
+ else:
103
+ result = np.ones((height, height, image.shape[2]),
104
+ dtype=image.dtype) * background_color
105
+ result[:, (height - width) // 2:(height - width) // 2 + width] = image
106
+ return result
107
+
108
+
109
+ class BeeImageProcessor(BaseImageProcessor):
110
+ model_input_names = ["pixel_values_videos"]
111
+
112
+ def __init__(
113
+ self,
114
+ do_resize: bool = True,
115
+ size: Optional[dict[str, int]] = None,
116
+ image_grid_pinpoints: Optional[list] = None,
117
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
118
+ do_rescale: bool = True,
119
+ rescale_factor: Union[int, float] = 1 / 255,
120
+ do_normalize: bool = True,
121
+ image_mean: Optional[Union[float, list[float]]] = None,
122
+ image_std: Optional[Union[float, list[float]]] = None,
123
+ do_pad: Optional[bool] = True,
124
+ do_convert_rgb: bool = True,
125
+ **kwargs,
126
+ ) -> None:
127
+ super().__init__(**kwargs)
128
+ size = size if size is not None else {"height": 384, "width": 384}
129
+ size = get_size_dict(size, default_to_square=False)
130
+ image_grid_pinpoints = (
131
+ image_grid_pinpoints if image_grid_pinpoints is not None else
132
+ [[384, 768], [768, 384], [768, 768], [1152, 384], [384, 1152]])
133
+ self.do_resize = do_resize
134
+ self.size = size
135
+ self.image_grid_pinpoints = image_grid_pinpoints
136
+ self.resample = resample
137
+ self.do_rescale = do_rescale
138
+ self.rescale_factor = rescale_factor
139
+ self.do_normalize = do_normalize
140
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
141
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
142
+ self.do_pad = do_pad
143
+ self.do_convert_rgb = do_convert_rgb
144
+
145
+ # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor.pad
146
+ def pad(
147
+ self,
148
+ image: np.ndarray,
149
+ padding: Union[int, tuple[int, int], Iterable[tuple[int, int]]],
150
+ mode: PaddingMode = PaddingMode.CONSTANT,
151
+ constant_values: Union[float, Iterable[float]] = 0.0,
152
+ data_format: Optional[Union[str, ChannelDimension]] = None,
153
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
154
+ ) -> np.ndarray:
155
+
156
+ # call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim
157
+ if isinstance(padding, int) or len(padding) != 4:
158
+ return pad(image, padding, mode, constant_values, data_format,
159
+ input_data_format)
160
+
161
+ if input_data_format is None:
162
+ input_data_format = infer_channel_dimension_format(image)
163
+ if mode == PaddingMode.CONSTANT:
164
+ image = np.pad(image,
165
+ padding,
166
+ mode="constant",
167
+ constant_values=constant_values)
168
+ elif mode == PaddingMode.REFLECT:
169
+ image = np.pad(image, padding, mode="reflect")
170
+ elif mode == PaddingMode.REPLICATE:
171
+ image = np.pad(image, padding, mode="edge")
172
+ elif mode == PaddingMode.SYMMETRIC:
173
+ image = np.pad(image, padding, mode="symmetric")
174
+ else:
175
+ raise ValueError(f"Invalid padding mode: {mode}")
176
+ image = (to_channel_dimension_format(image, data_format,
177
+ input_data_format)
178
+ if data_format is not None else image)
179
+ return image
180
+
181
+ # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._resize_for_patching
182
+ def _resize_for_patching(self, image: np.array, target_resolution: tuple,
183
+ resample,
184
+ input_data_format: ChannelDimension) -> np.array:
185
+
186
+ new_height, new_width = get_patch_output_size(image, target_resolution,
187
+ input_data_format)
188
+
189
+ # Resize the image
190
+ resized_image = resize(image, (new_height, new_width),
191
+ resample=resample,
192
+ input_data_format=input_data_format)
193
+
194
+ return resized_image
195
+
196
+ # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._get_padding_size
197
+ def _get_padding_size(self, original_resolution: tuple,
198
+ target_resolution: tuple):
199
+ original_height, original_width = original_resolution
200
+ target_height, target_width = target_resolution
201
+ paste_x, r_x = divmod(target_width - original_width, 2)
202
+ paste_y, r_y = divmod(target_height - original_height, 2)
203
+ return (paste_y, paste_y + r_y), (paste_x, paste_x + r_x)
204
+
205
+ # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._pad_for_patching
206
+ def _pad_for_patching(self, image: np.array, target_resolution: tuple,
207
+ input_data_format: ChannelDimension) -> np.array:
208
+ """
209
+ Pad an image to a target resolution while maintaining aspect ratio.
210
+ """
211
+ new_resolution = get_patch_output_size(image, target_resolution,
212
+ input_data_format)
213
+ padding = self._get_padding_size(new_resolution, target_resolution)
214
+
215
+ padded_image = self.pad(image, padding=padding)
216
+
217
+ return padded_image
218
+
219
+ # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor.get_image_patches
220
+ def get_image_patches(
221
+ self,
222
+ image: np.array,
223
+ grid_pinpoints,
224
+ size: tuple,
225
+ patch_size: int,
226
+ resample: PILImageResampling,
227
+ data_format: ChannelDimension,
228
+ input_data_format: ChannelDimension,
229
+ ) -> list[np.array]:
230
+
231
+ if not isinstance(grid_pinpoints, list):
232
+ raise TypeError(
233
+ "grid_pinpoints must be a list of possible resolutions.")
234
+
235
+ possible_resolutions = grid_pinpoints
236
+
237
+ image_size = get_image_size(image, channel_dim=input_data_format)
238
+ best_resolution = select_best_resolution(image_size,
239
+ possible_resolutions)
240
+ resized_image = self._resize_for_patching(
241
+ image,
242
+ best_resolution,
243
+ resample=resample,
244
+ input_data_format=input_data_format)
245
+ padded_image = self._pad_for_patching(
246
+ resized_image,
247
+ best_resolution,
248
+ input_data_format=input_data_format)
249
+
250
+ patches = divide_to_patches(padded_image,
251
+ patch_size=patch_size,
252
+ input_data_format=input_data_format)
253
+
254
+ # make sure that all patches are in the input data format
255
+ patches = [
256
+ to_channel_dimension_format(patch,
257
+ channel_dim=data_format,
258
+ input_channel_dim=input_data_format)
259
+ for patch in patches
260
+ ]
261
+
262
+ resized_original_image = resize(
263
+ image,
264
+ size=size,
265
+ resample=resample,
266
+ data_format=data_format,
267
+ input_data_format=input_data_format,
268
+ )
269
+
270
+ image_patches = [resized_original_image] + patches
271
+
272
+ return image_patches
273
+
274
+ # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._pad_for_batching
275
+ def _pad_for_batching(
276
+ self,
277
+ pixel_values: list[np.ndarray],
278
+ data_format: Optional[Union[str, ChannelDimension]] = None,
279
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
280
+ ):
281
+
282
+ max_patch = max(len(x) for x in pixel_values)
283
+ pixel_values = [
284
+ self.pad(
285
+ image,
286
+ padding=((0, max_patch - image.shape[0]), (0, 0), (0, 0), (0,
287
+ 0)),
288
+ data_format=data_format,
289
+ input_data_format=input_data_format,
290
+ ) for image in pixel_values
291
+ ]
292
+
293
+ return pixel_values
294
+
295
+ # Copied from transformers.models.llava.image_processing_llava.LlavaImageProcessor.pad_to_square
296
+ def pad_to_square(
297
+ self,
298
+ image: np.ndarray,
299
+ background_color: Union[int, tuple[int, int, int]] = 0,
300
+ data_format: Optional[Union[str, ChannelDimension]] = None,
301
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
302
+ ) -> np.array:
303
+
304
+ height, width = get_image_size(image, input_data_format)
305
+ num_channels = image.shape[
306
+ 0] if input_data_format == ChannelDimension.FIRST else image.shape[
307
+ -1]
308
+
309
+ if height == width:
310
+ image = (to_channel_dimension_format(image, data_format,
311
+ input_data_format)
312
+ if data_format is not None else image)
313
+ return image
314
+
315
+ max_dim = max(height, width)
316
+
317
+ # Ensure background_color is the correct shape
318
+ if isinstance(background_color, int):
319
+ background_color = [background_color]
320
+ elif len(background_color) != num_channels:
321
+ raise ValueError(
322
+ f"background_color must have no more than {num_channels} elements to match the number of channels"
323
+ )
324
+
325
+ if input_data_format == ChannelDimension.FIRST:
326
+ result = np.zeros((num_channels, max_dim, max_dim),
327
+ dtype=image.dtype)
328
+ for i, color in enumerate(background_color):
329
+ result[i, :, :] = color
330
+ if width > height:
331
+ start = (max_dim - height) // 2
332
+ result[:, start:start + height, :] = image
333
+ else:
334
+ start = (max_dim - width) // 2
335
+ result[:, :, start:start + width] = image
336
+ else:
337
+ result = np.zeros((max_dim, max_dim, num_channels),
338
+ dtype=image.dtype)
339
+ for i, color in enumerate(background_color):
340
+ result[:, :, i] = color
341
+ if width > height:
342
+ start = (max_dim - height) // 2
343
+ result[start:start + height, :, :] = image
344
+ else:
345
+ start = (max_dim - width) // 2
346
+ result[:, start:start + width, :] = image
347
+
348
+ image = (to_channel_dimension_format(result, data_format,
349
+ input_data_format)
350
+ if data_format is not None else result)
351
+ return image
352
+
353
+ def _preprocess(
354
+ self,
355
+ images: ImageInput,
356
+ do_resize: Optional[bool] = None,
357
+ size: Optional[dict[str, int]] = None,
358
+ resample: PILImageResampling = None,
359
+ do_rescale: Optional[bool] = None,
360
+ rescale_factor: Optional[float] = None,
361
+ do_normalize: Optional[bool] = None,
362
+ image_mean: Optional[Union[float, list[float]]] = None,
363
+ image_std: Optional[Union[float, list[float]]] = None,
364
+ do_convert_rgb: Optional[bool] = None,
365
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
366
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
367
+ ) -> Image.Image:
368
+
369
+ if do_resize:
370
+ images = [
371
+ resize(image=image,
372
+ size=size,
373
+ resample=resample,
374
+ input_data_format=input_data_format) for image in images
375
+ ]
376
+
377
+ if do_rescale:
378
+ images = [
379
+ self.rescale(image=image,
380
+ scale=rescale_factor,
381
+ input_data_format=input_data_format)
382
+ for image in images
383
+ ]
384
+
385
+ if do_normalize:
386
+ images = [
387
+ self.normalize(image=image,
388
+ mean=image_mean,
389
+ std=image_std,
390
+ input_data_format=input_data_format)
391
+ for image in images
392
+ ]
393
+
394
+ images = [
395
+ to_channel_dimension_format(image,
396
+ data_format,
397
+ input_channel_dim=input_data_format)
398
+ for image in images
399
+ ]
400
+
401
+ return images
402
+
403
+ def preprocess(
404
+ self,
405
+ images: ImageInput,
406
+ do_resize: Optional[bool] = None,
407
+ size: Optional[dict[str, int]] = None,
408
+ image_grid_pinpoints: Optional[list] = None,
409
+ resample: PILImageResampling = None,
410
+ do_rescale: Optional[bool] = None,
411
+ rescale_factor: Optional[float] = None,
412
+ do_normalize: Optional[bool] = None,
413
+ image_mean: Optional[Union[float, list[float]]] = None,
414
+ image_std: Optional[Union[float, list[float]]] = None,
415
+ do_pad: Optional[bool] = None,
416
+ do_convert_rgb: Optional[bool] = None,
417
+ return_tensors: Optional[Union[str, TensorType]] = None,
418
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
419
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
420
+ ):
421
+ do_resize = do_resize if do_resize is not None else self.do_resize
422
+ size = size if size is not None else self.size
423
+ size = get_size_dict(size, default_to_square=False)
424
+ image_grid_pinpoints = image_grid_pinpoints if image_grid_pinpoints is not None else self.image_grid_pinpoints
425
+ resample = resample if resample is not None else self.resample
426
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
427
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
428
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
429
+ image_mean = image_mean if image_mean is not None else self.image_mean
430
+ image_std = image_std if image_std is not None else self.image_std
431
+ do_pad = do_pad if do_pad is not None else self.do_pad
432
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
433
+
434
+ if isinstance(images,
435
+ (tuple, list)) and isinstance(images[0], (tuple, list)):
436
+ # if the first element is a list, we assume that all elements are lists
437
+ batch_num_images = [len(x) for x in images]
438
+ elif isinstance(images, (tuple, list)):
439
+ # treat this as a single-image case for backward compatibility
440
+ batch_num_images = [1] * len(images)
441
+ else:
442
+ batch_num_images = [1]
443
+ # only single image patching is supported
444
+ need_patching = [n == 1 for n in batch_num_images for _ in range(n)]
445
+
446
+ images = make_flat_list_of_images(images)
447
+
448
+ if not valid_images(images):
449
+ raise ValueError(
450
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
451
+ "torch.Tensor, tf.Tensor or jax.ndarray.")
452
+
453
+ validate_preprocess_arguments(
454
+ do_rescale=do_rescale,
455
+ rescale_factor=rescale_factor,
456
+ do_normalize=do_normalize,
457
+ image_mean=image_mean,
458
+ image_std=image_std,
459
+ do_resize=do_resize,
460
+ size=size,
461
+ resample=resample,
462
+ )
463
+
464
+ if do_convert_rgb:
465
+ images = [convert_to_rgb(image) for image in images]
466
+
467
+ # All transformations expect numpy arrays.
468
+ images = [to_numpy_array(image) for image in images]
469
+
470
+ if do_rescale and is_scaled_image(images[0]):
471
+ logger.warning_once(
472
+ "It looks like you are trying to rescale already rescaled images. If the input"
473
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
474
+ )
475
+
476
+ if input_data_format is None:
477
+ # We assume that all images have the same channel dimension format.
478
+ input_data_format = infer_channel_dimension_format(images[0])
479
+
480
+ size_tuple = ((size["height"], size["width"])
481
+ if "height" in size and "width" in size else
482
+ (size["shortest_edge"], size["shortest_edge"]))
483
+
484
+ new_images = []
485
+ image_sizes = [
486
+ get_image_size(image, channel_dim=input_data_format)
487
+ for image in images
488
+ ]
489
+ for i, image in enumerate(images):
490
+ if need_patching[i]:
491
+ # convert image into a list of patches
492
+ # we intentionally use the same data format as the input data format
493
+ image_patches = self.get_image_patches(
494
+ image,
495
+ image_grid_pinpoints,
496
+ size=size_tuple,
497
+ patch_size=size_tuple[0],
498
+ resample=resample,
499
+ data_format=input_data_format,
500
+ input_data_format=input_data_format,
501
+ )
502
+ else:
503
+ padded_image = self.pad_to_square(
504
+ image=image,
505
+ background_color=tuple(
506
+ int(x * 255) for x in self.image_mean),
507
+ input_data_format=input_data_format,
508
+ )
509
+ image_patches = [padded_image]
510
+
511
+ # preprocess patches
512
+ pixel_values = self._preprocess(
513
+ image_patches,
514
+ do_resize=do_resize,
515
+ size=size_tuple,
516
+ resample=resample,
517
+ do_rescale=do_rescale,
518
+ rescale_factor=rescale_factor,
519
+ do_normalize=do_normalize,
520
+ image_mean=image_mean,
521
+ image_std=image_std,
522
+ data_format=data_format,
523
+ input_data_format=input_data_format,
524
+ )
525
+ pixel_values = np.array(pixel_values)
526
+ new_images.append(pixel_values)
527
+
528
+ if do_pad:
529
+ processed_images = self._pad_for_batching(new_images)
530
+
531
+ return BatchFeature(
532
+ data={
533
+ "pixel_values": processed_images,
534
+ "image_sizes": image_sizes,
535
+ "batch_num_images": batch_num_images
536
+ },
537
+ tensor_type=return_tensors,
538
+ )
539
+
540
+
541
+ __all__ = ["BeeImageProcessor"]
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7d3822a9d04a9fca975f6602486a5cc6456766ce5f792385e59620464122446
3
+ size 3903717248
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c04b5ec269486ee4b0130bc63e7dcfbeca9b7326f42e7acf97d32ebc59c6c12
3
+ size 4995114056
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97933fbdea5a905a5cbe652827a113c2a0f5129941f7b74e1fadddea4de55538
3
+ size 4956428416
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6fa62bdcdb5371f7d17c91ad6a730d339729522dfbccb197e812f3c88e5f983
3
+ size 3494888760
model.safetensors.index.json ADDED
@@ -0,0 +1,834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17350035008
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00004.safetensors",
7
+ "model.image_newline": "model-00002-of-00004.safetensors",
8
+ "model.language_model.embed_tokens.weight": "model-00004-of-00004.safetensors",
9
+ "model.language_model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "model.language_model.layers.0.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
11
+ "model.language_model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.language_model.layers.0.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
13
+ "model.language_model.layers.0.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
14
+ "model.language_model.layers.0.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
15
+ "model.language_model.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
16
+ "model.language_model.layers.0.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
17
+ "model.language_model.layers.0.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
18
+ "model.language_model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.language_model.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
20
+ "model.language_model.layers.1.input_layernorm.weight": "model-00003-of-00004.safetensors",
21
+ "model.language_model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.language_model.layers.1.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
23
+ "model.language_model.layers.1.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
24
+ "model.language_model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.language_model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
26
+ "model.language_model.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
27
+ "model.language_model.layers.1.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
28
+ "model.language_model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
29
+ "model.language_model.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
30
+ "model.language_model.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
31
+ "model.language_model.layers.10.input_layernorm.weight": "model-00003-of-00004.safetensors",
32
+ "model.language_model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.language_model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.language_model.layers.10.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
35
+ "model.language_model.layers.10.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
36
+ "model.language_model.layers.10.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
37
+ "model.language_model.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
38
+ "model.language_model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.language_model.layers.10.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
40
+ "model.language_model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.language_model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.language_model.layers.11.input_layernorm.weight": "model-00004-of-00004.safetensors",
43
+ "model.language_model.layers.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
44
+ "model.language_model.layers.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
45
+ "model.language_model.layers.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
46
+ "model.language_model.layers.11.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
47
+ "model.language_model.layers.11.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
48
+ "model.language_model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.language_model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.language_model.layers.11.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
51
+ "model.language_model.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
52
+ "model.language_model.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
53
+ "model.language_model.layers.12.input_layernorm.weight": "model-00001-of-00004.safetensors",
54
+ "model.language_model.layers.12.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
55
+ "model.language_model.layers.12.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
56
+ "model.language_model.layers.12.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
57
+ "model.language_model.layers.12.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
58
+ "model.language_model.layers.12.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
59
+ "model.language_model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.language_model.layers.12.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
61
+ "model.language_model.layers.12.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
62
+ "model.language_model.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
63
+ "model.language_model.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
64
+ "model.language_model.layers.13.input_layernorm.weight": "model-00004-of-00004.safetensors",
65
+ "model.language_model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.language_model.layers.13.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
67
+ "model.language_model.layers.13.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
68
+ "model.language_model.layers.13.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
69
+ "model.language_model.layers.13.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
70
+ "model.language_model.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
71
+ "model.language_model.layers.13.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
72
+ "model.language_model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
73
+ "model.language_model.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
74
+ "model.language_model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.language_model.layers.14.input_layernorm.weight": "model-00003-of-00004.safetensors",
76
+ "model.language_model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.language_model.layers.14.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
78
+ "model.language_model.layers.14.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
79
+ "model.language_model.layers.14.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
80
+ "model.language_model.layers.14.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
81
+ "model.language_model.layers.14.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
82
+ "model.language_model.layers.14.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
83
+ "model.language_model.layers.14.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
84
+ "model.language_model.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
85
+ "model.language_model.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
86
+ "model.language_model.layers.15.input_layernorm.weight": "model-00003-of-00004.safetensors",
87
+ "model.language_model.layers.15.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
88
+ "model.language_model.layers.15.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
89
+ "model.language_model.layers.15.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
90
+ "model.language_model.layers.15.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
91
+ "model.language_model.layers.15.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
92
+ "model.language_model.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
93
+ "model.language_model.layers.15.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
94
+ "model.language_model.layers.15.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
95
+ "model.language_model.layers.15.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
96
+ "model.language_model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.language_model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
98
+ "model.language_model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
99
+ "model.language_model.layers.16.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
100
+ "model.language_model.layers.16.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
101
+ "model.language_model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
102
+ "model.language_model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
103
+ "model.language_model.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
104
+ "model.language_model.layers.16.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
105
+ "model.language_model.layers.16.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
106
+ "model.language_model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.language_model.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
108
+ "model.language_model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
109
+ "model.language_model.layers.17.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
110
+ "model.language_model.layers.17.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
111
+ "model.language_model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
112
+ "model.language_model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
113
+ "model.language_model.layers.17.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
114
+ "model.language_model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
115
+ "model.language_model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.language_model.layers.17.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
117
+ "model.language_model.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.language_model.layers.17.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.language_model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
120
+ "model.language_model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
121
+ "model.language_model.layers.18.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
122
+ "model.language_model.layers.18.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.language_model.layers.18.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
124
+ "model.language_model.layers.18.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
125
+ "model.language_model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.language_model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.language_model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
128
+ "model.language_model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.language_model.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
130
+ "model.language_model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
131
+ "model.language_model.layers.19.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
132
+ "model.language_model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.language_model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.language_model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.language_model.layers.19.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
136
+ "model.language_model.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
137
+ "model.language_model.layers.19.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
138
+ "model.language_model.layers.19.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
139
+ "model.language_model.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
140
+ "model.language_model.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
141
+ "model.language_model.layers.2.input_layernorm.weight": "model-00002-of-00004.safetensors",
142
+ "model.language_model.layers.2.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.language_model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
144
+ "model.language_model.layers.2.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
145
+ "model.language_model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
146
+ "model.language_model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
147
+ "model.language_model.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
148
+ "model.language_model.layers.2.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
149
+ "model.language_model.layers.2.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
150
+ "model.language_model.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
151
+ "model.language_model.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
152
+ "model.language_model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
153
+ "model.language_model.layers.20.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.language_model.layers.20.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
155
+ "model.language_model.layers.20.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
156
+ "model.language_model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
157
+ "model.language_model.layers.20.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
158
+ "model.language_model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.language_model.layers.20.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.language_model.layers.20.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
161
+ "model.language_model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.language_model.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
163
+ "model.language_model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
164
+ "model.language_model.layers.21.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
165
+ "model.language_model.layers.21.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
166
+ "model.language_model.layers.21.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
167
+ "model.language_model.layers.21.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
168
+ "model.language_model.layers.21.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
169
+ "model.language_model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.language_model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
171
+ "model.language_model.layers.21.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
172
+ "model.language_model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
173
+ "model.language_model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
174
+ "model.language_model.layers.22.input_layernorm.weight": "model-00001-of-00004.safetensors",
175
+ "model.language_model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
176
+ "model.language_model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
177
+ "model.language_model.layers.22.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
178
+ "model.language_model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
179
+ "model.language_model.layers.22.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
180
+ "model.language_model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
181
+ "model.language_model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
182
+ "model.language_model.layers.22.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
183
+ "model.language_model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
184
+ "model.language_model.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
185
+ "model.language_model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors",
186
+ "model.language_model.layers.23.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
187
+ "model.language_model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.language_model.layers.23.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
189
+ "model.language_model.layers.23.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
190
+ "model.language_model.layers.23.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
191
+ "model.language_model.layers.23.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
192
+ "model.language_model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
193
+ "model.language_model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
194
+ "model.language_model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.language_model.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
196
+ "model.language_model.layers.24.input_layernorm.weight": "model-00002-of-00004.safetensors",
197
+ "model.language_model.layers.24.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
198
+ "model.language_model.layers.24.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
199
+ "model.language_model.layers.24.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
200
+ "model.language_model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.language_model.layers.24.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
202
+ "model.language_model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.language_model.layers.24.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
204
+ "model.language_model.layers.24.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
205
+ "model.language_model.layers.24.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
206
+ "model.language_model.layers.24.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
207
+ "model.language_model.layers.25.input_layernorm.weight": "model-00001-of-00004.safetensors",
208
+ "model.language_model.layers.25.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
209
+ "model.language_model.layers.25.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
210
+ "model.language_model.layers.25.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
211
+ "model.language_model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
212
+ "model.language_model.layers.25.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
213
+ "model.language_model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.language_model.layers.25.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
215
+ "model.language_model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
216
+ "model.language_model.layers.25.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
217
+ "model.language_model.layers.25.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
218
+ "model.language_model.layers.26.input_layernorm.weight": "model-00001-of-00004.safetensors",
219
+ "model.language_model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
220
+ "model.language_model.layers.26.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
221
+ "model.language_model.layers.26.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
222
+ "model.language_model.layers.26.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
223
+ "model.language_model.layers.26.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
224
+ "model.language_model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.language_model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.language_model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
227
+ "model.language_model.layers.26.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
228
+ "model.language_model.layers.26.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
229
+ "model.language_model.layers.27.input_layernorm.weight": "model-00001-of-00004.safetensors",
230
+ "model.language_model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
231
+ "model.language_model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.language_model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
233
+ "model.language_model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.language_model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
235
+ "model.language_model.layers.27.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
236
+ "model.language_model.layers.27.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
237
+ "model.language_model.layers.27.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
238
+ "model.language_model.layers.27.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
239
+ "model.language_model.layers.27.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
240
+ "model.language_model.layers.28.input_layernorm.weight": "model-00002-of-00004.safetensors",
241
+ "model.language_model.layers.28.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
242
+ "model.language_model.layers.28.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
243
+ "model.language_model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.language_model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
245
+ "model.language_model.layers.28.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
246
+ "model.language_model.layers.28.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
247
+ "model.language_model.layers.28.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
248
+ "model.language_model.layers.28.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
249
+ "model.language_model.layers.28.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.language_model.layers.28.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
251
+ "model.language_model.layers.29.input_layernorm.weight": "model-00002-of-00004.safetensors",
252
+ "model.language_model.layers.29.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.language_model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.language_model.layers.29.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.language_model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
256
+ "model.language_model.layers.29.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
257
+ "model.language_model.layers.29.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
258
+ "model.language_model.layers.29.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.language_model.layers.29.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
260
+ "model.language_model.layers.29.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
261
+ "model.language_model.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
262
+ "model.language_model.layers.3.input_layernorm.weight": "model-00003-of-00004.safetensors",
263
+ "model.language_model.layers.3.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
264
+ "model.language_model.layers.3.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
265
+ "model.language_model.layers.3.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
266
+ "model.language_model.layers.3.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
267
+ "model.language_model.layers.3.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
268
+ "model.language_model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.language_model.layers.3.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
270
+ "model.language_model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
271
+ "model.language_model.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
272
+ "model.language_model.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
273
+ "model.language_model.layers.30.input_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.language_model.layers.30.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.language_model.layers.30.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.language_model.layers.30.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.language_model.layers.30.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
278
+ "model.language_model.layers.30.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
279
+ "model.language_model.layers.30.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.language_model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
281
+ "model.language_model.layers.30.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
282
+ "model.language_model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
283
+ "model.language_model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
284
+ "model.language_model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
285
+ "model.language_model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
286
+ "model.language_model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
287
+ "model.language_model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
288
+ "model.language_model.layers.31.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.language_model.layers.31.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
290
+ "model.language_model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
291
+ "model.language_model.layers.31.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.language_model.layers.31.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
293
+ "model.language_model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.language_model.layers.31.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.language_model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
296
+ "model.language_model.layers.32.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
297
+ "model.language_model.layers.32.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
298
+ "model.language_model.layers.32.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
299
+ "model.language_model.layers.32.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
300
+ "model.language_model.layers.32.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
301
+ "model.language_model.layers.32.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
302
+ "model.language_model.layers.32.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
303
+ "model.language_model.layers.32.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
304
+ "model.language_model.layers.32.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
305
+ "model.language_model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
306
+ "model.language_model.layers.33.input_layernorm.weight": "model-00001-of-00004.safetensors",
307
+ "model.language_model.layers.33.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.language_model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
309
+ "model.language_model.layers.33.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
310
+ "model.language_model.layers.33.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
311
+ "model.language_model.layers.33.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
312
+ "model.language_model.layers.33.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
313
+ "model.language_model.layers.33.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
314
+ "model.language_model.layers.33.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
315
+ "model.language_model.layers.33.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.language_model.layers.33.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
317
+ "model.language_model.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
318
+ "model.language_model.layers.34.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
319
+ "model.language_model.layers.34.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
320
+ "model.language_model.layers.34.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
321
+ "model.language_model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
322
+ "model.language_model.layers.34.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
323
+ "model.language_model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
324
+ "model.language_model.layers.34.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
325
+ "model.language_model.layers.34.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
326
+ "model.language_model.layers.34.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.language_model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
328
+ "model.language_model.layers.35.input_layernorm.weight": "model-00001-of-00004.safetensors",
329
+ "model.language_model.layers.35.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
330
+ "model.language_model.layers.35.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
331
+ "model.language_model.layers.35.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
332
+ "model.language_model.layers.35.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.language_model.layers.35.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
334
+ "model.language_model.layers.35.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.language_model.layers.35.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.language_model.layers.35.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
337
+ "model.language_model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
338
+ "model.language_model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
339
+ "model.language_model.layers.4.input_layernorm.weight": "model-00003-of-00004.safetensors",
340
+ "model.language_model.layers.4.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
341
+ "model.language_model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
342
+ "model.language_model.layers.4.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
343
+ "model.language_model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
344
+ "model.language_model.layers.4.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
345
+ "model.language_model.layers.4.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
346
+ "model.language_model.layers.4.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
347
+ "model.language_model.layers.4.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
348
+ "model.language_model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
349
+ "model.language_model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
350
+ "model.language_model.layers.5.input_layernorm.weight": "model-00003-of-00004.safetensors",
351
+ "model.language_model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
352
+ "model.language_model.layers.5.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
353
+ "model.language_model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
354
+ "model.language_model.layers.5.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
355
+ "model.language_model.layers.5.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
356
+ "model.language_model.layers.5.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
357
+ "model.language_model.layers.5.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
358
+ "model.language_model.layers.5.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
359
+ "model.language_model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
360
+ "model.language_model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
361
+ "model.language_model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
362
+ "model.language_model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
363
+ "model.language_model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
364
+ "model.language_model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
365
+ "model.language_model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
366
+ "model.language_model.layers.6.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
367
+ "model.language_model.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
368
+ "model.language_model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
369
+ "model.language_model.layers.6.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
370
+ "model.language_model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.language_model.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
372
+ "model.language_model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
373
+ "model.language_model.layers.7.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
374
+ "model.language_model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
375
+ "model.language_model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
376
+ "model.language_model.layers.7.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
377
+ "model.language_model.layers.7.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
378
+ "model.language_model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
379
+ "model.language_model.layers.7.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
380
+ "model.language_model.layers.7.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
381
+ "model.language_model.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
382
+ "model.language_model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
383
+ "model.language_model.layers.8.input_layernorm.weight": "model-00003-of-00004.safetensors",
384
+ "model.language_model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
385
+ "model.language_model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
386
+ "model.language_model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
387
+ "model.language_model.layers.8.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
388
+ "model.language_model.layers.8.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
389
+ "model.language_model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
390
+ "model.language_model.layers.8.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
391
+ "model.language_model.layers.8.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
392
+ "model.language_model.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
393
+ "model.language_model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
394
+ "model.language_model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
395
+ "model.language_model.layers.9.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
396
+ "model.language_model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
397
+ "model.language_model.layers.9.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
398
+ "model.language_model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
399
+ "model.language_model.layers.9.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
400
+ "model.language_model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
401
+ "model.language_model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
402
+ "model.language_model.layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
403
+ "model.language_model.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
404
+ "model.language_model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
405
+ "model.language_model.norm.weight": "model-00001-of-00004.safetensors",
406
+ "model.multi_modal_projector.linear_1.bias": "model-00001-of-00004.safetensors",
407
+ "model.multi_modal_projector.linear_1.weight": "model-00002-of-00004.safetensors",
408
+ "model.multi_modal_projector.linear_2.bias": "model-00003-of-00004.safetensors",
409
+ "model.multi_modal_projector.linear_2.weight": "model-00001-of-00004.safetensors",
410
+ "model.multi_modal_projector.pre_norm.bias": "model-00004-of-00004.safetensors",
411
+ "model.multi_modal_projector.pre_norm.weight": "model-00003-of-00004.safetensors",
412
+ "model.vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00004-of-00004.safetensors",
413
+ "model.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors",
414
+ "model.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00002-of-00004.safetensors",
415
+ "model.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00004-of-00004.safetensors",
416
+ "model.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00002-of-00004.safetensors",
417
+ "model.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00002-of-00004.safetensors",
418
+ "model.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00002-of-00004.safetensors",
419
+ "model.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00004-of-00004.safetensors",
420
+ "model.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00002-of-00004.safetensors",
421
+ "model.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00004-of-00004.safetensors",
422
+ "model.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00002-of-00004.safetensors",
423
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
424
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
425
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
426
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00002-of-00004.safetensors",
427
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
428
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
429
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
430
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
431
+ "model.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00002-of-00004.safetensors",
432
+ "model.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00004-of-00004.safetensors",
433
+ "model.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00004.safetensors",
434
+ "model.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00002-of-00004.safetensors",
435
+ "model.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00004-of-00004.safetensors",
436
+ "model.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00004-of-00004.safetensors",
437
+ "model.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00002-of-00004.safetensors",
438
+ "model.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00002-of-00004.safetensors",
439
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
440
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
441
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00002-of-00004.safetensors",
442
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
443
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
444
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
445
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
446
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
447
+ "model.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00002-of-00004.safetensors",
448
+ "model.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00004.safetensors",
449
+ "model.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00004.safetensors",
450
+ "model.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
451
+ "model.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
452
+ "model.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00002-of-00004.safetensors",
453
+ "model.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors",
454
+ "model.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
455
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
456
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
457
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
458
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
459
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
460
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
461
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
462
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
463
+ "model.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
464
+ "model.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
465
+ "model.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00004.safetensors",
466
+ "model.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00004.safetensors",
467
+ "model.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
468
+ "model.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00002-of-00004.safetensors",
469
+ "model.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors",
470
+ "model.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
471
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
472
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
473
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
474
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
475
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
476
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
477
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
478
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
479
+ "model.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00002-of-00004.safetensors",
480
+ "model.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors",
481
+ "model.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00004.safetensors",
482
+ "model.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00004.safetensors",
483
+ "model.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
484
+ "model.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors",
485
+ "model.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
486
+ "model.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
487
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
488
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
489
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
490
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00002-of-00004.safetensors",
491
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
492
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
493
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
494
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
495
+ "model.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00004.safetensors",
496
+ "model.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00002-of-00004.safetensors",
497
+ "model.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00002-of-00004.safetensors",
498
+ "model.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors",
499
+ "model.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
500
+ "model.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00002-of-00004.safetensors",
501
+ "model.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
502
+ "model.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors",
503
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
504
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
505
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
506
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00002-of-00004.safetensors",
507
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
508
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
509
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
510
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
511
+ "model.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
512
+ "model.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00002-of-00004.safetensors",
513
+ "model.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors",
514
+ "model.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00002-of-00004.safetensors",
515
+ "model.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
516
+ "model.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
517
+ "model.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
518
+ "model.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
519
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
520
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
521
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00002-of-00004.safetensors",
522
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
523
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
524
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
525
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
526
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
527
+ "model.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00004.safetensors",
528
+ "model.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
529
+ "model.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00002-of-00004.safetensors",
530
+ "model.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00004.safetensors",
531
+ "model.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
532
+ "model.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00002-of-00004.safetensors",
533
+ "model.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
534
+ "model.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00002-of-00004.safetensors",
535
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
536
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
537
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
538
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
539
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
540
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
541
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
542
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
543
+ "model.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00002-of-00004.safetensors",
544
+ "model.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
545
+ "model.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors",
546
+ "model.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
547
+ "model.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors",
548
+ "model.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
549
+ "model.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
550
+ "model.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
551
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
552
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
553
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
554
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
555
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
556
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
557
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
558
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
559
+ "model.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
560
+ "model.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00002-of-00004.safetensors",
561
+ "model.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
562
+ "model.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors",
563
+ "model.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors",
564
+ "model.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
565
+ "model.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
566
+ "model.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
567
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
568
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
569
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
570
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
571
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
572
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
573
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
574
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
575
+ "model.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00002-of-00004.safetensors",
576
+ "model.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors",
577
+ "model.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00004.safetensors",
578
+ "model.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00004.safetensors",
579
+ "model.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
580
+ "model.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
581
+ "model.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00002-of-00004.safetensors",
582
+ "model.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00004.safetensors",
583
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
584
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
585
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
586
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00002-of-00004.safetensors",
587
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
588
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
589
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
590
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
591
+ "model.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00004.safetensors",
592
+ "model.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00004.safetensors",
593
+ "model.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00004.safetensors",
594
+ "model.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00004.safetensors",
595
+ "model.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
596
+ "model.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
597
+ "model.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
598
+ "model.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00004.safetensors",
599
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
600
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
601
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
602
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
603
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
604
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
605
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
606
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
607
+ "model.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00004.safetensors",
608
+ "model.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00002-of-00004.safetensors",
609
+ "model.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors",
610
+ "model.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00004-of-00004.safetensors",
611
+ "model.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors",
612
+ "model.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00004-of-00004.safetensors",
613
+ "model.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
614
+ "model.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00004-of-00004.safetensors",
615
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
616
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
617
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
618
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
619
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
620
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
621
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
622
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
623
+ "model.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00004.safetensors",
624
+ "model.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00002-of-00004.safetensors",
625
+ "model.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00004.safetensors",
626
+ "model.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00004.safetensors",
627
+ "model.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00002-of-00004.safetensors",
628
+ "model.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
629
+ "model.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00002-of-00004.safetensors",
630
+ "model.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00002-of-00004.safetensors",
631
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
632
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
633
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
634
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
635
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
636
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
637
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
638
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
639
+ "model.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00002-of-00004.safetensors",
640
+ "model.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00004.safetensors",
641
+ "model.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00004.safetensors",
642
+ "model.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00004.safetensors",
643
+ "model.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00002-of-00004.safetensors",
644
+ "model.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
645
+ "model.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
646
+ "model.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00002-of-00004.safetensors",
647
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
648
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
649
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
650
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
651
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
652
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
653
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
654
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
655
+ "model.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00004.safetensors",
656
+ "model.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00004.safetensors",
657
+ "model.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00002-of-00004.safetensors",
658
+ "model.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00002-of-00004.safetensors",
659
+ "model.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00004.safetensors",
660
+ "model.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00004.safetensors",
661
+ "model.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
662
+ "model.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
663
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
664
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
665
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
666
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00002-of-00004.safetensors",
667
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
668
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
669
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
670
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
671
+ "model.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00004.safetensors",
672
+ "model.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00004.safetensors",
673
+ "model.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00004.safetensors",
674
+ "model.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00004.safetensors",
675
+ "model.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00004.safetensors",
676
+ "model.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
677
+ "model.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
678
+ "model.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
679
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
680
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
681
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00002-of-00004.safetensors",
682
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
683
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
684
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
685
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
686
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
687
+ "model.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00002-of-00004.safetensors",
688
+ "model.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00002-of-00004.safetensors",
689
+ "model.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00003-of-00004.safetensors",
690
+ "model.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00004-of-00004.safetensors",
691
+ "model.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00004.safetensors",
692
+ "model.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
693
+ "model.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00003-of-00004.safetensors",
694
+ "model.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00002-of-00004.safetensors",
695
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
696
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
697
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00002-of-00004.safetensors",
698
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00002-of-00004.safetensors",
699
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
700
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
701
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
702
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
703
+ "model.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00004.safetensors",
704
+ "model.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00003-of-00004.safetensors",
705
+ "model.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
706
+ "model.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00002-of-00004.safetensors",
707
+ "model.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00003-of-00004.safetensors",
708
+ "model.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
709
+ "model.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00002-of-00004.safetensors",
710
+ "model.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00003-of-00004.safetensors",
711
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
712
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
713
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00002-of-00004.safetensors",
714
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
715
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
716
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
717
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
718
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
719
+ "model.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00004.safetensors",
720
+ "model.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00004.safetensors",
721
+ "model.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors",
722
+ "model.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00004.safetensors",
723
+ "model.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
724
+ "model.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
725
+ "model.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00002-of-00004.safetensors",
726
+ "model.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
727
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
728
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
729
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
730
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
731
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
732
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
733
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
734
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
735
+ "model.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors",
736
+ "model.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00004-of-00004.safetensors",
737
+ "model.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00004-of-00004.safetensors",
738
+ "model.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00004.safetensors",
739
+ "model.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00002-of-00004.safetensors",
740
+ "model.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00004-of-00004.safetensors",
741
+ "model.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
742
+ "model.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00002-of-00004.safetensors",
743
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
744
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
745
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00002-of-00004.safetensors",
746
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00002-of-00004.safetensors",
747
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
748
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
749
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
750
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
751
+ "model.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors",
752
+ "model.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00004-of-00004.safetensors",
753
+ "model.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors",
754
+ "model.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors",
755
+ "model.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
756
+ "model.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors",
757
+ "model.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
758
+ "model.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
759
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
760
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
761
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
762
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
763
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
764
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
765
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
766
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
767
+ "model.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00004.safetensors",
768
+ "model.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors",
769
+ "model.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00004.safetensors",
770
+ "model.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00004.safetensors",
771
+ "model.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
772
+ "model.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00002-of-00004.safetensors",
773
+ "model.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors",
774
+ "model.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors",
775
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
776
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
777
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
778
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
779
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
780
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
781
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
782
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
783
+ "model.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00004.safetensors",
784
+ "model.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00004.safetensors",
785
+ "model.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00002-of-00004.safetensors",
786
+ "model.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00002-of-00004.safetensors",
787
+ "model.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
788
+ "model.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors",
789
+ "model.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors",
790
+ "model.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
791
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
792
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
793
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00002-of-00004.safetensors",
794
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
795
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
796
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
797
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
798
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
799
+ "model.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00004.safetensors",
800
+ "model.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00004.safetensors",
801
+ "model.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors",
802
+ "model.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
803
+ "model.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors",
804
+ "model.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors",
805
+ "model.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00002-of-00004.safetensors",
806
+ "model.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
807
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
808
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
809
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00002-of-00004.safetensors",
810
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00002-of-00004.safetensors",
811
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
812
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
813
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
814
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
815
+ "model.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00002-of-00004.safetensors",
816
+ "model.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
817
+ "model.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00002-of-00004.safetensors",
818
+ "model.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors",
819
+ "model.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
820
+ "model.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors",
821
+ "model.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors",
822
+ "model.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors",
823
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
824
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
825
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
826
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00002-of-00004.safetensors",
827
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
828
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
829
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
830
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
831
+ "model.vision_tower.vision_model.post_layernorm.bias": "model-00002-of-00004.safetensors",
832
+ "model.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00004.safetensors"
833
+ }
834
+ }
modeling_bee.py ADDED
@@ -0,0 +1,720 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed under the Apache License, Version 2.0 (the "License");
2
+ # you may not use this file except in compliance with the License.
3
+ # You may obtain a copy of the License at
4
+ #
5
+ # http://www.apache.org/licenses/LICENSE-2.0
6
+ #
7
+ # Unless required by applicable law or agreed to in writing, software
8
+ # distributed under the License is distributed on an "AS IS" BASIS,
9
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10
+ # See the License for the specific language governing permissions and
11
+ # limitations under the License.
12
+
13
+ import math
14
+ from dataclasses import dataclass
15
+ from typing import Optional, Union
16
+
17
+ import numpy as np
18
+ import torch
19
+ from torch import nn
20
+
21
+ from transformers.activations import GELUActivation
22
+
23
+ from transformers.generation import GenerationMixin
24
+ from transformers.image_processing_utils import select_best_resolution
25
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
26
+ from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
27
+ from transformers.modeling_utils import PreTrainedModel
28
+ from transformers.models.auto import AutoModel
29
+ from transformers.processing_utils import Unpack
30
+ from transformers.utils import (
31
+ can_return_tuple,
32
+ is_torchdynamo_compiling,
33
+ logging,
34
+ )
35
+ from .configuration_bee import BeeConfig
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+
40
+ @dataclass
41
+ class BeeModelOutputWithPast(BaseModelOutputWithPast):
42
+
43
+ image_hidden_states: Optional[torch.FloatTensor] = None
44
+
45
+
46
+ @dataclass
47
+ class BeeCausalLMOutputWithPast(ModelOutput):
48
+
49
+ loss: Optional[torch.FloatTensor] = None
50
+ logits: Optional[torch.FloatTensor] = None
51
+ past_key_values: Optional[list[torch.FloatTensor]] = None
52
+ hidden_states: Optional[tuple[torch.FloatTensor]] = None
53
+ attentions: Optional[tuple[torch.FloatTensor]] = None
54
+ image_hidden_states: Optional[torch.FloatTensor] = None
55
+
56
+
57
+ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
58
+ if not isinstance(grid_pinpoints, list):
59
+ raise TypeError("grid_pinpoints should be a list of tuples or lists")
60
+
61
+ # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
62
+ if not isinstance(image_size, (list, tuple)):
63
+ if not isinstance(image_size, (torch.Tensor, np.ndarray)):
64
+ raise TypeError(
65
+ f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
66
+ )
67
+ image_size = image_size.tolist()
68
+
69
+ height, width = select_best_resolution(image_size, grid_pinpoints)
70
+ return height // patch_size, width // patch_size
71
+
72
+
73
+ def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
74
+ if not isinstance(grid_pinpoints, list):
75
+ raise TypeError("grid_pinpoints should be a list of tuples or lists")
76
+
77
+ # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
78
+ if not isinstance(image_size, (list, tuple)):
79
+ if not isinstance(image_size, (torch.Tensor, np.ndarray)):
80
+ raise TypeError(
81
+ f"image_size invalid type {type(image_size)} with value {image_size}"
82
+ )
83
+ image_size = image_size.tolist()
84
+
85
+ best_resolution = select_best_resolution(image_size, grid_pinpoints)
86
+ height, width = best_resolution
87
+ num_patches = 0
88
+ # consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
89
+ for i in range(0, height, patch_size):
90
+ for j in range(0, width, patch_size):
91
+ num_patches += 1
92
+ # add the base patch
93
+ num_patches += 1
94
+ return num_patches
95
+
96
+
97
+ def unpad_image(tensor, original_size):
98
+ if not isinstance(original_size, (list, tuple)):
99
+ if not isinstance(original_size, (torch.Tensor, np.ndarray)):
100
+ raise TypeError(
101
+ f"image_size invalid type: {type(original_size)} not valid, should be either list, tuple, np.ndarray or tensor"
102
+ )
103
+ original_size = original_size.tolist()
104
+ original_height, original_width = original_size
105
+ current_height, current_width = tensor.shape[1:]
106
+
107
+ original_aspect_ratio = original_width / original_height
108
+ current_aspect_ratio = current_width / current_height
109
+
110
+ if original_aspect_ratio > current_aspect_ratio:
111
+ scale_factor = current_width / original_width
112
+ new_height = int(round(original_height * scale_factor, 7))
113
+ padding = (current_height - new_height) // 2
114
+ unpadded_tensor = tensor[:, padding:current_height - padding, :]
115
+ else:
116
+ scale_factor = current_height / original_height
117
+ new_width = int(round(original_width * scale_factor, 7))
118
+ padding = (current_width - new_width) // 2
119
+ unpadded_tensor = tensor[:, :, padding:current_width - padding]
120
+
121
+ return unpadded_tensor
122
+
123
+
124
+ class BeePreTrainedModel(PreTrainedModel):
125
+ config_class = BeeConfig
126
+ base_model_prefix = ""
127
+ supports_gradient_checkpointing = True
128
+ # _no_split_modules = ["LlamaDecoderLayer"]
129
+ _no_split_modules = [
130
+ "SiglipEncoderLayer",
131
+ "Qwen3DecoderLayer",
132
+ ]
133
+ _skip_keys_device_placement = "past_key_values"
134
+ _supports_cache_class = True
135
+ _supports_flash_attn_2 = True
136
+ _supports_sdpa = True
137
+ _supports_quantized_cache = True
138
+ _supports_static_cache = True
139
+ _supports_flex_attn = True
140
+ _supports_attention_backend = True
141
+
142
+ def _init_weights(self, module):
143
+ std = getattr(self.config, "initializer_range",
144
+ self.config.get_text_config().initializer_range)
145
+
146
+ if isinstance(module, nn.Linear):
147
+ module.weight.data.normal_(mean=0.0, std=std)
148
+ if module.bias is not None:
149
+ module.bias.data.zero_()
150
+ elif isinstance(module, BeeModel):
151
+ embed_std = 1 / math.sqrt(self.config.text_config.hidden_size)
152
+ module.image_newline.data.normal_(mean=0.0, std=embed_std)
153
+
154
+
155
+ class BeeMultiModalProjector(nn.Module):
156
+
157
+ def __init__(self, config):
158
+ super().__init__()
159
+
160
+ self.pre_norm = torch.nn.LayerNorm(config.vision_config.hidden_size,
161
+ eps=1e-06)
162
+ self.linear_1 = nn.Linear(config.vision_config.hidden_size,
163
+ config.text_config.hidden_size * 4,
164
+ bias=True)
165
+ self.act = GELUActivation()
166
+ self.linear_2 = nn.Linear(config.text_config.hidden_size * 4,
167
+ config.text_config.hidden_size,
168
+ bias=True)
169
+
170
+ def forward(self, image_feature: torch.Tensor) -> torch.Tensor:
171
+ image_feature = self.pre_norm(image_feature)
172
+ hidden_states = self.linear_1(image_feature)
173
+ hidden_states = self.act(hidden_states)
174
+ hidden_states = self.linear_2(hidden_states)
175
+
176
+ return hidden_states
177
+
178
+
179
+ class BeeModel(BeePreTrainedModel):
180
+ _checkpoint_conversion_mapping = {"language_model.model": "language_model"}
181
+
182
+ def __init__(self, config):
183
+ super().__init__(config)
184
+ self.vision_tower = AutoModel.from_config(config.vision_config)
185
+ self.multi_modal_projector = BeeMultiModalProjector(config)
186
+ embed_std = 1 / math.sqrt(config.text_config.hidden_size)
187
+ self.image_newline = nn.Parameter(
188
+ torch.randn(config.text_config.hidden_size, dtype=self.dtype) *
189
+ embed_std)
190
+
191
+ self.vocab_size = config.text_config.vocab_size
192
+ self.language_model = AutoModel.from_config(config.text_config)
193
+ self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
194
+ self.post_init()
195
+
196
+ def get_input_embeddings(self):
197
+ return self.language_model.get_input_embeddings()
198
+
199
+ def set_input_embeddings(self, value):
200
+ self.language_model.set_input_embeddings(value)
201
+
202
+ def pack_image_features(self,
203
+ image_features,
204
+ image_sizes,
205
+ image_newline=None,
206
+ vision_aspect_ratio="anyres"):
207
+ new_image_features = []
208
+ feature_lens = []
209
+ for image_idx, image_feature in enumerate(image_features):
210
+ if image_feature.shape[0] > 1:
211
+ base_image_feature = image_feature[0]
212
+ image_feature = image_feature[1:]
213
+ height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
214
+ if height * width != base_image_feature.shape[0]:
215
+ raise ValueError(
216
+ "The number of patches is not consistent with the image size."
217
+ )
218
+ num_patch_height, num_patch_width = get_anyres_image_grid_shape(
219
+ image_sizes[image_idx],
220
+ self.config.image_grid_pinpoints,
221
+ self.config.vision_config.image_size,
222
+ )
223
+ image_feature = image_feature.view(num_patch_height,
224
+ num_patch_width, height,
225
+ width, -1)
226
+ image_feature = image_feature.permute(4, 0, 2, 1,
227
+ 3).contiguous()
228
+ image_feature = image_feature.flatten(1, 2).flatten(2, 3)
229
+ image_feature = unpad_image(image_feature,
230
+ image_sizes[image_idx])
231
+ try:
232
+ max_num_patches = int(
233
+ vision_aspect_ratio.strip("anyres_max_"))
234
+ channels, curr_height, curr_width = image_feature.shape
235
+ ratio = math.sqrt(curr_height * curr_width /
236
+ (max_num_patches * height**2))
237
+ if ratio > 1.1:
238
+ image_feature = image_feature[None]
239
+ image_feature = nn.functional.interpolate(
240
+ image_feature, [
241
+ int(curr_height // ratio),
242
+ int(curr_width // ratio)
243
+ ],
244
+ mode="bilinear")[0]
245
+ except:
246
+ pass
247
+ if image_newline is not None:
248
+ image_feature = torch.cat(
249
+ (
250
+ image_feature,
251
+ image_newline[:, None, None].expand(
252
+ *image_feature.shape[:-1], 1).to(
253
+ image_feature.device, image_feature.dtype),
254
+ ),
255
+ dim=-1,
256
+ )
257
+ image_feature = image_feature.flatten(1, 2).transpose(0, 1)
258
+ image_feature = torch.cat((base_image_feature, image_feature),
259
+ dim=0)
260
+ else:
261
+ image_feature = image_feature[0]
262
+ if image_newline is not None:
263
+ image_feature = torch.cat(
264
+ (image_feature, image_newline[None].to(image_feature)),
265
+ dim=0)
266
+ image_feature = image_feature.flatten(0, 1)
267
+ new_image_features.append(image_feature)
268
+ feature_lens.append(image_feature.size(0))
269
+ feature_lens = torch.tensor(feature_lens,
270
+ dtype=torch.long,
271
+ device=image_features[0].device)
272
+ return new_image_features, feature_lens
273
+
274
+ def get_image_features(
275
+ self,
276
+ pixel_values: torch.FloatTensor,
277
+ image_sizes: torch.Tensor,
278
+ vision_feature_layer: Optional[Union[int, list[int]]] = None,
279
+ vision_feature_select_strategy: Optional[str] = None,
280
+ vision_aspect_ratio: Optional[str] = None,
281
+ batch_num_images: Optional[torch.LongTensor] = None,
282
+ ):
283
+ vision_feature_layer = (vision_feature_layer
284
+ if vision_feature_layer is not None else
285
+ self.config.vision_feature_layer)
286
+ vision_feature_select_strategy = (
287
+ vision_feature_select_strategy if vision_feature_select_strategy
288
+ is not None else self.config.vision_feature_select_strategy)
289
+ vision_aspect_ratio = (vision_aspect_ratio
290
+ if vision_aspect_ratio is not None else
291
+ self.config.vision_aspect_ratio)
292
+
293
+ if batch_num_images is None:
294
+ # treat this as a single-image case for backward compatibility
295
+ need_patching = [True] * len(image_sizes)
296
+ else:
297
+ need_patching = [
298
+ n == 1 for n in batch_num_images for _ in range(n)
299
+ ]
300
+ image_num_patches = [
301
+ image_size_to_num_patches(
302
+ image_size=imsize,
303
+ grid_pinpoints=self.config.image_grid_pinpoints,
304
+ patch_size=self.config.vision_config.image_size,
305
+ ) if should_patch else 1
306
+ for imsize, should_patch in zip(image_sizes, need_patching)
307
+ ]
308
+
309
+ if isinstance(pixel_values, torch.Tensor):
310
+ if pixel_values.dim() == 5:
311
+ # stacked if input is (batch_size, num_patches, num_channels, height, width)
312
+ _pixel_values_list = [
313
+ pix_val[:num_patch] for pix_val, num_patch in zip(
314
+ pixel_values, image_num_patches)
315
+ ]
316
+ pixel_values = torch.cat(_pixel_values_list, dim=0)
317
+ elif pixel_values.dim() != 4:
318
+ # otherwise has to be stacked from list of (num_patches, num_channels, height, width)
319
+ raise ValueError(
320
+ f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions"
321
+ )
322
+ elif isinstance(pixel_values, list):
323
+ # list of [(batch_size, num_patches, num_channels, height, width)]
324
+ assert len(pixel_values) == len(image_num_patches), (
325
+ f"pixel_values is a list of {len(pixel_values)} tensors, but image_num_patches is of length {len(image_num_patches)}"
326
+ )
327
+ _pixel_values_list = [
328
+ pix_val.squeeze(0)[:num_patch]
329
+ for pix_val, num_patch in zip(pixel_values, image_num_patches)
330
+ ]
331
+
332
+ pixel_values = torch.cat(_pixel_values_list, dim=0)
333
+
334
+ image_features = self.vision_tower(pixel_values,
335
+ output_hidden_states=True)
336
+ # If we have one vision feature layer, return the corresponding hidden states,
337
+ # otherwise, select the hidden states of each feature layer and concatenate them
338
+ if isinstance(vision_feature_layer, int):
339
+ selected_image_feature = image_features.hidden_states[
340
+ vision_feature_layer]
341
+ else:
342
+ hs_pool = [
343
+ image_features.hidden_states[layer_idx]
344
+ for layer_idx in vision_feature_layer
345
+ ]
346
+ selected_image_feature = torch.cat(hs_pool, dim=-1)
347
+
348
+ if vision_feature_select_strategy == "default":
349
+ selected_image_feature = selected_image_feature[:, 1:]
350
+ elif vision_feature_select_strategy == "full":
351
+ selected_image_feature = selected_image_feature
352
+ image_features = self.multi_modal_projector(selected_image_feature)
353
+
354
+ image_features = torch.split(image_features, image_num_patches, dim=0)
355
+
356
+ image_features, feature_lens = self.pack_image_features(
357
+ image_features,
358
+ image_sizes,
359
+ image_newline=self.image_newline,
360
+ vision_aspect_ratio=vision_aspect_ratio,
361
+ )
362
+
363
+ return image_features
364
+
365
+ @can_return_tuple
366
+ def forward(
367
+ self,
368
+ input_ids: torch.LongTensor = None,
369
+ pixel_values: torch.FloatTensor = None,
370
+ image_sizes: Optional[torch.LongTensor] = None,
371
+ attention_mask: Optional[torch.Tensor] = None,
372
+ position_ids: Optional[torch.LongTensor] = None,
373
+ past_key_values: Optional[list[torch.FloatTensor]] = None,
374
+ inputs_embeds: Optional[torch.FloatTensor] = None,
375
+ vision_feature_layer: Optional[Union[int, list[int]]] = None,
376
+ vision_feature_select_strategy: Optional[str] = None,
377
+ vision_aspect_ratio: Optional[str] = None,
378
+ batch_num_images: Optional[torch.LongTensor] = None,
379
+ use_cache: Optional[bool] = None,
380
+ output_attentions: Optional[bool] = None,
381
+ output_hidden_states: Optional[bool] = None,
382
+ return_dict: Optional[bool] = None,
383
+ cache_position: Optional[torch.LongTensor] = None,
384
+ **kwargs: Unpack[FlashAttentionKwargs],
385
+ ) -> Union[tuple, BeeModelOutputWithPast]:
386
+
387
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
388
+ output_hidden_states = (output_hidden_states
389
+ if output_hidden_states is not None else
390
+ self.config.output_hidden_states)
391
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
392
+ vision_feature_layer = (vision_feature_layer
393
+ if vision_feature_layer is not None else
394
+ self.config.vision_feature_layer)
395
+ vision_feature_select_strategy = (
396
+ vision_feature_select_strategy if vision_feature_select_strategy
397
+ is not None else self.config.vision_feature_select_strategy)
398
+ vision_aspect_ratio = (vision_aspect_ratio
399
+ if vision_aspect_ratio is not None else
400
+ self.config.vision_aspect_ratio)
401
+
402
+ if (input_ids is None) ^ (inputs_embeds is not None):
403
+ raise ValueError(
404
+ "You must specify exactly one of input_ids or inputs_embeds")
405
+
406
+ if pixel_values is not None and inputs_embeds is not None:
407
+ raise ValueError(
408
+ "You cannot specify both `pixel_values` and `inputs_embeds` at the same time, "
409
+ "and must specify either one")
410
+ if inputs_embeds is None:
411
+ inputs_embeds = self.get_input_embeddings()(input_ids)
412
+
413
+ # Images are processed with Anyres
414
+
415
+ if pixel_values is not None:
416
+ image_features = self.get_image_features(
417
+ pixel_values,
418
+ image_sizes,
419
+ vision_feature_layer=vision_feature_layer,
420
+ vision_feature_select_strategy=vision_feature_select_strategy,
421
+ batch_num_images=batch_num_images,
422
+ )
423
+ image_features = torch.cat(image_features, dim=0)
424
+
425
+ special_image_mask = (
426
+ input_ids == self.config.image_token_id).unsqueeze(-1)
427
+ special_image_mask = special_image_mask.expand_as(
428
+ inputs_embeds).to(inputs_embeds.device)
429
+ if not is_torchdynamo_compiling() and inputs_embeds[
430
+ special_image_mask].numel() != image_features.numel():
431
+ n_image_tokens = (
432
+ input_ids == self.config.image_token_id).sum()
433
+ n_image_features = image_features.shape[0]
434
+ raise ValueError(
435
+ f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
436
+ )
437
+ image_features = image_features.to(inputs_embeds.device,
438
+ inputs_embeds.dtype)
439
+ inputs_embeds = inputs_embeds.masked_scatter(
440
+ special_image_mask, image_features)
441
+
442
+ outputs = self.language_model(
443
+ attention_mask=attention_mask,
444
+ position_ids=position_ids,
445
+ past_key_values=past_key_values,
446
+ inputs_embeds=inputs_embeds,
447
+ use_cache=use_cache,
448
+ output_attentions=output_attentions,
449
+ output_hidden_states=output_hidden_states,
450
+ return_dict=True,
451
+ cache_position=cache_position,
452
+ **kwargs,
453
+ )
454
+
455
+ return BeeModelOutputWithPast(
456
+ last_hidden_state=outputs.last_hidden_state,
457
+ past_key_values=outputs.past_key_values,
458
+ hidden_states=outputs.hidden_states,
459
+ attentions=outputs.attentions,
460
+ image_hidden_states=image_features
461
+ if pixel_values is not None else None,
462
+ )
463
+
464
+ def apply_pooling(self, image_features):
465
+ height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
466
+ batch_frames, seq_len, dim = image_features.shape
467
+ image_features = image_features.view(batch_frames, height, width, -1)
468
+ image_features = image_features.permute(0, 3, 1, 2).contiguous()
469
+
470
+ height, width = image_features.shape[2:]
471
+ scaled_shape = [math.ceil(height / 2), math.ceil(width / 2)]
472
+ image_features = nn.functional.interpolate(image_features,
473
+ size=scaled_shape,
474
+ mode="bilinear")
475
+
476
+ image_features = image_features.permute(0, 2, 3, 1)
477
+ image_features = image_features.view(batch_frames, -1, dim)
478
+ return image_features
479
+
480
+
481
+ class BeeForConditionalGeneration(BeePreTrainedModel, GenerationMixin):
482
+ _checkpoint_conversion_mapping = {
483
+ "^language_model.model": "model.language_model",
484
+ "^vision_tower": "model.vision_tower",
485
+ "^multi_modal_projector": "model.multi_modal_projector",
486
+ "^image_newline": "model.image_newline",
487
+ "^language_model.lm_head": "lm_head",
488
+ }
489
+ _tied_weights_keys = ["lm_head.weight"]
490
+
491
+ def __init__(self, config: BeeConfig):
492
+ super().__init__(config)
493
+ self.model = BeeModel(config)
494
+ self.lm_head = nn.Linear(config.text_config.hidden_size,
495
+ config.text_config.vocab_size,
496
+ bias=False)
497
+ self.post_init()
498
+
499
+ def get_input_embeddings(self):
500
+ return self.model.get_input_embeddings()
501
+
502
+ def set_input_embeddings(self, value):
503
+ self.model.set_input_embeddings(value)
504
+
505
+ def get_output_embeddings(self) -> nn.Module:
506
+ return self.lm_head
507
+
508
+ def set_output_embeddings(self, new_embeddings):
509
+ self.lm_head = new_embeddings
510
+
511
+ def set_decoder(self, decoder):
512
+ self.model = decoder
513
+
514
+ def get_decoder(self):
515
+ return self.model
516
+
517
+ def pack_image_features(self,
518
+ image_features,
519
+ image_sizes,
520
+ vision_feature_select_strategy,
521
+ image_newline=None):
522
+ return self.model.pack_image_features(
523
+ image_features=image_features,
524
+ image_sizes=image_sizes,
525
+ vision_feature_select_strategy=vision_feature_select_strategy,
526
+ image_newline=image_newline,
527
+ )
528
+
529
+ def get_image_features(
530
+ self,
531
+ pixel_values: torch.FloatTensor,
532
+ image_sizes: torch.Tensor,
533
+ vision_feature_layer: Optional[Union[int, list[int]]] = None,
534
+ vision_feature_select_strategy: Optional[str] = None,
535
+ ):
536
+ return self.model.get_image_features(
537
+ pixel_values=pixel_values,
538
+ image_sizes=image_sizes,
539
+ vision_feature_layer=vision_feature_layer,
540
+ vision_feature_select_strategy=vision_feature_select_strategy,
541
+ )
542
+
543
+ # Make modules available throught conditional class for BC
544
+ @property
545
+ def language_model(self):
546
+ return self.model.language_model
547
+
548
+ @property
549
+ def vision_tower(self):
550
+ return self.model.vision_tower
551
+
552
+ @property
553
+ def multi_modal_projector(self):
554
+ return self.model.multi_modal_projector
555
+
556
+ @can_return_tuple
557
+ def forward(
558
+ self,
559
+ input_ids: torch.LongTensor = None,
560
+ pixel_values: torch.FloatTensor = None,
561
+ image_sizes: Optional[torch.LongTensor] = None,
562
+ attention_mask: Optional[torch.Tensor] = None,
563
+ position_ids: Optional[torch.LongTensor] = None,
564
+ past_key_values: Optional[list[torch.FloatTensor]] = None,
565
+ inputs_embeds: Optional[torch.FloatTensor] = None,
566
+ vision_feature_layer: Optional[Union[int, list[int]]] = None,
567
+ vision_feature_select_strategy: Optional[str] = None,
568
+ vision_aspect_ratio: Optional[str] = None,
569
+ batch_num_images: Optional[torch.LongTensor] = None,
570
+ labels: Optional[torch.LongTensor] = None,
571
+ use_cache: Optional[bool] = None,
572
+ output_attentions: Optional[bool] = None,
573
+ output_hidden_states: Optional[bool] = None,
574
+ return_dict: Optional[bool] = None,
575
+ cache_position: Optional[torch.LongTensor] = None,
576
+ logits_to_keep: Union[int, torch.Tensor] = 0,
577
+ **kwargs,
578
+ ) -> Union[tuple, BeeCausalLMOutputWithPast]:
579
+
580
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
581
+ output_hidden_states = (output_hidden_states
582
+ if output_hidden_states is not None else
583
+ self.config.output_hidden_states)
584
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
585
+ vision_feature_layer = (vision_feature_layer
586
+ if vision_feature_layer is not None else
587
+ self.config.vision_feature_layer)
588
+ vision_feature_select_strategy = (
589
+ vision_feature_select_strategy if vision_feature_select_strategy
590
+ is not None else self.config.vision_feature_select_strategy)
591
+ vision_aspect_ratio = (vision_aspect_ratio
592
+ if vision_aspect_ratio is not None else
593
+ self.config.vision_aspect_ratio)
594
+
595
+ outputs = self.model(
596
+ input_ids=input_ids,
597
+ pixel_values=pixel_values,
598
+ image_sizes=image_sizes,
599
+ vision_aspect_ratio=vision_aspect_ratio,
600
+ vision_feature_layer=vision_feature_layer,
601
+ vision_feature_select_strategy=vision_feature_select_strategy,
602
+ batch_num_images=batch_num_images,
603
+ attention_mask=attention_mask,
604
+ position_ids=position_ids,
605
+ past_key_values=past_key_values,
606
+ inputs_embeds=inputs_embeds,
607
+ use_cache=use_cache,
608
+ output_attentions=output_attentions,
609
+ output_hidden_states=output_hidden_states,
610
+ return_dict=True,
611
+ cache_position=cache_position,
612
+ logits_to_keep=logits_to_keep,
613
+ **kwargs,
614
+ )
615
+
616
+ hidden_states = outputs[0]
617
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
618
+ slice_indices = slice(-logits_to_keep, None) if isinstance(
619
+ logits_to_keep, int) else logits_to_keep
620
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
621
+
622
+ loss = None
623
+ if labels is not None:
624
+ loss = self.loss_function(
625
+ logits=logits,
626
+ labels=labels,
627
+ vocab_size=self.config.text_config.vocab_size,
628
+ **kwargs)
629
+
630
+ return BeeCausalLMOutputWithPast(
631
+ loss=loss,
632
+ logits=logits,
633
+ past_key_values=outputs.past_key_values,
634
+ hidden_states=outputs.hidden_states,
635
+ attentions=outputs.attentions,
636
+ image_hidden_states=outputs.image_hidden_states,
637
+ )
638
+
639
+ def prepare_inputs_for_generation(
640
+ self,
641
+ input_ids,
642
+ past_key_values=None,
643
+ inputs_embeds=None,
644
+ pixel_values=None,
645
+ image_sizes=None,
646
+ attention_mask=None,
647
+ cache_position=None,
648
+ logits_to_keep=None,
649
+ **kwargs,
650
+ ):
651
+ # Overwritten -- in specific circumstances we don't want to forward image inputs to the model
652
+
653
+ model_inputs = super().prepare_inputs_for_generation(
654
+ input_ids,
655
+ past_key_values=past_key_values,
656
+ inputs_embeds=inputs_embeds,
657
+ attention_mask=attention_mask,
658
+ cache_position=cache_position,
659
+ logits_to_keep=logits_to_keep,
660
+ **kwargs,
661
+ )
662
+
663
+ if cache_position[0] == 0:
664
+ # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
665
+ # Otherwise we need pixel values to be passed to model
666
+ model_inputs["pixel_values"] = pixel_values
667
+ model_inputs["image_sizes"] = image_sizes
668
+
669
+ return model_inputs
670
+
671
+ @staticmethod
672
+ def _prepare_4d_causal_attention_mask_with_cache_position(
673
+ attention_mask: torch.Tensor,
674
+ sequence_length: int,
675
+ target_length: int,
676
+ dtype: torch.dtype,
677
+ cache_position: torch.Tensor,
678
+ batch_size: int,
679
+ **kwargs,
680
+ ):
681
+
682
+ if attention_mask is not None and attention_mask.dim() == 4:
683
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
684
+ causal_mask = attention_mask
685
+ else:
686
+ min_dtype = torch.finfo(dtype).min
687
+ causal_mask = torch.full((sequence_length, target_length),
688
+ fill_value=min_dtype,
689
+ dtype=dtype,
690
+ device=cache_position.device)
691
+ if sequence_length != 1:
692
+ causal_mask = torch.triu(causal_mask, diagonal=1)
693
+ causal_mask *= torch.arange(
694
+ target_length,
695
+ device=cache_position.device) > cache_position.reshape(-1, 1)
696
+ causal_mask = causal_mask[None, None, :, :].expand(
697
+ batch_size, 1, -1, -1)
698
+ if attention_mask is not None:
699
+ causal_mask = causal_mask.clone(
700
+ ) # copy to contiguous memory for in-place edit
701
+ mask_length = attention_mask.shape[-1]
702
+ padding_mask = causal_mask[:, :, :, :
703
+ mask_length] + attention_mask[:,
704
+ None,
705
+ None, :].to(
706
+ causal_mask
707
+ .
708
+ device
709
+ )
710
+ padding_mask = padding_mask == 0
711
+ causal_mask[:, :, :, :
712
+ mask_length] = causal_mask[:, :, :, :
713
+ mask_length].masked_fill(
714
+ padding_mask,
715
+ min_dtype)
716
+
717
+ return causal_mask
718
+
719
+
720
+ __all__ = ["BeeModel", "BeeForConditionalGeneration", "BeePreTrainedModel"]
preprocessor_config.json ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_pad": true,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "image_grid_pinpoints": [
8
+ [
9
+ 384,
10
+ 384
11
+ ],
12
+ [
13
+ 384,
14
+ 768
15
+ ],
16
+ [
17
+ 384,
18
+ 1152
19
+ ],
20
+ [
21
+ 384,
22
+ 1536
23
+ ],
24
+ [
25
+ 384,
26
+ 1920
27
+ ],
28
+ [
29
+ 384,
30
+ 2304
31
+ ],
32
+ [
33
+ 768,
34
+ 384
35
+ ],
36
+ [
37
+ 768,
38
+ 768
39
+ ],
40
+ [
41
+ 768,
42
+ 1152
43
+ ],
44
+ [
45
+ 768,
46
+ 1536
47
+ ],
48
+ [
49
+ 768,
50
+ 1920
51
+ ],
52
+ [
53
+ 768,
54
+ 2304
55
+ ],
56
+ [
57
+ 1152,
58
+ 384
59
+ ],
60
+ [
61
+ 1152,
62
+ 768
63
+ ],
64
+ [
65
+ 1152,
66
+ 1152
67
+ ],
68
+ [
69
+ 1152,
70
+ 1536
71
+ ],
72
+ [
73
+ 1152,
74
+ 1920
75
+ ],
76
+ [
77
+ 1152,
78
+ 2304
79
+ ],
80
+ [
81
+ 1536,
82
+ 384
83
+ ],
84
+ [
85
+ 1536,
86
+ 768
87
+ ],
88
+ [
89
+ 1536,
90
+ 1152
91
+ ],
92
+ [
93
+ 1536,
94
+ 1536
95
+ ],
96
+ [
97
+ 1536,
98
+ 1920
99
+ ],
100
+ [
101
+ 1536,
102
+ 2304
103
+ ],
104
+ [
105
+ 1920,
106
+ 384
107
+ ],
108
+ [
109
+ 1920,
110
+ 768
111
+ ],
112
+ [
113
+ 1920,
114
+ 1152
115
+ ],
116
+ [
117
+ 1920,
118
+ 1536
119
+ ],
120
+ [
121
+ 1920,
122
+ 1920
123
+ ],
124
+ [
125
+ 1920,
126
+ 2304
127
+ ],
128
+ [
129
+ 2304,
130
+ 384
131
+ ],
132
+ [
133
+ 2304,
134
+ 768
135
+ ],
136
+ [
137
+ 2304,
138
+ 1152
139
+ ],
140
+ [
141
+ 2304,
142
+ 1536
143
+ ],
144
+ [
145
+ 2304,
146
+ 1920
147
+ ],
148
+ [
149
+ 2304,
150
+ 2304
151
+ ]
152
+ ],
153
+ "image_mean": [
154
+ 0.5,
155
+ 0.5,
156
+ 0.5
157
+ ],
158
+ "image_processor_type": "BeeImageProcessor",
159
+ "image_std": [
160
+ 0.5,
161
+ 0.5,
162
+ 0.5
163
+ ],
164
+ "processor_class": "BeeProcessor",
165
+ "auto_map": {
166
+ "AutoProcessor": "processing_bee.BeeProcessor",
167
+ "AutoImageProcessor": "image_processing_bee.BeeImageProcessor"
168
+ },
169
+ "resample": 2,
170
+ "rescale_factor": 0.00392156862745098,
171
+ "size": {
172
+ "height": 384,
173
+ "width": 384
174
+ }
175
+ }
processing_bee.py ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed under the Apache License, Version 2.0 (the "License");
2
+ # you may not use this file except in compliance with the License.
3
+ # You may obtain a copy of the License at
4
+ #
5
+ # http://www.apache.org/licenses/LICENSE-2.0
6
+ #
7
+ # Unless required by applicable law or agreed to in writing, software
8
+ # distributed under the License is distributed on an "AS IS" BASIS,
9
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10
+ # See the License for the specific language governing permissions and
11
+ # limitations under the License.
12
+
13
+ import math
14
+ from collections.abc import Iterable
15
+ from typing import Union
16
+
17
+ import numpy as np
18
+
19
+ from transformers.feature_extraction_utils import BatchFeature
20
+ from transformers.image_processing_utils import select_best_resolution
21
+ from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
22
+ from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, MultiModalData
23
+ from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
24
+ from transformers.utils import logging
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ class BeeProcessorKwargs(ProcessingKwargs, total=False):
30
+ # see processing_utils.ProcessingKwargs documentation for usage.
31
+ _defaults = {
32
+ "text_kwargs": {
33
+ "padding": False,
34
+ },
35
+ "image_kwargs": {},
36
+ }
37
+
38
+
39
+ class BeeProcessor(ProcessorMixin):
40
+ attributes = ["image_processor", "tokenizer"]
41
+ valid_kwargs = [
42
+ "chat_template",
43
+ "num_image_tokens",
44
+ "image_processor_type",
45
+ "vision_feature_select_strategy",
46
+ "image_token",
47
+ "vision_aspect_ratio",
48
+ ]
49
+ image_processor_class = "AutoImageProcessor"
50
+ tokenizer_class = "AutoTokenizer"
51
+
52
+ def __init__(
53
+ self,
54
+ image_processor=None,
55
+ tokenizer=None,
56
+ num_image_tokens=None,
57
+ vision_feature_select_strategy=None,
58
+ chat_template=None,
59
+ image_token="<image>",
60
+ vision_aspect_ratio="anyres_max_6",
61
+ **kwargs,
62
+ ):
63
+ self.num_image_tokens = num_image_tokens
64
+ self.vision_feature_select_strategy = vision_feature_select_strategy
65
+ self.image_token = tokenizer.image_token if hasattr(
66
+ tokenizer, "image_token") else image_token
67
+ self.image_token_id = (tokenizer.image_token_id if getattr(
68
+ tokenizer, "image_token_id",
69
+ None) else tokenizer.convert_tokens_to_ids(self.image_token))
70
+ self.vision_aspect_ratio = vision_aspect_ratio
71
+ super().__init__(image_processor,
72
+ tokenizer,
73
+ chat_template=chat_template)
74
+
75
+ def __call__(
76
+ self,
77
+ images: ImageInput = None,
78
+ text: Union[TextInput, PreTokenizedInput, list[TextInput],
79
+ list[PreTokenizedInput]] = None,
80
+ audio=None,
81
+ **kwargs: Unpack[BeeProcessorKwargs],
82
+ ) -> BatchFeature:
83
+
84
+ output_kwargs = self._merge_kwargs(
85
+ BeeProcessorKwargs,
86
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
87
+ **kwargs,
88
+ )
89
+
90
+ if isinstance(text, str):
91
+ text = [text]
92
+ elif not isinstance(text, list) and not isinstance(text[0], str):
93
+ raise ValueError(
94
+ "Invalid input text. Please provide a string, or a list of strings"
95
+ )
96
+
97
+ image_inputs = {}
98
+
99
+ if images is not None:
100
+ image_inputs = self.image_processor(
101
+ images, **output_kwargs["images_kwargs"])
102
+
103
+ batch_num_images = iter(image_inputs["batch_num_images"])
104
+ image_sizes = iter(image_inputs["image_sizes"])
105
+ height, width = get_image_size(
106
+ to_numpy_array(image_inputs["pixel_values"][0][0]),
107
+ channel_dim=output_kwargs["images_kwargs"].get("data_format"),
108
+ )
109
+ text, num_image_tokens = self._expand_image_tokens(
110
+ text, image_sizes, height, width, self.image_token,
111
+ batch_num_images)
112
+
113
+ return_tensors = output_kwargs["text_kwargs"].pop(
114
+ "return_tensors", None)
115
+ text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
116
+ self._check_special_mm_tokens(text, text_inputs, modalities=["image"])
117
+
118
+ return BatchFeature(data={
119
+ **text_inputs,
120
+ **image_inputs
121
+ },
122
+ tensor_type=return_tensors)
123
+
124
+ def _expand_image_tokens(
125
+ self,
126
+ text: list[TextInput],
127
+ image_sizes: Iterable[Union[list[int], int]],
128
+ height: int,
129
+ width: int,
130
+ special_token: str,
131
+ batch_num_images: Iterable[int],
132
+ ):
133
+
134
+ prompt_strings = []
135
+ max_num_vision_tokens = 0
136
+ for sample in text:
137
+ if special_token in sample:
138
+ is_multi_image = next(batch_num_images) != 1
139
+ else:
140
+ is_multi_image = False
141
+ while special_token in sample:
142
+ if is_multi_image:
143
+ num_image_tokens = self.num_image_tokens + 1 # one for image_newline
144
+ else:
145
+ original_size = next(image_sizes)
146
+ if not isinstance(original_size, (list, tuple)):
147
+ # cast to list to avoid numerical precision errors when calculating unpadding
148
+ original_size = original_size.tolist()
149
+ orig_height, orig_width = original_size
150
+ num_image_tokens = self._get_number_of_features(
151
+ orig_height, orig_width, height, width)
152
+ max_num_vision_tokens = max(max_num_vision_tokens,
153
+ num_image_tokens)
154
+ if self.vision_feature_select_strategy == "default":
155
+ num_image_tokens -= 1
156
+ sample = sample.replace(special_token,
157
+ "<placeholder>" * num_image_tokens, 1)
158
+ prompt_strings.append(sample)
159
+ text = [
160
+ sample.replace("<placeholder>", special_token)
161
+ for sample in prompt_strings
162
+ ]
163
+ return text, max_num_vision_tokens
164
+
165
+ def _get_number_of_features(self, orig_height: int, orig_width: int,
166
+ height: int, width: int) -> int:
167
+ image_grid_pinpoints = self.image_processor.image_grid_pinpoints
168
+
169
+ height_best_resolution, width_best_resolution = select_best_resolution(
170
+ [orig_height, orig_width], image_grid_pinpoints)
171
+ scale_height, scale_width = height_best_resolution // height, width_best_resolution // width
172
+
173
+ patches_height = patches_width = int(math.sqrt(self.num_image_tokens))
174
+ unpadded_features, newline_features = self._get_unpadded_features(
175
+ orig_height, orig_width, patches_height, patches_width,
176
+ scale_height, scale_width)
177
+
178
+ # The base patch covers the entire image (no CLS for SigLIP)
179
+ base_features = self.num_image_tokens
180
+ num_image_tokens = unpadded_features + newline_features + base_features
181
+ return num_image_tokens
182
+
183
+ # Adapted from transformers.models.llava_next.processing_llava_next.LlavaNextProcessor._get_unpadded_features
184
+ def _get_unpadded_features(self, height, width, patches_height,
185
+ patches_width, scale_height, scale_width):
186
+ current_height = patches_height * scale_height
187
+ current_width = patches_width * scale_width
188
+
189
+ original_aspect_ratio = width / height
190
+ current_aspect_ratio = current_width / current_height
191
+ if original_aspect_ratio > current_aspect_ratio:
192
+ new_height = int(round(height * (current_width / width), 7))
193
+ padding = (current_height - new_height) // 2
194
+ current_height -= padding * 2
195
+ else:
196
+ new_width = int(round(width * (current_height / height), 7))
197
+ padding = (current_width - new_width) // 2
198
+ current_width -= padding * 2
199
+
200
+ unpadded_features = current_height * current_width
201
+ newline_features = current_height
202
+
203
+ # for anyres_max_{}
204
+ if self.vision_aspect_ratio.startswith("anyres_max_"):
205
+ max_num_patches = int(
206
+ self.vision_aspect_ratio.removeprefix("anyres_max_"))
207
+ ratio = math.sqrt(current_height * current_width /
208
+ (max_num_patches * patches_height**2))
209
+ if ratio > 1.1:
210
+ unpadded_features = int(current_height // ratio) * int(
211
+ current_width // ratio)
212
+ newline_features = int(current_height // ratio)
213
+
214
+ return (unpadded_features, newline_features)
215
+
216
+ def _get_num_multimodal_tokens(self,
217
+ image_sizes=None,
218
+ video_sizes=None,
219
+ **kwargs):
220
+ """
221
+ Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
222
+ Args:
223
+ image_sizes (list[list[str]], *optional*):
224
+ The input sizes formatted as (height, width) per each image.
225
+ video_sizes (list[list[str]], *optional*):
226
+ The input sizes formatted as (num_frames, height, width) per each video.
227
+ audio_lengths (list[int], *optional*):
228
+ The input length formatted as per each audio.
229
+ Returns:
230
+ dict[str, list[int]]: A dictionary mapping each modality ("image", "video", "audio")
231
+ to a list containing the number of placeholder tokens required. If the model doesn't accept
232
+ a certain modality or no input sizes are provided, the dict value is set to an empty list.
233
+ """
234
+ vision_data = {}
235
+ if image_sizes is not None:
236
+ images_kwargs = BeeProcessorKwargs._defaults.get(
237
+ "images_kwargs", {})
238
+ images_kwargs.update(kwargs)
239
+
240
+ size = images_kwargs.get("size", None) or self.image_processor.size
241
+ size = ((size["shortest_edge"],
242
+ size["shortest_edge"]) if "shortest_edge" in size else
243
+ (min(size["height"], size["width"]),
244
+ min(size["height"], size["width"])))
245
+ processed_height, processed_width = size
246
+
247
+ batch_num_image_tokens = []
248
+ num_image_patches = [1] * len(
249
+ image_sizes
250
+ ) # llava-ov doesn't batch pixels as Idefics, thus `1` patch`
251
+ for image_size in image_sizes:
252
+ orig_height, orig_width = image_size
253
+ num_image_tokens = self._get_number_of_features(
254
+ orig_height, orig_width, processed_height, processed_width)
255
+ if self.vision_feature_select_strategy == "default":
256
+ num_image_tokens -= 1
257
+ batch_num_image_tokens.append(num_image_tokens)
258
+ vision_data.update({
259
+ "num_image_tokens": batch_num_image_tokens,
260
+ "num_image_patches": num_image_patches
261
+ })
262
+
263
+ return MultiModalData(**vision_data)
264
+
265
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
266
+ def batch_decode(self, *args, **kwargs):
267
+ """
268
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
269
+ refer to the docstring of this method for more information.
270
+ """
271
+ return self.tokenizer.batch_decode(*args, **kwargs)
272
+
273
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
274
+ def decode(self, *args, **kwargs):
275
+ """
276
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
277
+ the docstring of this method for more information.
278
+ """
279
+ return self.tokenizer.decode(*args, **kwargs)
280
+
281
+ @property
282
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
283
+ def model_input_names(self):
284
+ tokenizer_input_names = self.tokenizer.model_input_names
285
+ image_processor_input_names = self.image_processor.model_input_names
286
+ return list(
287
+ dict.fromkeys(tokenizer_input_names + image_processor_input_names))
288
+
289
+
290
+ __all__ = ["BeeProcessor"]
processor_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "image_token": "<image>",
3
+ "num_image_tokens": 729,
4
+ "processor_class": "BeeProcessor",
5
+ "auto_map": {
6
+ "AutoProcessor": "processing_bee.BeeProcessor",
7
+ "AutoImageProcessor": "image_processing_bee.BeeImageProcessor"
8
+ },
9
+ "video_token": "<video>",
10
+ "vision_aspect_ratio": "anyres_max_6",
11
+ "vision_feature_select_strategy": "full"
12
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6a4e9901c580f8acc48cdbd2618c3b0ec673dcb91d44b555171844c707f28d2
3
+ size 11423022
tokenizer_config.json ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "151669": {
214
+ "content": "<image>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "151670": {
222
+ "content": "<video>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ }
229
+ },
230
+ "additional_special_tokens": [
231
+ "<|im_start|>",
232
+ "<|im_end|>",
233
+ "<|object_ref_start|>",
234
+ "<|object_ref_end|>",
235
+ "<|box_start|>",
236
+ "<|box_end|>",
237
+ "<|quad_start|>",
238
+ "<|quad_end|>",
239
+ "<|vision_start|>",
240
+ "<|vision_end|>",
241
+ "<|vision_pad|>",
242
+ "<|image_pad|>",
243
+ "<|video_pad|>"
244
+ ],
245
+ "bos_token": null,
246
+ "clean_up_tokenization_spaces": false,
247
+ "eos_token": "<|im_end|>",
248
+ "errors": "replace",
249
+ "extra_special_tokens": {},
250
+ "model_max_length": 131072,
251
+ "pad_token": "<|endoftext|>",
252
+ "padding_side": "left",
253
+ "processor_class": "processing_bee.BeeProcessor",
254
+ "split_special_tokens": false,
255
+ "tokenizer_class": "Qwen2Tokenizer",
256
+ "unk_token": null
257
+ }
video_preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_pad": true,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "image_mean": [
8
+ 0.5,
9
+ 0.5,
10
+ 0.5
11
+ ],
12
+ "video_processor_type": "LlavaOnevisionVideoProcessor",
13
+ "image_std": [
14
+ 0.5,
15
+ 0.5,
16
+ 0.5
17
+ ],
18
+ "processor_class": "LlavaOnevisionProcessor",
19
+ "resample": 3,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 384,
23
+ "width": 384
24
+ }
25
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff