|  | import numpy as np | 
					
						
						|  | import cv2 | 
					
						
						|  | import os | 
					
						
						|  | import math | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  |  | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | 
					
						
						|  |  | 
					
						
						|  | import torch.utils.checkpoint as checkpoint | 
					
						
						|  | from functools import partial | 
					
						
						|  | from einops import rearrange | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from flash_attn.modules.mlp import FusedMLP | 
					
						
						|  | except: | 
					
						
						|  | print(f'FusedMLP of flash_attn is not installed!!!') | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from flash_attn.ops.rms_norm import DropoutAddRMSNorm | 
					
						
						|  | except: | 
					
						
						|  | print(f'DropoutAddRMSNorm of flash_attn is not installed!!!') | 
					
						
						|  |  | 
					
						
						|  | from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func | 
					
						
						|  | from flash_attn.bert_padding import unpad_input, pad_input | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FlashAttention(nn.Module): | 
					
						
						|  | """Implement the scaled dot product attention with softmax. | 
					
						
						|  | Arguments | 
					
						
						|  | --------- | 
					
						
						|  | softmax_scale: The temperature to use for the softmax attention. | 
					
						
						|  | (default: 1/sqrt(d_keys) where d_keys is computed at | 
					
						
						|  | runtime) | 
					
						
						|  | attention_dropout: The dropout rate to apply to the attention | 
					
						
						|  | (default: 0.0) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.softmax_scale = softmax_scale | 
					
						
						|  | self.dropout_p = attention_dropout | 
					
						
						|  |  | 
					
						
						|  | def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None, | 
					
						
						|  | max_s=None, need_weights=False): | 
					
						
						|  | """Implements the multihead softmax attention. | 
					
						
						|  | Arguments | 
					
						
						|  | --------- | 
					
						
						|  | qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None | 
					
						
						|  | if unpadded: (nnz, 3, h, d) | 
					
						
						|  | key_padding_mask: a bool tensor of shape (B, S) | 
					
						
						|  | """ | 
					
						
						|  | assert not need_weights | 
					
						
						|  | assert qkv.dtype in [torch.float16, torch.bfloat16] | 
					
						
						|  | assert qkv.is_cuda | 
					
						
						|  |  | 
					
						
						|  | if cu_seqlens is None: | 
					
						
						|  | batch_size = qkv.shape[0] | 
					
						
						|  | seqlen = qkv.shape[1] | 
					
						
						|  | if key_padding_mask is None: | 
					
						
						|  | qkv = rearrange(qkv, 'b s ... -> (b s) ...') | 
					
						
						|  | max_s = seqlen | 
					
						
						|  | cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, | 
					
						
						|  | device=qkv.device) | 
					
						
						|  | output = flash_attn_varlen_qkvpacked_func( | 
					
						
						|  | qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, | 
					
						
						|  | softmax_scale=self.softmax_scale, causal=causal | 
					
						
						|  | ) | 
					
						
						|  | output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) | 
					
						
						|  | else: | 
					
						
						|  | nheads = qkv.shape[-2] | 
					
						
						|  | x = rearrange(qkv, 'b s three h d -> b s (three h d)') | 
					
						
						|  | x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) | 
					
						
						|  | x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) | 
					
						
						|  | output_unpad = flash_attn_varlen_qkvpacked_func( | 
					
						
						|  | x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, | 
					
						
						|  | softmax_scale=self.softmax_scale, causal=causal | 
					
						
						|  | ) | 
					
						
						|  | output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), | 
					
						
						|  | indices, batch_size, seqlen), | 
					
						
						|  | 'b s (h d) -> b s h d', h=nheads) | 
					
						
						|  | else: | 
					
						
						|  | assert max_s is not None | 
					
						
						|  | output = flash_attn_varlen_qkvpacked_func( | 
					
						
						|  | qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, | 
					
						
						|  | softmax_scale=self.softmax_scale, causal=causal | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return output, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): | 
					
						
						|  | """ | 
					
						
						|  | grid_size: int of the grid height and width | 
					
						
						|  | return: | 
					
						
						|  | pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | 
					
						
						|  | """ | 
					
						
						|  | grid_h = np.arange(grid_size, dtype=np.float32) | 
					
						
						|  | grid_w = np.arange(grid_size, dtype=np.float32) | 
					
						
						|  | grid = np.meshgrid(grid_w, grid_h) | 
					
						
						|  | grid = np.stack(grid, axis=0) | 
					
						
						|  |  | 
					
						
						|  | grid = grid.reshape([2, 1, grid_size, grid_size]) | 
					
						
						|  | pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | 
					
						
						|  | if cls_token: | 
					
						
						|  | pos_embed = np.concatenate( | 
					
						
						|  | [np.zeros([1, embed_dim]), pos_embed], axis=0 | 
					
						
						|  | ) | 
					
						
						|  | return pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False): | 
					
						
						|  | """ | 
					
						
						|  | t_size: int of the temporal size | 
					
						
						|  | return: | 
					
						
						|  | pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token) | 
					
						
						|  | """ | 
					
						
						|  | grid_t = np.arange(t_size, dtype=np.float32) | 
					
						
						|  | pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t) | 
					
						
						|  | if cls_token: | 
					
						
						|  | pos_embed = np.concatenate( | 
					
						
						|  | [np.zeros([1, embed_dim]), pos_embed], axis=0 | 
					
						
						|  | ) | 
					
						
						|  | return pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | 
					
						
						|  | assert embed_dim % 2 == 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | emb_h = get_1d_sincos_pos_embed_from_grid( | 
					
						
						|  | embed_dim // 2, grid[0] | 
					
						
						|  | ) | 
					
						
						|  | emb_w = get_1d_sincos_pos_embed_from_grid( | 
					
						
						|  | embed_dim // 2, grid[1] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | emb = np.concatenate([emb_h, emb_w], axis=1) | 
					
						
						|  | return emb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | 
					
						
						|  | """ | 
					
						
						|  | embed_dim: output dimension for each position | 
					
						
						|  | pos: a list of positions to be encoded: size (M,) | 
					
						
						|  | out: (M, D) | 
					
						
						|  | """ | 
					
						
						|  | assert embed_dim % 2 == 0 | 
					
						
						|  | omega = np.arange(embed_dim // 2, dtype=np.float32) | 
					
						
						|  | omega /= embed_dim / 2.0 | 
					
						
						|  | omega = 1.0 / 10000**omega | 
					
						
						|  |  | 
					
						
						|  | pos = pos.reshape(-1) | 
					
						
						|  | out = np.einsum("m,d->md", pos, omega) | 
					
						
						|  |  | 
					
						
						|  | emb_sin = np.sin(out) | 
					
						
						|  | emb_cos = np.cos(out) | 
					
						
						|  |  | 
					
						
						|  | emb = np.concatenate([emb_sin, emb_cos], axis=1) | 
					
						
						|  | return emb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def interpolate_pos_embed(checkpoint_model, model, orig_t_size=4, pos_name='vision_encoder.pos_embed'): | 
					
						
						|  | if pos_name in checkpoint_model: | 
					
						
						|  | pos_embed_checkpoint = checkpoint_model[pos_name] | 
					
						
						|  | embedding_size = pos_embed_checkpoint.shape[-1] | 
					
						
						|  | num_patches = model.patch_embed.num_patches | 
					
						
						|  | num_extra_tokens = model.pos_embed.shape[-2] - num_patches | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_t_size = model.T | 
					
						
						|  |  | 
					
						
						|  | orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5) | 
					
						
						|  |  | 
					
						
						|  | new_size = int((num_patches // (new_t_size))** 0.5) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if orig_t_size != new_t_size: | 
					
						
						|  | print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})") | 
					
						
						|  | extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size) | 
					
						
						|  | pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size) | 
					
						
						|  | pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear') | 
					
						
						|  | pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size) | 
					
						
						|  | pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size) | 
					
						
						|  | new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | 
					
						
						|  | checkpoint_model[pos_name] = new_pos_embed | 
					
						
						|  | pos_embed_checkpoint = new_pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if orig_size != new_size: | 
					
						
						|  | print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})") | 
					
						
						|  | extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size) | 
					
						
						|  | pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) | 
					
						
						|  | pos_tokens = torch.nn.functional.interpolate( | 
					
						
						|  | pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) | 
					
						
						|  | pos_tokens = pos_tokens.flatten(1, 3) | 
					
						
						|  | new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | 
					
						
						|  | checkpoint_model[pos_name] = new_pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def interpolate_pos_embed_internvideo2(checkpoint_model, model, orig_t_size = 8): | 
					
						
						|  |  | 
					
						
						|  | for pos_name in ['pos_embed', 'clip_pos_embed']: | 
					
						
						|  | if pos_name in checkpoint_model: | 
					
						
						|  | pos_embed_checkpoint = checkpoint_model[pos_name] | 
					
						
						|  | embedding_size = pos_embed_checkpoint.shape[-1] | 
					
						
						|  | num_patches = model.patch_embed.num_patches | 
					
						
						|  | num_extra_tokens = model.pos_embed.shape[-2] - num_patches | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_t_size = model.num_frames // model.tubelet_size | 
					
						
						|  |  | 
					
						
						|  | orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5) | 
					
						
						|  |  | 
					
						
						|  | new_size = int((num_patches // (new_t_size))** 0.5) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if orig_t_size != new_t_size: | 
					
						
						|  | print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})") | 
					
						
						|  | extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size) | 
					
						
						|  | pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size) | 
					
						
						|  | pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear') | 
					
						
						|  | pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size) | 
					
						
						|  | pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size) | 
					
						
						|  | new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | 
					
						
						|  | checkpoint_model[pos_name] = new_pos_embed | 
					
						
						|  | pos_embed_checkpoint = new_pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if orig_size != new_size: | 
					
						
						|  | print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})") | 
					
						
						|  | extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size) | 
					
						
						|  | pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) | 
					
						
						|  | pos_tokens = torch.nn.functional.interpolate( | 
					
						
						|  | pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) | 
					
						
						|  | pos_tokens = pos_tokens.flatten(1, 3) | 
					
						
						|  | new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | 
					
						
						|  | checkpoint_model[pos_name] = new_pos_embed | 
					
						
						|  |  | 
					
						
						|  | if 'pos_embed_spatial' in checkpoint_model or 'pos_embed_temporal' in checkpoint_model: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def interpolate_pos_embed_internvideo2_new(checkpoint_model, model, orig_t_size = 8): | 
					
						
						|  | pos_names = [] | 
					
						
						|  | for k in checkpoint_model.keys(): | 
					
						
						|  | if ('pos_embed' in k or 'clip_pos_embed' in k) and 'img_pos_embed' not in k: | 
					
						
						|  | pos_names.append(k) | 
					
						
						|  |  | 
					
						
						|  | print(f"pos names list for interpolating: {pos_names}") | 
					
						
						|  |  | 
					
						
						|  | assert len(pos_names) > 0, checkpoint_model.keys() | 
					
						
						|  |  | 
					
						
						|  | if 'pos_embed_spatial' in checkpoint_model.keys() or 'pos_embed_temporal' in checkpoint_model.keys(): | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for pos_name in pos_names: | 
					
						
						|  |  | 
					
						
						|  | pos_embed_checkpoint = checkpoint_model[pos_name] | 
					
						
						|  | embedding_size = pos_embed_checkpoint.shape[-1] | 
					
						
						|  | num_patches = model.patch_embed.num_patches | 
					
						
						|  | num_extra_tokens = model.pos_embed.shape[-2] - num_patches | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_t_size = model.num_frames // model.tubelet_size | 
					
						
						|  |  | 
					
						
						|  | orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5) | 
					
						
						|  |  | 
					
						
						|  | new_size = int((num_patches // (new_t_size))** 0.5) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if orig_t_size != new_t_size: | 
					
						
						|  | print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})") | 
					
						
						|  | extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size) | 
					
						
						|  | pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size) | 
					
						
						|  | pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear') | 
					
						
						|  | pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size) | 
					
						
						|  | pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size) | 
					
						
						|  | new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | 
					
						
						|  | checkpoint_model[pos_name] = new_pos_embed | 
					
						
						|  | pos_embed_checkpoint = new_pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if orig_size != new_size: | 
					
						
						|  | print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})") | 
					
						
						|  | extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size) | 
					
						
						|  | pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) | 
					
						
						|  | pos_tokens = torch.nn.functional.interpolate( | 
					
						
						|  | pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) | 
					
						
						|  | pos_tokens = pos_tokens.flatten(1, 3) | 
					
						
						|  | new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | 
					
						
						|  | checkpoint_model[pos_name] = new_pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False): | 
					
						
						|  | """ | 
					
						
						|  | grid_size: int of the grid height and width | 
					
						
						|  | t_size: int of the temporal size | 
					
						
						|  | return: | 
					
						
						|  | pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | 
					
						
						|  | """ | 
					
						
						|  | assert embed_dim % 4 == 0 | 
					
						
						|  | embed_dim_spatial = embed_dim // 4 * 3 | 
					
						
						|  | embed_dim_temporal = embed_dim // 4 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | grid_h = np.arange(grid_size, dtype=np.float32) | 
					
						
						|  | grid_w = np.arange(grid_size, dtype=np.float32) | 
					
						
						|  | grid = np.meshgrid(grid_w, grid_h) | 
					
						
						|  | grid = np.stack(grid, axis=0) | 
					
						
						|  |  | 
					
						
						|  | grid = grid.reshape([2, 1, grid_size, grid_size]) | 
					
						
						|  | pos_embed_spatial = get_2d_sincos_pos_embed_from_grid( | 
					
						
						|  | embed_dim_spatial, grid | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | grid_t = np.arange(t_size, dtype=np.float32) | 
					
						
						|  | pos_embed_temporal = get_1d_sincos_pos_embed_from_grid( | 
					
						
						|  | embed_dim_temporal, grid_t | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] | 
					
						
						|  | pos_embed_temporal = np.repeat( | 
					
						
						|  | pos_embed_temporal, grid_size**2, axis=1 | 
					
						
						|  | ) | 
					
						
						|  | pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] | 
					
						
						|  | pos_embed_spatial = np.repeat( | 
					
						
						|  | pos_embed_spatial, t_size, axis=0 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) | 
					
						
						|  | pos_embed = pos_embed.reshape([-1, embed_dim]) | 
					
						
						|  |  | 
					
						
						|  | if cls_token: | 
					
						
						|  | pos_embed = np.concatenate( | 
					
						
						|  | [np.zeros([1, embed_dim]), pos_embed], axis=0 | 
					
						
						|  | ) | 
					
						
						|  | return pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PatchEmbed(nn.Module): | 
					
						
						|  | """ 3D Image to Patch Embedding | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, | 
					
						
						|  | num_frames=8, tubelet_size=1, norm_layer=None | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | img_size = to_2tuple(img_size) | 
					
						
						|  | patch_size = to_2tuple(patch_size) | 
					
						
						|  | self.img_size = img_size | 
					
						
						|  | self.patch_size = patch_size | 
					
						
						|  | self.grid_size = ( | 
					
						
						|  | num_frames // tubelet_size, | 
					
						
						|  | img_size[0] // patch_size[0], | 
					
						
						|  | img_size[1] // patch_size[1] | 
					
						
						|  | ) | 
					
						
						|  | self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2] | 
					
						
						|  | self.num_img_patches = self.grid_size[1] * self.grid_size[2] | 
					
						
						|  |  | 
					
						
						|  | self.proj = nn.Conv3d( | 
					
						
						|  | in_channels=in_chans, out_channels=embed_dim, | 
					
						
						|  | kernel_size=(tubelet_size, patch_size[0], patch_size[1]), | 
					
						
						|  | stride=(tubelet_size, patch_size[0], patch_size[1]) | 
					
						
						|  | ) | 
					
						
						|  | self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | x = x.flatten(3).permute(0, 2, 3, 1) | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CrossAttention(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., | 
					
						
						|  | proj_drop=0., attn_head_dim=None, out_dim=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | if out_dim is None: | 
					
						
						|  | out_dim = dim | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | head_dim = dim // num_heads | 
					
						
						|  | if attn_head_dim is not None: | 
					
						
						|  | head_dim = attn_head_dim | 
					
						
						|  | all_head_dim = head_dim * self.num_heads | 
					
						
						|  | self.scale = qk_scale or head_dim ** -0.5 | 
					
						
						|  | assert all_head_dim == dim | 
					
						
						|  |  | 
					
						
						|  | self.q = nn.Linear(dim, all_head_dim, bias=False) | 
					
						
						|  | self.k = nn.Linear(dim, all_head_dim, bias=False) | 
					
						
						|  | self.v = nn.Linear(dim, all_head_dim, bias=False) | 
					
						
						|  |  | 
					
						
						|  | if qkv_bias: | 
					
						
						|  | self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) | 
					
						
						|  | self.k_bias = nn.Parameter(torch.zeros(all_head_dim)) | 
					
						
						|  | self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) | 
					
						
						|  | else: | 
					
						
						|  | self.q_bias = None | 
					
						
						|  | self.k_bias = None | 
					
						
						|  | self.v_bias = None | 
					
						
						|  |  | 
					
						
						|  | self.attn_drop = nn.Dropout(attn_drop) | 
					
						
						|  | self.proj = nn.Linear(all_head_dim, out_dim) | 
					
						
						|  | self.proj_drop = nn.Dropout(proj_drop) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, k=None, v=None): | 
					
						
						|  | B, N, C = x.shape | 
					
						
						|  | N_k = k.shape[1] | 
					
						
						|  | N_v = v.shape[1] | 
					
						
						|  |  | 
					
						
						|  | q_bias, k_bias, v_bias = None, None, None | 
					
						
						|  | if self.q_bias is not None: | 
					
						
						|  | q_bias = self.q_bias | 
					
						
						|  | k_bias = self.k_bias | 
					
						
						|  | v_bias = self.v_bias | 
					
						
						|  |  | 
					
						
						|  | q = F.linear(input=x, weight=self.q.weight, bias=q_bias) | 
					
						
						|  | q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) | 
					
						
						|  |  | 
					
						
						|  | k = F.linear(input=k, weight=self.k.weight, bias=k_bias) | 
					
						
						|  | k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) | 
					
						
						|  |  | 
					
						
						|  | v = F.linear(input=v, weight=self.v.weight, bias=v_bias) | 
					
						
						|  | v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) | 
					
						
						|  |  | 
					
						
						|  | q = q * self.scale | 
					
						
						|  | attn = (q @ k.transpose(-2, -1)) | 
					
						
						|  |  | 
					
						
						|  | attn = attn.softmax(dim=-1) | 
					
						
						|  | attn = self.attn_drop(attn) | 
					
						
						|  |  | 
					
						
						|  | x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | x = self.proj_drop(x) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AttentiveBlock(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | 
					
						
						|  | drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.norm1_q = norm_layer(dim) | 
					
						
						|  | self.norm1_k = norm_layer(dim) | 
					
						
						|  | self.norm1_v = norm_layer(dim) | 
					
						
						|  | self.cross_attn = CrossAttention( | 
					
						
						|  | dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, | 
					
						
						|  | proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim) | 
					
						
						|  |  | 
					
						
						|  | self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None): | 
					
						
						|  | x_q = self.norm1_q(x_q + pos_q) | 
					
						
						|  | x_k = self.norm1_k(x_kv + pos_k) | 
					
						
						|  | x_v = self.norm1_v(x_kv) | 
					
						
						|  | x = self.cross_attn(x_q, k=x_k, v=x_v) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AttentionPoolingBlock(AttentiveBlock): | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x_q = x.mean(1, keepdim=True) | 
					
						
						|  | x_kv, pos_q, pos_k = x, 0, 0 | 
					
						
						|  | x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None) | 
					
						
						|  | x = x.squeeze(1) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LayerScale(nn.Module): | 
					
						
						|  | def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.inplace = inplace | 
					
						
						|  | self.weight = nn.Parameter(init_values * torch.ones(dim)) | 
					
						
						|  | self.force_fp32 = force_fp32 | 
					
						
						|  |  | 
					
						
						|  | @torch.cuda.amp.autocast(enabled=False) | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | if self.force_fp32: | 
					
						
						|  | output_type = x.dtype | 
					
						
						|  | out = x.float().mul_(self.weight.float()) if self.inplace else x.float() * self.weight.float() | 
					
						
						|  | return out.to(dtype=output_type) | 
					
						
						|  | else: | 
					
						
						|  | out = x.mul_(self.weight) if self.inplace else x * self.weight | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Attention(nn.Module): | 
					
						
						|  | def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False, | 
					
						
						|  | causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | assert dim % num_heads == 0, 'dim should be divisible by num_heads' | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | head_dim = dim // num_heads | 
					
						
						|  | self.scale = head_dim ** -0.5 | 
					
						
						|  |  | 
					
						
						|  | self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | 
					
						
						|  | self.attn_drop = nn.Dropout(attn_drop) | 
					
						
						|  | self.proj = nn.Linear(dim, dim) | 
					
						
						|  | self.proj_drop = nn.Dropout(proj_drop) | 
					
						
						|  |  | 
					
						
						|  | self.use_flash_attn = use_flash_attn | 
					
						
						|  | if use_flash_attn: | 
					
						
						|  | self.causal = causal | 
					
						
						|  | self.inner_attn = FlashAttention(attention_dropout=attn_drop) | 
					
						
						|  |  | 
					
						
						|  | self.qk_normalization = qk_normalization | 
					
						
						|  | self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity() | 
					
						
						|  | self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity() | 
					
						
						|  | self.use_fused_rmsnorm = use_fused_rmsnorm | 
					
						
						|  |  | 
					
						
						|  | def _naive_attn(self, x): | 
					
						
						|  | B, N, C = x.shape | 
					
						
						|  |  | 
					
						
						|  | qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | 
					
						
						|  | q, k, v = qkv.unbind(0) | 
					
						
						|  |  | 
					
						
						|  | if self.qk_normalization: | 
					
						
						|  | B_, H_, N_, D_ = q.shape | 
					
						
						|  | q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) | 
					
						
						|  | k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | attn = ((q * self.scale) @ k.transpose(-2, -1)) | 
					
						
						|  |  | 
					
						
						|  | attn = attn.softmax(dim=-1) | 
					
						
						|  | attn = self.attn_drop(attn) | 
					
						
						|  |  | 
					
						
						|  | x = (attn @ v).transpose(1, 2).reshape(B, N, C) | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | x = self.proj_drop(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def _flash_attn(self, x, key_padding_mask=None, need_weights=False): | 
					
						
						|  |  | 
					
						
						|  | qkv = self.qkv(x) | 
					
						
						|  | qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads) | 
					
						
						|  |  | 
					
						
						|  | if self.qk_normalization: | 
					
						
						|  | q, k, v = qkv.unbind(2) | 
					
						
						|  | if self.use_fused_rmsnorm: | 
					
						
						|  | q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape) | 
					
						
						|  | k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape) | 
					
						
						|  | else: | 
					
						
						|  | q = self.q_norm(q.flatten(-2, -1)).view(q.shape) | 
					
						
						|  | k = self.k_norm(k.flatten(-2, -1)).view(k.shape) | 
					
						
						|  | qkv = torch.stack([q, k, v], dim=2) | 
					
						
						|  |  | 
					
						
						|  | context, _ = self.inner_attn( | 
					
						
						|  | qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal | 
					
						
						|  | ) | 
					
						
						|  | outs = self.proj(rearrange(context, "b s h d -> b s (h d)")) | 
					
						
						|  | outs = self.proj_drop(outs) | 
					
						
						|  | return outs | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Mlp(nn.Module): | 
					
						
						|  | """ MLP as used in Vision Transformer, MLP-Mixer and related networks | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, | 
					
						
						|  | bias=True, drop=0.): | 
					
						
						|  | super().__init__() | 
					
						
						|  | out_features = out_features or in_features | 
					
						
						|  | hidden_features = hidden_features or in_features | 
					
						
						|  | bias = to_2tuple(bias) | 
					
						
						|  | drop_probs = to_2tuple(drop) | 
					
						
						|  |  | 
					
						
						|  | self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) | 
					
						
						|  | self.act = act_layer() | 
					
						
						|  | self.drop1 = nn.Dropout(drop_probs[0]) | 
					
						
						|  | self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) | 
					
						
						|  | self.drop2 = nn.Dropout(drop_probs[1]) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self.fc1(x) | 
					
						
						|  | x = self.act(x) | 
					
						
						|  | x = self.drop1(x) | 
					
						
						|  | x = self.fc2(x) | 
					
						
						|  | x = self.drop2(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Block(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, | 
					
						
						|  | drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False, | 
					
						
						|  | fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False, | 
					
						
						|  | use_fused_rmsnorm=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.norm1 = norm_layer(dim) | 
					
						
						|  | self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, | 
					
						
						|  | use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer, | 
					
						
						|  | qk_normalization=qk_normalization, | 
					
						
						|  | use_fused_rmsnorm=use_fused_rmsnorm) | 
					
						
						|  | self.ls1 = LayerScale(dim, init_values=init_values, | 
					
						
						|  | force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.norm2 = norm_layer(dim) | 
					
						
						|  | mlp_hidden_dim = int(dim * mlp_ratio) | 
					
						
						|  | if use_fused_mlp: | 
					
						
						|  | self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic) | 
					
						
						|  | else: | 
					
						
						|  | self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | 
					
						
						|  | self.ls2 = LayerScale(dim, init_values=init_values, | 
					
						
						|  | force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() | 
					
						
						|  | self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.with_cp = with_cp | 
					
						
						|  | self.use_fused_rmsnorm = use_fused_rmsnorm | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, residual=None): | 
					
						
						|  |  | 
					
						
						|  | def _inner_forward(x, residual=None): | 
					
						
						|  | if self.use_fused_rmsnorm: | 
					
						
						|  | x, residual = self.norm1(x, residual) | 
					
						
						|  | x = self.drop_path1(self.ls1(self.attn(x))) | 
					
						
						|  | x, residual = self.norm2(x, residual) | 
					
						
						|  | x = self.drop_path2(self.ls2(self.mlp(x))) | 
					
						
						|  | return x, residual | 
					
						
						|  | else: | 
					
						
						|  | assert residual is None | 
					
						
						|  | x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) | 
					
						
						|  | x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | if self.with_cp: | 
					
						
						|  | return checkpoint.checkpoint(_inner_forward, x, residual) | 
					
						
						|  | else: | 
					
						
						|  | return _inner_forward(x, residual=residual) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Linear_Decoder(nn.Module): | 
					
						
						|  | def __init__(self, in_channels=1408, out_channels=3200, | 
					
						
						|  | norm_layer=nn.LayerNorm, clip_norm_type='l2'): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.clip_norm_type = clip_norm_type | 
					
						
						|  |  | 
					
						
						|  | self.head = nn.Linear(in_channels, out_channels) | 
					
						
						|  | self.norm =  norm_layer(out_channels) | 
					
						
						|  |  | 
					
						
						|  | self.apply(self._init_weights) | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, m): | 
					
						
						|  | if isinstance(m, nn.Linear): | 
					
						
						|  | nn.init.xavier_uniform_(m.weight) | 
					
						
						|  | if isinstance(m, nn.Linear) and m.bias is not None: | 
					
						
						|  | nn.init.constant_(m.bias, 0) | 
					
						
						|  | elif isinstance(m, nn.LayerNorm): | 
					
						
						|  | nn.init.constant_(m.bias, 0) | 
					
						
						|  | nn.init.constant_(m.weight, 1.0) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self.norm(self.head(x)) | 
					
						
						|  |  | 
					
						
						|  | if self.clip_norm_type == 'l2': | 
					
						
						|  | x = x / x.norm(dim=-1, keepdim=True) | 
					
						
						|  | elif self.clip_norm_type == 'none': | 
					
						
						|  | pass | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PretrainInternVideo2(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_chans: int = 3, | 
					
						
						|  | patch_size: int = 14, | 
					
						
						|  | img_size: int = 224, | 
					
						
						|  | qkv_bias: bool = False, | 
					
						
						|  | drop_path_rate: float = 0.25, | 
					
						
						|  | embed_dim: int = 1408, | 
					
						
						|  | num_heads: int = 16, | 
					
						
						|  | mlp_ratio: float = 48/11, | 
					
						
						|  | init_values: float = 1e-5, | 
					
						
						|  | qk_normalization: bool = True, | 
					
						
						|  | depth: int = 40, | 
					
						
						|  | use_flash_attn: bool = True, | 
					
						
						|  | use_fused_rmsnorm: bool = True, | 
					
						
						|  | use_fused_mlp: bool = True, | 
					
						
						|  | fused_mlp_heuristic: int = 1, | 
					
						
						|  | attn_pool_num_heads: int = 16, | 
					
						
						|  | clip_embed_dim: int = 768, | 
					
						
						|  | layerscale_no_force_fp32: bool = False, | 
					
						
						|  | num_frames: int = 8, | 
					
						
						|  | tubelet_size: int = 1, | 
					
						
						|  | sep_pos_embed: bool = False, | 
					
						
						|  | sep_image_video_pos_embed: bool = False, | 
					
						
						|  | use_checkpoint: bool = False, | 
					
						
						|  | checkpoint_num: int = 0, | 
					
						
						|  |  | 
					
						
						|  | clip_teacher_embed_dim: int = 3200, | 
					
						
						|  | clip_teacher_final_dim: int = 768, | 
					
						
						|  | clip_norm_type: str = 'l2', | 
					
						
						|  | clip_return_layer: int = 1, | 
					
						
						|  | clip_student_return_interval: int = 1, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.num_frames = num_frames | 
					
						
						|  | self.tubelet_size = tubelet_size | 
					
						
						|  | assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, 'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent' | 
					
						
						|  |  | 
					
						
						|  | self.use_flash_attn = use_flash_attn | 
					
						
						|  | self.embed_dim = embed_dim | 
					
						
						|  |  | 
					
						
						|  | self.depth = depth | 
					
						
						|  | self.clip_norm_type = clip_norm_type | 
					
						
						|  | self.return_index = [] | 
					
						
						|  | for i in range(clip_return_layer): | 
					
						
						|  | self.return_index.append(depth - int(i * clip_student_return_interval) - 1) | 
					
						
						|  |  | 
					
						
						|  | if use_fused_rmsnorm: | 
					
						
						|  | norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True) | 
					
						
						|  | else: | 
					
						
						|  | norm_layer_for_blocks = partial(RMSNorm, eps=1e-6) | 
					
						
						|  | self.norm_layer_for_blocks = norm_layer_for_blocks | 
					
						
						|  | self.patch_embed = PatchEmbed( | 
					
						
						|  | img_size, patch_size, in_chans, embed_dim, | 
					
						
						|  | num_frames=num_frames, tubelet_size=tubelet_size, | 
					
						
						|  | ) | 
					
						
						|  | num_patches = self.patch_embed.num_patches | 
					
						
						|  | num_img_patches = self.patch_embed.num_img_patches | 
					
						
						|  |  | 
					
						
						|  | self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.sep_pos_embed = sep_pos_embed | 
					
						
						|  | self.sep_image_video_pos_embed = sep_image_video_pos_embed | 
					
						
						|  | if sep_pos_embed: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  | else: | 
					
						
						|  | if sep_image_video_pos_embed: | 
					
						
						|  | self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | 
					
						
						|  | self.img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim)) | 
					
						
						|  |  | 
					
						
						|  | self.clip_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | 
					
						
						|  | self.clip_img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim)) | 
					
						
						|  | else: | 
					
						
						|  | self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | 
					
						
						|  | self.clip_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | 
					
						
						|  | dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] | 
					
						
						|  |  | 
					
						
						|  | with_cp_list = [False] * depth | 
					
						
						|  | if use_checkpoint: | 
					
						
						|  | for idx in range(depth): | 
					
						
						|  | if idx < checkpoint_num: | 
					
						
						|  | with_cp_list[idx] = True | 
					
						
						|  |  | 
					
						
						|  | self.blocks = nn.ModuleList([ | 
					
						
						|  | Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias, | 
					
						
						|  | norm_layer=norm_layer_for_blocks, | 
					
						
						|  | drop_path=dpr[i], init_values=init_values, attn_drop=0., | 
					
						
						|  | use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp, | 
					
						
						|  | fused_mlp_heuristic=fused_mlp_heuristic, | 
					
						
						|  | with_cp=with_cp_list[i], | 
					
						
						|  | qk_normalization=qk_normalization, | 
					
						
						|  | layerscale_no_force_fp32=layerscale_no_force_fp32, | 
					
						
						|  | use_fused_rmsnorm=use_fused_rmsnorm) | 
					
						
						|  | for i in range(depth)]) | 
					
						
						|  | self.clip_projector = AttentionPoolingBlock( | 
					
						
						|  | dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None, | 
					
						
						|  | drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.clip_decoder = nn.ModuleList([ | 
					
						
						|  | Linear_Decoder( | 
					
						
						|  | in_channels=embed_dim, | 
					
						
						|  | out_channels=clip_teacher_embed_dim, | 
					
						
						|  | norm_layer=partial(nn.LayerNorm, eps=1e-5), | 
					
						
						|  | clip_norm_type=clip_norm_type | 
					
						
						|  | ) for _ in range(clip_return_layer) | 
					
						
						|  | ]) | 
					
						
						|  | self.final_clip_decoder = nn.Identity() | 
					
						
						|  | if clip_teacher_final_dim > 0: | 
					
						
						|  | self.final_clip_decoder = Linear_Decoder( | 
					
						
						|  | in_channels=clip_embed_dim, | 
					
						
						|  | out_channels=clip_teacher_final_dim, | 
					
						
						|  | norm_layer=partial(nn.LayerNorm, eps=1e-5), | 
					
						
						|  | clip_norm_type=clip_norm_type | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.init_pos_embed() | 
					
						
						|  | trunc_normal_(self.cls_token, std=.02) | 
					
						
						|  | self.apply(self._init_weights) | 
					
						
						|  | self.fix_init_weight() | 
					
						
						|  |  | 
					
						
						|  | def init_pos_embed(self): | 
					
						
						|  | if self.sep_pos_embed: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pos_embed = get_3d_sincos_pos_embed( | 
					
						
						|  | self.pos_embed.shape[-1], | 
					
						
						|  | self.patch_embed.grid_size[1], | 
					
						
						|  | self.patch_embed.grid_size[0], | 
					
						
						|  | cls_token=True | 
					
						
						|  | ) | 
					
						
						|  | self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) | 
					
						
						|  | self.clip_pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) | 
					
						
						|  |  | 
					
						
						|  | if self.sep_image_video_pos_embed: | 
					
						
						|  | img_pos_embed = get_3d_sincos_pos_embed( | 
					
						
						|  | self.pos_embed.shape[-1], | 
					
						
						|  | self.patch_embed.grid_size[1], | 
					
						
						|  | 1, | 
					
						
						|  | cls_token=True | 
					
						
						|  | ) | 
					
						
						|  | self.img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0)) | 
					
						
						|  | self.clip_img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0)) | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, m): | 
					
						
						|  | if isinstance(m, nn.Linear): | 
					
						
						|  | trunc_normal_(m.weight, std=.02) | 
					
						
						|  | if isinstance(m, nn.Linear) and m.bias is not None: | 
					
						
						|  | nn.init.constant_(m.bias, 0) | 
					
						
						|  | elif isinstance(m, nn.LayerNorm): | 
					
						
						|  | nn.init.constant_(m.bias, 0) | 
					
						
						|  | nn.init.constant_(m.weight, 1.0) | 
					
						
						|  |  | 
					
						
						|  | def fix_init_weight(self): | 
					
						
						|  | def rescale(param, layer_id): | 
					
						
						|  | param.div_(math.sqrt(2.0 * layer_id)) | 
					
						
						|  |  | 
					
						
						|  | for layer_id, layer in enumerate(self.blocks): | 
					
						
						|  | rescale(layer.attn.proj.weight.data, layer_id + 1) | 
					
						
						|  | rescale(layer.mlp.fc2.weight.data, layer_id + 1) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def dtype(self): | 
					
						
						|  | return self.patch_embed.proj.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | def get_num_layers(self): | 
					
						
						|  | return len(self.blocks) | 
					
						
						|  |  | 
					
						
						|  | @torch.jit.ignore | 
					
						
						|  | def no_weight_decay(self): | 
					
						
						|  | return { | 
					
						
						|  | 'pos_embed', | 
					
						
						|  | 'pos_embed_spatial', | 
					
						
						|  | 'pos_embed_temporal', | 
					
						
						|  | 'pos_embed_cls', | 
					
						
						|  | 'img_pos_embed', | 
					
						
						|  | 'cls_token', | 
					
						
						|  | 'clip_pos_embed', | 
					
						
						|  | 'clip_pos_embed_spatial', | 
					
						
						|  | 'clip_pos_embed_temporal', | 
					
						
						|  | 'clip_pos_embed_cls', | 
					
						
						|  | 'clip_img_pos_embed' | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, mask=None, use_image=False, x_vis_return_idx=-1, x_vis_only=False): | 
					
						
						|  | x = self.patch_embed(x.type(self.dtype)) | 
					
						
						|  |  | 
					
						
						|  | B, T, L, C = x.shape | 
					
						
						|  | x = x.view([B, T * L, C]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cls_tokens = self.cls_token.expand(B, -1, -1) | 
					
						
						|  | x = torch.cat((cls_tokens, x), dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.sep_pos_embed: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  | else: | 
					
						
						|  | if use_image: | 
					
						
						|  | if self.sep_image_video_pos_embed: | 
					
						
						|  | pos_embed = self.img_pos_embed | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cls_pos_embed = self.pos_embed[:, 0:1, :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_pos_embed = self.pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pos_embed = torch.cat([cls_pos_embed, img_pos_embed], dim=1) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | pos_embed = self.pos_embed | 
					
						
						|  | x = x + pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if mask is not None: | 
					
						
						|  | x = x[~mask].reshape(B, -1, C) | 
					
						
						|  | else: | 
					
						
						|  | x = x.reshape(B, -1, C) | 
					
						
						|  |  | 
					
						
						|  | residual = None | 
					
						
						|  | x_clip = [] | 
					
						
						|  | for idx, blk in enumerate(self.blocks): | 
					
						
						|  | if isinstance(x, tuple) and len(x) == 2: | 
					
						
						|  | x, residual = x | 
					
						
						|  |  | 
					
						
						|  | x = blk(x, residual=residual) | 
					
						
						|  |  | 
					
						
						|  | if idx in self.return_index: | 
					
						
						|  | if isinstance(x, tuple) and len(x) == 2: | 
					
						
						|  | tmp_x, tmp_residual = x | 
					
						
						|  | if residual is not None: | 
					
						
						|  | x_clip.append(tmp_x + tmp_residual) | 
					
						
						|  | else: | 
					
						
						|  | x_clip.append(x) | 
					
						
						|  | if idx == (self.depth + x_vis_return_idx): | 
					
						
						|  |  | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | if isinstance(x, tuple) and len(x) == 2: | 
					
						
						|  | x, residual = x | 
					
						
						|  | if residual is not None: | 
					
						
						|  | x = x + residual | 
					
						
						|  |  | 
					
						
						|  | x_vis = x | 
					
						
						|  | if x_vis_only: | 
					
						
						|  | return x_vis | 
					
						
						|  |  | 
					
						
						|  | x_pool_vis = self.clip_projector(x_vis) | 
					
						
						|  | x_align = self.final_clip_decoder(x_pool_vis) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x_clip = torch.stack(x_clip) | 
					
						
						|  | K, B, _, C_CLIP = x_clip.shape | 
					
						
						|  |  | 
					
						
						|  | if self.sep_pos_embed: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  | else: | 
					
						
						|  | if use_image: | 
					
						
						|  | if self.sep_image_video_pos_embed: | 
					
						
						|  | clip_pos_embed = self.clip_img_pos_embed | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | clip_cls_pos_embed = self.clip_pos_embed[:, 0:1, :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | clip_img_pos_embed = self.clip_pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | clip_pos_embed = torch.cat([clip_cls_pos_embed, clip_img_pos_embed], dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | clip_pos_embed = self.clip_pos_embed | 
					
						
						|  |  | 
					
						
						|  | clip_pos_embed = clip_pos_embed.repeat(B, 1, 1) | 
					
						
						|  | if mask is not None: | 
					
						
						|  | x_clip = x_clip + clip_pos_embed[~mask].view(B, -1, C_CLIP).unsqueeze(0).repeat(K, 1, 1, 1) | 
					
						
						|  | else: | 
					
						
						|  | x_clip = x_clip + clip_pos_embed.view(B, -1, C_CLIP).unsqueeze(0).repeat(K, 1, 1, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x_clip_align = [] | 
					
						
						|  | for idx, clip_decoder in enumerate(self.clip_decoder): | 
					
						
						|  | x_clip_align.append(clip_decoder(x_clip[idx])) | 
					
						
						|  | x_clip_align = torch.stack(x_clip_align) | 
					
						
						|  |  | 
					
						
						|  | return x_vis, x_pool_vis, x_clip_align, x_align | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def pretrain_internvideo2_1b_patch14_224(config): | 
					
						
						|  | model = PretrainInternVideo2( | 
					
						
						|  | in_chans=3, img_size=224, patch_size=14, | 
					
						
						|  | embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48/11, | 
					
						
						|  | clip_embed_dim=config.vision_encoder.clip_embed_dim, | 
					
						
						|  | attn_pool_num_heads=16, qkv_bias=False, | 
					
						
						|  | drop_path_rate=0.25, | 
					
						
						|  | init_values=0.00001, | 
					
						
						|  | qk_normalization=True, | 
					
						
						|  | use_flash_attn=config.vision_encoder.use_flash_attn, | 
					
						
						|  | use_fused_rmsnorm=config.vision_encoder.use_fused_rmsnorm, | 
					
						
						|  | use_fused_mlp=config.vision_encoder.use_fused_mlp, | 
					
						
						|  | fused_mlp_heuristic=1, | 
					
						
						|  | layerscale_no_force_fp32=False, | 
					
						
						|  | num_frames=config.vision_encoder.num_frames, | 
					
						
						|  | tubelet_size=config.vision_encoder.tubelet_size, | 
					
						
						|  | sep_pos_embed=False, | 
					
						
						|  | sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed, | 
					
						
						|  | use_checkpoint=config.vision_encoder.use_checkpoint, | 
					
						
						|  | checkpoint_num=config.vision_encoder.checkpoint_num, | 
					
						
						|  | clip_teacher_embed_dim=config.vision_encoder.clip_teacher_embed_dim, | 
					
						
						|  | clip_teacher_final_dim=config.vision_encoder.clip_teacher_final_dim, | 
					
						
						|  | clip_norm_type=config.vision_encoder.clip_norm_type, | 
					
						
						|  | clip_return_layer=config.vision_encoder.clip_return_layer, | 
					
						
						|  | clip_student_return_interval=config.vision_encoder.clip_student_return_interval, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def pretrain_internvideo2_6b_patch14_224(config): | 
					
						
						|  | model = PretrainInternVideo2( | 
					
						
						|  | in_chans=3, img_size=224, patch_size=14, | 
					
						
						|  | embed_dim=3200, depth=48, num_heads=25, mlp_ratio=4, | 
					
						
						|  | clip_embed_dim=config.vision_encoder.clip_embed_dim, | 
					
						
						|  | attn_pool_num_heads=16, qkv_bias=False, | 
					
						
						|  | drop_path_rate=0.3, | 
					
						
						|  | init_values=0.00001, | 
					
						
						|  | qk_normalization=True, | 
					
						
						|  | use_flash_attn=config.vision_encoder.use_flash_attn, | 
					
						
						|  | use_fused_rmsnorm=config.vision_encoder.use_fused_rmsnorm, | 
					
						
						|  | use_fused_mlp=config.vision_encoder.use_fused_mlp, | 
					
						
						|  | fused_mlp_heuristic=1, | 
					
						
						|  | layerscale_no_force_fp32=False, | 
					
						
						|  | num_frames=config.vision_encoder.num_frames, | 
					
						
						|  | tubelet_size=config.vision_encoder.tubelet_size, | 
					
						
						|  | sep_pos_embed=False, | 
					
						
						|  | sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed, | 
					
						
						|  | use_checkpoint=config.vision_encoder.use_checkpoint, | 
					
						
						|  | checkpoint_num=config.vision_encoder.checkpoint_num, | 
					
						
						|  | clip_teacher_embed_dim=config.vision_encoder.clip_teacher_embed_dim, | 
					
						
						|  | clip_teacher_final_dim=config.vision_encoder.clip_teacher_final_dim, | 
					
						
						|  | clip_norm_type=config.vision_encoder.clip_norm_type, | 
					
						
						|  | clip_return_layer=config.vision_encoder.clip_return_layer, | 
					
						
						|  | clip_student_return_interval=config.vision_encoder.clip_student_return_interval, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import Tuple, Optional, List | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers.modeling_utils import (PreTrainedModel, | 
					
						
						|  | apply_chunking_to_forward, | 
					
						
						|  | find_pruneable_heads_and_indices, | 
					
						
						|  | prune_linear_layer) | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutputWithPastAndCrossAttentions, | 
					
						
						|  | BaseModelOutputWithPoolingAndCrossAttentions, | 
					
						
						|  | MaskedLMOutput, | 
					
						
						|  | ) | 
					
						
						|  | from torch import Tensor, device | 
					
						
						|  | from torch.nn import CrossEntropyLoss | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to | 
					
						
						|  | instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a | 
					
						
						|  | configuration with the defaults will yield a similar configuration to that of the BERT | 
					
						
						|  | [bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture. | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 30522): | 
					
						
						|  | Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | `inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`]. | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 768): | 
					
						
						|  | Dimensionality of the encoder layers and the pooler layer. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 12): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 12): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 3072): | 
					
						
						|  | Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | 
					
						
						|  | hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | 
					
						
						|  | `"relu"`, `"silu"` and `"gelu_new"` are supported. | 
					
						
						|  | hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | 
					
						
						|  | The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | 
					
						
						|  | attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | 
					
						
						|  | The dropout ratio for the attention probabilities. | 
					
						
						|  | max_position_embeddings (`int`, *optional*, defaults to 512): | 
					
						
						|  | The maximum sequence length that this model might ever be used with. Typically set this to something large | 
					
						
						|  | just in case (e.g., 512 or 1024 or 2048). | 
					
						
						|  | type_vocab_size (`int`, *optional*, defaults to 2): | 
					
						
						|  | The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`]. | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | layer_norm_eps (`float`, *optional*, defaults to 1e-12): | 
					
						
						|  | The epsilon used by the layer normalization layers. | 
					
						
						|  | position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | 
					
						
						|  | Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For | 
					
						
						|  | positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | 
					
						
						|  | [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | 
					
						
						|  | For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | 
					
						
						|  | with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | 
					
						
						|  | use_cache (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
						
						|  | relevant if `config.is_decoder=True`. | 
					
						
						|  | classifier_dropout (`float`, *optional*): | 
					
						
						|  | The dropout ratio for the classification head. | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import BertModel, BertConfig | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a BERT bert-base-uncased style configuration | 
					
						
						|  | >>> configuration = BertConfig() | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a model from the bert-base-uncased style configuration | 
					
						
						|  | >>> model = BertModel(configuration) | 
					
						
						|  |  | 
					
						
						|  | >>> # Accessing the model configuration | 
					
						
						|  | >>> configuration = model.config | 
					
						
						|  | ```""" | 
					
						
						|  | model_type = "bert" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=30522, | 
					
						
						|  | hidden_size=768, | 
					
						
						|  | num_hidden_layers=12, | 
					
						
						|  | num_attention_heads=12, | 
					
						
						|  | intermediate_size=3072, | 
					
						
						|  | hidden_act="gelu", | 
					
						
						|  | hidden_dropout_prob=0.1, | 
					
						
						|  | attention_probs_dropout_prob=0.1, | 
					
						
						|  | max_position_embeddings=512, | 
					
						
						|  | type_vocab_size=2, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | layer_norm_eps=1e-12, | 
					
						
						|  | pad_token_id=0, | 
					
						
						|  | position_embedding_type="absolute", | 
					
						
						|  | use_cache=True, | 
					
						
						|  | classifier_dropout=None, | 
					
						
						|  | cross_module="ca", | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__(pad_token_id=pad_token_id, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.hidden_dropout_prob = hidden_dropout_prob | 
					
						
						|  | self.attention_probs_dropout_prob = attention_probs_dropout_prob | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.type_vocab_size = type_vocab_size | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.layer_norm_eps = layer_norm_eps | 
					
						
						|  | self.position_embedding_type = position_embedding_type | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.classifier_dropout = classifier_dropout | 
					
						
						|  | self.cross_module = cross_module | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_tf_weights_in_bert(model, config, tf_checkpoint_path): | 
					
						
						|  | """Load tf checkpoints in a pytorch model.""" | 
					
						
						|  | try: | 
					
						
						|  | import re | 
					
						
						|  | import numpy as np | 
					
						
						|  | import tensorflow as tf | 
					
						
						|  | except ImportError: | 
					
						
						|  | print( | 
					
						
						|  | "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | 
					
						
						|  | "https://www.tensorflow.org/install/ for installation instructions." | 
					
						
						|  | ) | 
					
						
						|  | raise | 
					
						
						|  | tf_path = os.path.abspath(tf_checkpoint_path) | 
					
						
						|  | print("Converting TensorFlow checkpoint from {}".format(tf_path)) | 
					
						
						|  |  | 
					
						
						|  | init_vars = tf.train.list_variables(tf_path) | 
					
						
						|  | names = [] | 
					
						
						|  | arrays = [] | 
					
						
						|  | for name, shape in init_vars: | 
					
						
						|  | print("Loading TF weight {} with shape {}".format(name, shape)) | 
					
						
						|  | array = tf.train.load_variable(tf_path, name) | 
					
						
						|  | names.append(name) | 
					
						
						|  | arrays.append(array) | 
					
						
						|  |  | 
					
						
						|  | for name, array in zip(names, arrays): | 
					
						
						|  | name = name.split("/") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if any( | 
					
						
						|  | n | 
					
						
						|  | in [ | 
					
						
						|  | "adam_v", | 
					
						
						|  | "adam_m", | 
					
						
						|  | "AdamWeightDecayOptimizer", | 
					
						
						|  | "AdamWeightDecayOptimizer_1", | 
					
						
						|  | "global_step", | 
					
						
						|  | ] | 
					
						
						|  | for n in name | 
					
						
						|  | ): | 
					
						
						|  | print("Skipping {}".format("/".join(name))) | 
					
						
						|  | continue | 
					
						
						|  | pointer = model | 
					
						
						|  | for m_name in name: | 
					
						
						|  | if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | 
					
						
						|  | scope_names = re.split(r"_(\d+)", m_name) | 
					
						
						|  | else: | 
					
						
						|  | scope_names = [m_name] | 
					
						
						|  | if scope_names[0] == "kernel" or scope_names[0] == "gamma": | 
					
						
						|  | pointer = getattr(pointer, "weight") | 
					
						
						|  | elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | 
					
						
						|  | pointer = getattr(pointer, "bias") | 
					
						
						|  | elif scope_names[0] == "output_weights": | 
					
						
						|  | pointer = getattr(pointer, "weight") | 
					
						
						|  | elif scope_names[0] == "squad": | 
					
						
						|  | pointer = getattr(pointer, "classifier") | 
					
						
						|  | else: | 
					
						
						|  | try: | 
					
						
						|  | pointer = getattr(pointer, scope_names[0]) | 
					
						
						|  | except AttributeError: | 
					
						
						|  | print("Skipping {}".format("/".join(name))) | 
					
						
						|  | continue | 
					
						
						|  | if len(scope_names) >= 2: | 
					
						
						|  | num = int(scope_names[1]) | 
					
						
						|  | pointer = pointer[num] | 
					
						
						|  | if m_name[-11:] == "_embeddings": | 
					
						
						|  | pointer = getattr(pointer, "weight") | 
					
						
						|  | elif m_name == "kernel": | 
					
						
						|  | array = np.transpose(array) | 
					
						
						|  | try: | 
					
						
						|  | assert ( | 
					
						
						|  | pointer.shape == array.shape | 
					
						
						|  | ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" | 
					
						
						|  | except AssertionError as e: | 
					
						
						|  | e.args += (pointer.shape, array.shape) | 
					
						
						|  | raise | 
					
						
						|  | print("Initialize PyTorch weight {}".format(name)) | 
					
						
						|  | pointer.data = torch.from_numpy(array) | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertEmbeddings(nn.Module): | 
					
						
						|  | """Construct the embeddings from word, position and token_type embeddings.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.word_embeddings = nn.Embedding( | 
					
						
						|  | config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id | 
					
						
						|  | ) | 
					
						
						|  | self.position_embeddings = nn.Embedding( | 
					
						
						|  | config.max_position_embeddings, config.hidden_size | 
					
						
						|  | ) | 
					
						
						|  | self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.dropout = nn.Dropout(config.hidden_dropout_prob) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.register_buffer( | 
					
						
						|  | "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) | 
					
						
						|  | ) | 
					
						
						|  | self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | 
					
						
						|  |  | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | past_key_values_length=0, | 
					
						
						|  | ): | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | else: | 
					
						
						|  | input_shape = inputs_embeds.size()[:-1] | 
					
						
						|  |  | 
					
						
						|  | seq_length = input_shape[1] | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | position_ids = self.position_ids[ | 
					
						
						|  | :, past_key_values_length : seq_length + past_key_values_length | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | if token_type_ids is None: | 
					
						
						|  | token_type_ids = torch.zeros( | 
					
						
						|  | input_shape, dtype=torch.long, device=self.position_ids.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.word_embeddings(input_ids) | 
					
						
						|  |  | 
					
						
						|  | token_type_embeddings = self.token_type_embeddings(token_type_ids) | 
					
						
						|  |  | 
					
						
						|  | embeddings = inputs_embeds + token_type_embeddings | 
					
						
						|  | if self.position_embedding_type == "absolute": | 
					
						
						|  | position_embeddings = self.position_embeddings(position_ids) | 
					
						
						|  | embeddings += position_embeddings | 
					
						
						|  | embeddings = self.LayerNorm(embeddings) | 
					
						
						|  | embeddings = self.dropout(embeddings) | 
					
						
						|  | return embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertSelfAttention(nn.Module): | 
					
						
						|  | def __init__(self, config, is_cross_attention): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | if config.hidden_size % config.num_attention_heads != 0 and not hasattr( | 
					
						
						|  | config, "embedding_size" | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "The hidden size (%d) is not a multiple of the number of attention " | 
					
						
						|  | "heads (%d)" % (config.hidden_size, config.num_attention_heads) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.num_attention_heads = config.num_attention_heads | 
					
						
						|  | self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | 
					
						
						|  | self.all_head_size = self.num_attention_heads * self.attention_head_size | 
					
						
						|  |  | 
					
						
						|  | self.query = nn.Linear(config.hidden_size, self.all_head_size) | 
					
						
						|  | if is_cross_attention: | 
					
						
						|  | self.key = nn.Linear(config.encoder_width, self.all_head_size) | 
					
						
						|  | self.value = nn.Linear(config.encoder_width, self.all_head_size) | 
					
						
						|  | else: | 
					
						
						|  | self.key = nn.Linear(config.hidden_size, self.all_head_size) | 
					
						
						|  | self.value = nn.Linear(config.hidden_size, self.all_head_size) | 
					
						
						|  |  | 
					
						
						|  | self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | 
					
						
						|  | self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | 
					
						
						|  | if ( | 
					
						
						|  | self.position_embedding_type == "relative_key" | 
					
						
						|  | or self.position_embedding_type == "relative_key_query" | 
					
						
						|  | ): | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.distance_embedding = nn.Embedding( | 
					
						
						|  | 2 * config.max_position_embeddings - 1, self.attention_head_size | 
					
						
						|  | ) | 
					
						
						|  | self.save_attention = False | 
					
						
						|  |  | 
					
						
						|  | def save_attn_gradients(self, attn_gradients): | 
					
						
						|  | self.attn_gradients = attn_gradients | 
					
						
						|  |  | 
					
						
						|  | def get_attn_gradients(self): | 
					
						
						|  | return self.attn_gradients | 
					
						
						|  |  | 
					
						
						|  | def save_attention_map(self, attention_map): | 
					
						
						|  | self.attention_map = attention_map | 
					
						
						|  |  | 
					
						
						|  | def get_attention_map(self): | 
					
						
						|  | return self.attention_map | 
					
						
						|  |  | 
					
						
						|  | def transpose_for_scores(self, x): | 
					
						
						|  | new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | 
					
						
						|  | x = x.view(*new_x_shape) | 
					
						
						|  | return x.permute(0, 2, 1, 3) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | past_key_value=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  | mixed_query_layer = self.query(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_cross_attention = encoder_hidden_states is not None | 
					
						
						|  |  | 
					
						
						|  | if is_cross_attention: | 
					
						
						|  | key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) | 
					
						
						|  | value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) | 
					
						
						|  | attention_mask = encoder_attention_mask | 
					
						
						|  | elif past_key_value is not None: | 
					
						
						|  | key_layer = self.transpose_for_scores(self.key(hidden_states)) | 
					
						
						|  | value_layer = self.transpose_for_scores(self.value(hidden_states)) | 
					
						
						|  | key_layer = torch.cat([past_key_value[0], key_layer], dim=2) | 
					
						
						|  | value_layer = torch.cat([past_key_value[1], value_layer], dim=2) | 
					
						
						|  | else: | 
					
						
						|  | key_layer = self.transpose_for_scores(self.key(hidden_states)) | 
					
						
						|  | value_layer = self.transpose_for_scores(self.value(hidden_states)) | 
					
						
						|  |  | 
					
						
						|  | query_layer = self.transpose_for_scores(mixed_query_layer) | 
					
						
						|  |  | 
					
						
						|  | past_key_value = (key_layer, value_layer) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | self.position_embedding_type == "relative_key" | 
					
						
						|  | or self.position_embedding_type == "relative_key_query" | 
					
						
						|  | ): | 
					
						
						|  | seq_length = hidden_states.size()[1] | 
					
						
						|  | position_ids_l = torch.arange( | 
					
						
						|  | seq_length, dtype=torch.long, device=hidden_states.device | 
					
						
						|  | ).view(-1, 1) | 
					
						
						|  | position_ids_r = torch.arange( | 
					
						
						|  | seq_length, dtype=torch.long, device=hidden_states.device | 
					
						
						|  | ).view(1, -1) | 
					
						
						|  | distance = position_ids_l - position_ids_r | 
					
						
						|  | positional_embedding = self.distance_embedding( | 
					
						
						|  | distance + self.max_position_embeddings - 1 | 
					
						
						|  | ) | 
					
						
						|  | positional_embedding = positional_embedding.to( | 
					
						
						|  | dtype=query_layer.dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.position_embedding_type == "relative_key": | 
					
						
						|  | relative_position_scores = torch.einsum( | 
					
						
						|  | "bhld,lrd->bhlr", query_layer, positional_embedding | 
					
						
						|  | ) | 
					
						
						|  | attention_scores = attention_scores + relative_position_scores | 
					
						
						|  | elif self.position_embedding_type == "relative_key_query": | 
					
						
						|  | relative_position_scores_query = torch.einsum( | 
					
						
						|  | "bhld,lrd->bhlr", query_layer, positional_embedding | 
					
						
						|  | ) | 
					
						
						|  | relative_position_scores_key = torch.einsum( | 
					
						
						|  | "bhrd,lrd->bhlr", key_layer, positional_embedding | 
					
						
						|  | ) | 
					
						
						|  | attention_scores = ( | 
					
						
						|  | attention_scores | 
					
						
						|  | + relative_position_scores_query | 
					
						
						|  | + relative_position_scores_key | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attention_scores = attention_scores / math.sqrt(self.attention_head_size) | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | attention_scores = attention_scores + attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_probs = nn.Softmax(dim=-1)(attention_scores) | 
					
						
						|  |  | 
					
						
						|  | if is_cross_attention and self.save_attention: | 
					
						
						|  | self.save_attention_map(attention_probs) | 
					
						
						|  | attention_probs.register_hook(self.save_attn_gradients) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_probs_dropped = self.dropout(attention_probs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if head_mask is not None: | 
					
						
						|  | attention_probs_dropped = attention_probs_dropped * head_mask | 
					
						
						|  |  | 
					
						
						|  | context_layer = torch.matmul(attention_probs_dropped, value_layer) | 
					
						
						|  |  | 
					
						
						|  | context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  | new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | 
					
						
						|  | context_layer = context_layer.view(*new_context_layer_shape) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = ( | 
					
						
						|  | (context_layer, attention_probs, attention_scores) | 
					
						
						|  | if output_attentions | 
					
						
						|  | else (context_layer,) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | outputs = outputs + (past_key_value,) | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertSelfOutput(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.hidden_size, config.hidden_size) | 
					
						
						|  | self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.dropout = nn.Dropout(config.hidden_dropout_prob) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states, input_tensor): | 
					
						
						|  | hidden_states = self.dense(hidden_states) | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  | hidden_states = self.LayerNorm(hidden_states + input_tensor) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertAttention(nn.Module): | 
					
						
						|  | def __init__(self, config, is_cross_attention=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.self = BertSelfAttention(config, is_cross_attention) | 
					
						
						|  |  | 
					
						
						|  | self.output = BertSelfOutput(config) | 
					
						
						|  | self.pruned_heads = set() | 
					
						
						|  |  | 
					
						
						|  | def prune_heads(self, heads): | 
					
						
						|  | if len(heads) == 0: | 
					
						
						|  | return | 
					
						
						|  | heads, index = find_pruneable_heads_and_indices( | 
					
						
						|  | heads, | 
					
						
						|  | self.self.num_attention_heads, | 
					
						
						|  | self.self.attention_head_size, | 
					
						
						|  | self.pruned_heads, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.self.query = prune_linear_layer(self.self.query, index) | 
					
						
						|  | self.self.key = prune_linear_layer(self.self.key, index) | 
					
						
						|  | self.self.value = prune_linear_layer(self.self.value, index) | 
					
						
						|  | self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | 
					
						
						|  | self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | 
					
						
						|  | self.pruned_heads = self.pruned_heads.union(heads) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | past_key_value=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  | self_outputs = self.self( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | head_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | past_key_value, | 
					
						
						|  | output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | attention_output = self.output(self_outputs[0], hidden_states) | 
					
						
						|  |  | 
					
						
						|  | outputs = (attention_output,) + self_outputs[1:] | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertIntermediate(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | 
					
						
						|  | if isinstance(config.hidden_act, str): | 
					
						
						|  | self.intermediate_act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  | else: | 
					
						
						|  | self.intermediate_act_fn = config.hidden_act | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | hidden_states = self.dense(hidden_states) | 
					
						
						|  | hidden_states = self.intermediate_act_fn(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertOutput(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | 
					
						
						|  | self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.dropout = nn.Dropout(config.hidden_dropout_prob) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states, input_tensor): | 
					
						
						|  | hidden_states = self.dense(hidden_states) | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  | hidden_states = self.LayerNorm(hidden_states + input_tensor) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertLayer(nn.Module): | 
					
						
						|  | def __init__(self, config, layer_num): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.chunk_size_feed_forward = config.chunk_size_feed_forward | 
					
						
						|  | self.seq_len_dim = 1 | 
					
						
						|  | self.attention = BertAttention(config) | 
					
						
						|  |  | 
					
						
						|  | self.has_cross_attention = layer_num >= config.fusion_layer | 
					
						
						|  | if self.has_cross_attention: | 
					
						
						|  | self.crossattention = BertAttention(config, is_cross_attention=True) | 
					
						
						|  | self.intermediate = BertIntermediate(config) | 
					
						
						|  | self.output = BertOutput(config) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | past_key_value=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | 
					
						
						|  | self_attention_outputs = self.attention( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | head_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | past_key_value=self_attn_past_key_value, | 
					
						
						|  | ) | 
					
						
						|  | attention_output = self_attention_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | outputs = self_attention_outputs[1:-1] | 
					
						
						|  | present_key_value = self_attention_outputs[-1] | 
					
						
						|  |  | 
					
						
						|  | if self.has_cross_attention: | 
					
						
						|  | assert ( | 
					
						
						|  | encoder_hidden_states is not None | 
					
						
						|  | ), "encoder_hidden_states must be given for cross-attention layers" | 
					
						
						|  |  | 
					
						
						|  | if type(encoder_hidden_states) == list: | 
					
						
						|  | cross_attention_outputs = self.crossattention( | 
					
						
						|  | attention_output, | 
					
						
						|  | attention_mask, | 
					
						
						|  | head_mask, | 
					
						
						|  | encoder_hidden_states[ | 
					
						
						|  | (self.layer_num - self.config.fusion_layer) | 
					
						
						|  | % len(encoder_hidden_states) | 
					
						
						|  | ], | 
					
						
						|  | encoder_attention_mask[ | 
					
						
						|  | (self.layer_num - self.config.fusion_layer) | 
					
						
						|  | % len(encoder_hidden_states) | 
					
						
						|  | ], | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | attention_output = cross_attention_outputs[0] | 
					
						
						|  | outputs = outputs + cross_attention_outputs[1:-1] | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | cross_attention_outputs = self.crossattention( | 
					
						
						|  | attention_output, | 
					
						
						|  | attention_mask, | 
					
						
						|  | head_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | attention_output = cross_attention_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | outputs = outputs + cross_attention_outputs[1:-1] | 
					
						
						|  | layer_output = apply_chunking_to_forward( | 
					
						
						|  | self.feed_forward_chunk, | 
					
						
						|  | self.chunk_size_feed_forward, | 
					
						
						|  | self.seq_len_dim, | 
					
						
						|  | attention_output, | 
					
						
						|  | ) | 
					
						
						|  | outputs = (layer_output,) + outputs | 
					
						
						|  |  | 
					
						
						|  | outputs = outputs + (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  | def feed_forward_chunk(self, attention_output): | 
					
						
						|  | intermediate_output = self.intermediate(attention_output) | 
					
						
						|  | layer_output = self.output(intermediate_output, attention_output) | 
					
						
						|  | return layer_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertEncoder(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer = nn.ModuleList( | 
					
						
						|  | [BertLayer(config, i) for i in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | use_cache=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | output_hidden_states=False, | 
					
						
						|  | return_dict=True, | 
					
						
						|  | mode="multi_modal", | 
					
						
						|  | normalize_attention=True, | 
					
						
						|  | ): | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attentions = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  | all_cross_attentions = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  | next_decoder_cache = () if use_cache else None | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | mode == "text" or mode == "temporal" | 
					
						
						|  | ): | 
					
						
						|  | start_layer = 0 | 
					
						
						|  | output_layer = self.config.fusion_layer | 
					
						
						|  |  | 
					
						
						|  | elif mode == "fusion": | 
					
						
						|  | start_layer = self.config.fusion_layer | 
					
						
						|  | output_layer = self.config.num_hidden_layers | 
					
						
						|  |  | 
					
						
						|  | elif mode == "multi_modal": | 
					
						
						|  | start_layer = 0 | 
					
						
						|  | output_layer = self.config.num_hidden_layers | 
					
						
						|  |  | 
					
						
						|  | for i in range(start_layer, output_layer): | 
					
						
						|  | layer_module = self.layer[i] | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | layer_head_mask = head_mask[i] if head_mask is not None else None | 
					
						
						|  | past_key_value = past_key_values[i] if past_key_values is not None else None | 
					
						
						|  |  | 
					
						
						|  | if getattr(self.config, "gradient_checkpointing", False) and self.training: | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | print( | 
					
						
						|  | "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " | 
					
						
						|  | "`use_cache=False`..." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | return module(*inputs, past_key_value, output_attentions) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | layer_outputs = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(layer_module), | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | layer_head_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | use_reentrant=False, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = layer_module( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | layer_head_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | past_key_value, | 
					
						
						|  | output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache += (layer_outputs[-1],) | 
					
						
						|  | if output_attentions: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | offset = int(normalize_attention) | 
					
						
						|  |  | 
					
						
						|  | all_self_attentions = all_self_attentions + (layer_outputs[2 - offset],) | 
					
						
						|  | if hasattr(layer_module, "crossattention"): | 
					
						
						|  |  | 
					
						
						|  | all_cross_attentions = all_cross_attentions + (layer_outputs[4 - offset],) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple( | 
					
						
						|  | v | 
					
						
						|  | for v in [ | 
					
						
						|  | hidden_states, | 
					
						
						|  | next_decoder_cache, | 
					
						
						|  | all_hidden_states, | 
					
						
						|  | all_self_attentions, | 
					
						
						|  | all_cross_attentions, | 
					
						
						|  | ] | 
					
						
						|  | if v is not None | 
					
						
						|  | ) | 
					
						
						|  | return BaseModelOutputWithPastAndCrossAttentions( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_decoder_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attentions, | 
					
						
						|  | cross_attentions=all_cross_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertPooler(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.hidden_size, config.hidden_size) | 
					
						
						|  | self.activation = nn.Tanh() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | first_token_tensor = hidden_states[:, 0] | 
					
						
						|  | pooled_output = self.dense(first_token_tensor) | 
					
						
						|  | pooled_output = self.activation(pooled_output) | 
					
						
						|  | return pooled_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertPredictionHeadTransform(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.hidden_size, config.hidden_size) | 
					
						
						|  | if isinstance(config.hidden_act, str): | 
					
						
						|  | self.transform_act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  | else: | 
					
						
						|  | self.transform_act_fn = config.hidden_act | 
					
						
						|  | self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | hidden_states = self.dense(hidden_states) | 
					
						
						|  | hidden_states = self.transform_act_fn(hidden_states) | 
					
						
						|  | hidden_states = self.LayerNorm(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertLMPredictionHead(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.transform = BertPredictionHeadTransform(config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.decoder.bias = self.bias | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | hidden_states = self.transform(hidden_states) | 
					
						
						|  | hidden_states = self.decoder(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertOnlyMLMHead(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.predictions = BertLMPredictionHead(config) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, sequence_output): | 
					
						
						|  | prediction_scores = self.predictions(sequence_output) | 
					
						
						|  | return prediction_scores | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertOnlyNSPHead(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.seq_relationship = nn.Linear(config.hidden_size, 2) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, pooled_output): | 
					
						
						|  | seq_relationship_score = self.seq_relationship(pooled_output) | 
					
						
						|  | return seq_relationship_score | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertPreTrainingHeads(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.predictions = BertLMPredictionHead(config) | 
					
						
						|  | self.seq_relationship = nn.Linear(config.hidden_size, 2) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, sequence_output, pooled_output): | 
					
						
						|  | prediction_scores = self.predictions(sequence_output) | 
					
						
						|  | seq_relationship_score = self.seq_relationship(pooled_output) | 
					
						
						|  | return prediction_scores, seq_relationship_score | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertPreTrainedModel(PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | 
					
						
						|  | models. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | config_class = BertConfig | 
					
						
						|  | load_tf_weights = load_tf_weights_in_bert | 
					
						
						|  | base_model_prefix = "bert" | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"position_ids"] | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | """Initialize the weights""" | 
					
						
						|  | if isinstance(module, (nn.Linear, nn.Embedding)): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | 
					
						
						|  | elif isinstance(module, nn.LayerNorm): | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | module.weight.data.fill_(1.0) | 
					
						
						|  | if isinstance(module, nn.Linear) and module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertModel(BertPreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of | 
					
						
						|  | cross-attention is added between the self-attention layers, following the architecture described in `Attention is | 
					
						
						|  | all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, | 
					
						
						|  | Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. | 
					
						
						|  | argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an | 
					
						
						|  | input to the forward pass. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config, add_pooling_layer=True): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.embeddings = BertEmbeddings(config) | 
					
						
						|  |  | 
					
						
						|  | self.encoder = BertEncoder(config) | 
					
						
						|  |  | 
					
						
						|  | self.pooler = BertPooler(config) if add_pooling_layer else None | 
					
						
						|  |  | 
					
						
						|  | self.init_weights() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embeddings.word_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embeddings.word_embeddings = value | 
					
						
						|  |  | 
					
						
						|  | def _prune_heads(self, heads_to_prune): | 
					
						
						|  | """ | 
					
						
						|  | Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | 
					
						
						|  | class PreTrainedModel | 
					
						
						|  | """ | 
					
						
						|  | for layer, heads in heads_to_prune.items(): | 
					
						
						|  | self.encoder.layer[layer].attention.prune_heads(heads) | 
					
						
						|  |  | 
					
						
						|  | def get_extended_attention_mask( | 
					
						
						|  | self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool | 
					
						
						|  | ) -> Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Makes broadcastable attention and causal masks so that future and masked tokens are ignored. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | attention_mask (:obj:`torch.Tensor`): | 
					
						
						|  | Mask with ones indicating tokens to attend to, zeros for tokens to ignore. | 
					
						
						|  | input_shape (:obj:`Tuple[int]`): | 
					
						
						|  | The shape of the input to the model. | 
					
						
						|  | device: (:obj:`torch.device`): | 
					
						
						|  | The device of the input to the model. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask.dim() == 3: | 
					
						
						|  | extended_attention_mask = attention_mask[:, None, :, :] | 
					
						
						|  | elif attention_mask.dim() == 2: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_decoder: | 
					
						
						|  | batch_size, seq_length = input_shape | 
					
						
						|  | seq_ids = torch.arange(seq_length, device=device) | 
					
						
						|  | causal_mask = ( | 
					
						
						|  | seq_ids[None, None, :].repeat(batch_size, seq_length, 1) | 
					
						
						|  | <= seq_ids[None, :, None] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | causal_mask = causal_mask.to(attention_mask.dtype) | 
					
						
						|  |  | 
					
						
						|  | if causal_mask.shape[1] < attention_mask.shape[1]: | 
					
						
						|  | prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] | 
					
						
						|  | causal_mask = torch.cat( | 
					
						
						|  | [ | 
					
						
						|  | torch.ones( | 
					
						
						|  | (batch_size, seq_length, prefix_seq_len), | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=causal_mask.dtype, | 
					
						
						|  | ), | 
					
						
						|  | causal_mask, | 
					
						
						|  | ], | 
					
						
						|  | axis=-1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | extended_attention_mask = ( | 
					
						
						|  | causal_mask[:, None, :, :] * attention_mask[:, None, None, :] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | extended_attention_mask = attention_mask[:, None, None, :] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( | 
					
						
						|  | input_shape, attention_mask.shape | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extended_attention_mask = extended_attention_mask.to( | 
					
						
						|  | dtype=self.dtype | 
					
						
						|  | ) | 
					
						
						|  | extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | 
					
						
						|  | return extended_attention_mask | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | encoder_embeds=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | use_cache=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | is_decoder=False, | 
					
						
						|  | mode="multi_modal", | 
					
						
						|  | normalize_attention=True, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | 
					
						
						|  | Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | 
					
						
						|  | the model is configured as a decoder. | 
					
						
						|  | encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | 
					
						
						|  | Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | 
					
						
						|  | the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  | past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | 
					
						
						|  | Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | 
					
						
						|  | If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` | 
					
						
						|  | (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` | 
					
						
						|  | instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. | 
					
						
						|  | use_cache (:obj:`bool`, `optional`): | 
					
						
						|  | If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up | 
					
						
						|  | decoding (see :obj:`past_key_values`). | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = ( | 
					
						
						|  | output_attentions | 
					
						
						|  | if output_attentions is not None | 
					
						
						|  | else self.config.output_attentions | 
					
						
						|  | ) | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states | 
					
						
						|  | if output_hidden_states is not None | 
					
						
						|  | else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if is_decoder: | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | else: | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You cannot specify both input_ids and inputs_embeds at the same time" | 
					
						
						|  | ) | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | batch_size, seq_length = input_shape | 
					
						
						|  | device = input_ids.device | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | input_shape = inputs_embeds.size()[:-1] | 
					
						
						|  | batch_size, seq_length = input_shape | 
					
						
						|  | device = inputs_embeds.device | 
					
						
						|  | elif encoder_embeds is not None: | 
					
						
						|  | input_shape = encoder_embeds.size()[:-1] | 
					
						
						|  | batch_size, seq_length = input_shape | 
					
						
						|  | device = encoder_embeds.device | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You have to specify either input_ids or inputs_embeds or encoder_embeds" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_key_values_length = ( | 
					
						
						|  | past_key_values[0][0].shape[2] if past_key_values is not None else 0 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  | attention_mask = torch.ones( | 
					
						
						|  | ((batch_size, seq_length + past_key_values_length)), device=device | 
					
						
						|  | ) | 
					
						
						|  | if token_type_ids is None: | 
					
						
						|  | token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( | 
					
						
						|  | attention_mask, input_shape, device, is_decoder | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if encoder_hidden_states is not None: | 
					
						
						|  | if type(encoder_hidden_states) == list: | 
					
						
						|  | encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[ | 
					
						
						|  | 0 | 
					
						
						|  | ].size() | 
					
						
						|  | else: | 
					
						
						|  | encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | 
					
						
						|  | encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | 
					
						
						|  |  | 
					
						
						|  | if type(encoder_attention_mask) == list: | 
					
						
						|  | encoder_extended_attention_mask = [ | 
					
						
						|  | self.invert_attention_mask(mask) for mask in encoder_attention_mask | 
					
						
						|  | ] | 
					
						
						|  | elif encoder_attention_mask is None: | 
					
						
						|  | encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | 
					
						
						|  | encoder_extended_attention_mask = self.invert_attention_mask( | 
					
						
						|  | encoder_attention_mask | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | encoder_extended_attention_mask = self.invert_attention_mask( | 
					
						
						|  | encoder_attention_mask | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | encoder_extended_attention_mask = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | 
					
						
						|  |  | 
					
						
						|  | if encoder_embeds is None: | 
					
						
						|  | embedding_output = self.embeddings( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | past_key_values_length=past_key_values_length, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | embedding_output = encoder_embeds | 
					
						
						|  |  | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | embedding_output, | 
					
						
						|  | attention_mask=extended_attention_mask, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask=encoder_extended_attention_mask, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | mode=mode, | 
					
						
						|  | normalize_attention=normalize_attention, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = encoder_outputs[0] | 
					
						
						|  | pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (sequence_output, pooled_output) + encoder_outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithPoolingAndCrossAttentions( | 
					
						
						|  | last_hidden_state=sequence_output, | 
					
						
						|  | pooler_output=pooled_output, | 
					
						
						|  | past_key_values=encoder_outputs.past_key_values, | 
					
						
						|  | hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | attentions=encoder_outputs.attentions, | 
					
						
						|  | cross_attentions=encoder_outputs.cross_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class MaskedLMOutputWithDistill(MaskedLMOutput): | 
					
						
						|  | loss_aux: Optional[torch.FloatTensor] = None | 
					
						
						|  | loss_distill: Optional[torch.FloatTensor] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertForMaskedLM(BertPreTrainedModel): | 
					
						
						|  |  | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = [r"pooler"] | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.bert = BertModel(config, add_pooling_layer=False) | 
					
						
						|  | self.cls = BertOnlyMLMHead(config) | 
					
						
						|  |  | 
					
						
						|  | self.init_weights() | 
					
						
						|  |  | 
					
						
						|  | def tie_aux_decoder_weights(self, module, aux_modules): | 
					
						
						|  | """Tie decoder weights of all `aux_modules` to `module`, (not bias)""" | 
					
						
						|  | for m in aux_modules: | 
					
						
						|  | m.predictions.decoder.weight = module.predictions.decoder.weight | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.cls.predictions.decoder | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.cls.predictions.decoder = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | encoder_embeds=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | labels=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | is_decoder=False, | 
					
						
						|  | mode="multi_modal", | 
					
						
						|  | normalize_attention=True, | 
					
						
						|  | soft_labels=None, | 
					
						
						|  | alpha=0, | 
					
						
						|  | return_logits=False, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | 
					
						
						|  | config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.bert( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | encoder_embeds=encoder_embeds, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | is_decoder=is_decoder, | 
					
						
						|  | mode=mode, | 
					
						
						|  | normalize_attention=normalize_attention, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  | prediction_scores = self.cls(sequence_output) | 
					
						
						|  |  | 
					
						
						|  | if return_logits: | 
					
						
						|  | return prediction_scores | 
					
						
						|  |  | 
					
						
						|  | masked_lm_loss = None | 
					
						
						|  | masked_lm_loss_aux = 0.0 | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | masked_lm_loss = loss_fct( | 
					
						
						|  | prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if soft_labels is not None: | 
					
						
						|  | loss_distill = -torch.sum( | 
					
						
						|  | F.log_softmax(prediction_scores, dim=1) * soft_labels, dim=-1 | 
					
						
						|  | ) | 
					
						
						|  | loss_distill = loss_distill[labels != -100].mean() | 
					
						
						|  | masked_lm_loss = (1 - alpha) * masked_lm_loss + alpha * loss_distill | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (prediction_scores,) + outputs[2:] | 
					
						
						|  | return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return MaskedLMOutputWithDistill( | 
					
						
						|  | loss=masked_lm_loss, | 
					
						
						|  | loss_aux=masked_lm_loss_aux, | 
					
						
						|  | logits=prediction_scores, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): | 
					
						
						|  | input_shape = input_ids.shape | 
					
						
						|  | effective_batch_size = input_shape[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | self.config.pad_token_id is not None | 
					
						
						|  | ), "The PAD token should be defined for generation" | 
					
						
						|  | attention_mask = torch.cat( | 
					
						
						|  | [attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  | dummy_token = torch.full( | 
					
						
						|  | (effective_batch_size, 1), | 
					
						
						|  | self.config.pad_token_id, | 
					
						
						|  | dtype=torch.long, | 
					
						
						|  | device=input_ids.device, | 
					
						
						|  | ) | 
					
						
						|  | input_ids = torch.cat([input_ids, dummy_token], dim=1) | 
					
						
						|  |  | 
					
						
						|  | return {"input_ids": input_ids, "attention_mask": attention_mask} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def build_bert(model_config, pretrain, checkpoint, encoder_width=None): | 
					
						
						|  | """build text encoder. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | model_config (dict): model config. | 
					
						
						|  | pretrain (bool): Whether to do pretrain or finetuning. | 
					
						
						|  | checkpoint (bool): whether to do gradient_checkpointing. | 
					
						
						|  |  | 
					
						
						|  | Returns: TODO | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | bert_config = BertConfig.from_json_file(model_config.text_encoder.config) | 
					
						
						|  | if encoder_width is None: | 
					
						
						|  | bert_config.encoder_width = model_config.vision_encoder.d_model | 
					
						
						|  | else: | 
					
						
						|  | bert_config.encoder_width = encoder_width | 
					
						
						|  |  | 
					
						
						|  | bert_config.gradient_checkpointing = checkpoint | 
					
						
						|  | bert_config.fusion_layer = model_config.text_encoder.fusion_layer | 
					
						
						|  |  | 
					
						
						|  | if not model_config.multimodal.enable: | 
					
						
						|  | bert_config.fusion_layer = bert_config.num_hidden_layers | 
					
						
						|  |  | 
					
						
						|  | if pretrain: | 
					
						
						|  | try: | 
					
						
						|  | text_encoder, loading_info = BertForMaskedLM.from_pretrained( | 
					
						
						|  | model_config.text_encoder.pretrained, | 
					
						
						|  | config=bert_config, | 
					
						
						|  | output_loading_info=True, | 
					
						
						|  | local_files_only=True | 
					
						
						|  | ) | 
					
						
						|  | except: | 
					
						
						|  | text_encoder, loading_info = BertForMaskedLM.from_pretrained( | 
					
						
						|  | model_config.text_encoder.pretrained, | 
					
						
						|  | config=bert_config, | 
					
						
						|  | output_loading_info=True, | 
					
						
						|  | local_files_only=False | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | try: | 
					
						
						|  | text_encoder, loading_info = BertModel.from_pretrained( | 
					
						
						|  | model_config.text_encoder.pretrained, | 
					
						
						|  | config=bert_config, | 
					
						
						|  | add_pooling_layer=False, | 
					
						
						|  | output_loading_info=True, | 
					
						
						|  | local_files_only=True | 
					
						
						|  | ) | 
					
						
						|  | except: | 
					
						
						|  | text_encoder, loading_info = BertModel.from_pretrained( | 
					
						
						|  | model_config.text_encoder.pretrained, | 
					
						
						|  | config=bert_config, | 
					
						
						|  | add_pooling_layer=False, | 
					
						
						|  | output_loading_info=True, | 
					
						
						|  | local_files_only=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return text_encoder | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_sim( | 
					
						
						|  | vision_proj: torch.Tensor, | 
					
						
						|  | text_proj: torch.Tensor, | 
					
						
						|  | temp=1.0, | 
					
						
						|  | agg_method="mean", | 
					
						
						|  | ): | 
					
						
						|  | """calculate pair-wise video-text similarity. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vision_proj (torch.Tensor): The vision representation. Shape: [B,T,C]. | 
					
						
						|  | text_proj (torch.Tensor): The text representation. Shape: [B,C]. | 
					
						
						|  | temp (torch.Tensor): The temperature. Shape: []. | 
					
						
						|  |  | 
					
						
						|  | Returns: The similarity between video and text. Shape: [B,B]. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | vision_proj = F.normalize(vision_proj, dim=-1) | 
					
						
						|  | text_proj = F.normalize(text_proj, dim=-1) | 
					
						
						|  | if vision_proj.ndim == 3: | 
					
						
						|  | sim_v2t = torch.einsum("mld,nd->mln", vision_proj, text_proj) / temp | 
					
						
						|  | sim_t2v = torch.einsum("nd,mld->nlm", text_proj, vision_proj) / temp | 
					
						
						|  | if agg_method == "mean": | 
					
						
						|  | sim_v2t = sim_v2t.mean(1) | 
					
						
						|  | sim_t2v = sim_t2v.mean(1) | 
					
						
						|  | elif agg_method == "max": | 
					
						
						|  | sim_v2t = sim_v2t.max(1)[0] | 
					
						
						|  | sim_t2v = sim_t2v.max(1)[0] | 
					
						
						|  | elif text_proj.ndim == 3: | 
					
						
						|  | sim_v2t = torch.einsum("nd,mld->nlm", vision_proj, text_proj) / temp | 
					
						
						|  | sim_t2v = torch.einsum("nld,md->nlm", text_proj, vision_proj) / temp | 
					
						
						|  | if agg_method == "mean": | 
					
						
						|  | sim_v2t = sim_v2t.mean(1) | 
					
						
						|  | sim_t2v = sim_t2v.mean(1) | 
					
						
						|  | elif agg_method == "max": | 
					
						
						|  | sim_v2t = sim_v2t.max(1)[0] | 
					
						
						|  | sim_t2v = sim_t2v.max(1)[0] | 
					
						
						|  | else: | 
					
						
						|  | sim_v2t = vision_proj @ text_proj.T / temp | 
					
						
						|  | sim_t2v = sim_v2t.T | 
					
						
						|  |  | 
					
						
						|  | return sim_v2t, sim_t2v | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} | 
					
						
						|  |  | 
					
						
						|  | PRETRAINED_VOCAB_FILES_MAP = { | 
					
						
						|  | "vocab_file": { | 
					
						
						|  | "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", | 
					
						
						|  | "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", | 
					
						
						|  | "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", | 
					
						
						|  | "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", | 
					
						
						|  | "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt", | 
					
						
						|  | "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", | 
					
						
						|  | "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", | 
					
						
						|  | "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", | 
					
						
						|  | "bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt", | 
					
						
						|  | "bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt", | 
					
						
						|  | "bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt", | 
					
						
						|  | "bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt", | 
					
						
						|  | "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt", | 
					
						
						|  | "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", | 
					
						
						|  | "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt", | 
					
						
						|  | "TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt", | 
					
						
						|  | "TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt", | 
					
						
						|  | "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt", | 
					
						
						|  | } | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | 
					
						
						|  | "bert-base-uncased": 512, | 
					
						
						|  | "bert-large-uncased": 512, | 
					
						
						|  | "bert-base-cased": 512, | 
					
						
						|  | "bert-large-cased": 512, | 
					
						
						|  | "bert-base-multilingual-uncased": 512, | 
					
						
						|  | "bert-base-multilingual-cased": 512, | 
					
						
						|  | "bert-base-chinese": 512, | 
					
						
						|  | "bert-base-german-cased": 512, | 
					
						
						|  | "bert-large-uncased-whole-word-masking": 512, | 
					
						
						|  | "bert-large-cased-whole-word-masking": 512, | 
					
						
						|  | "bert-large-uncased-whole-word-masking-finetuned-squad": 512, | 
					
						
						|  | "bert-large-cased-whole-word-masking-finetuned-squad": 512, | 
					
						
						|  | "bert-base-cased-finetuned-mrpc": 512, | 
					
						
						|  | "bert-base-german-dbmdz-cased": 512, | 
					
						
						|  | "bert-base-german-dbmdz-uncased": 512, | 
					
						
						|  | "TurkuNLP/bert-base-finnish-cased-v1": 512, | 
					
						
						|  | "TurkuNLP/bert-base-finnish-uncased-v1": 512, | 
					
						
						|  | "wietsedv/bert-base-dutch-cased": 512, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | PRETRAINED_INIT_CONFIGURATION = { | 
					
						
						|  | "bert-base-uncased": {"do_lower_case": True}, | 
					
						
						|  | "bert-large-uncased": {"do_lower_case": True}, | 
					
						
						|  | "bert-base-cased": {"do_lower_case": False}, | 
					
						
						|  | "bert-large-cased": {"do_lower_case": False}, | 
					
						
						|  | "bert-base-multilingual-uncased": {"do_lower_case": True}, | 
					
						
						|  | "bert-base-multilingual-cased": {"do_lower_case": False}, | 
					
						
						|  | "bert-base-chinese": {"do_lower_case": False}, | 
					
						
						|  | "bert-base-german-cased": {"do_lower_case": False}, | 
					
						
						|  | "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, | 
					
						
						|  | "bert-large-cased-whole-word-masking": {"do_lower_case": False}, | 
					
						
						|  | "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, | 
					
						
						|  | "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, | 
					
						
						|  | "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, | 
					
						
						|  | "bert-base-german-dbmdz-cased": {"do_lower_case": False}, | 
					
						
						|  | "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, | 
					
						
						|  | "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, | 
					
						
						|  | "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, | 
					
						
						|  | "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import collections | 
					
						
						|  | import unicodedata | 
					
						
						|  | from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace | 
					
						
						|  |  | 
					
						
						|  | def load_vocab(vocab_file): | 
					
						
						|  | """Loads a vocabulary file into a dictionary.""" | 
					
						
						|  | vocab = collections.OrderedDict() | 
					
						
						|  | with open(vocab_file, "r", encoding="utf-8") as reader: | 
					
						
						|  | tokens = reader.readlines() | 
					
						
						|  | for index, token in enumerate(tokens): | 
					
						
						|  | token = token.rstrip("\n") | 
					
						
						|  | vocab[token] = index | 
					
						
						|  | return vocab | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def whitespace_tokenize(text): | 
					
						
						|  | """Runs basic whitespace cleaning and splitting on a piece of text.""" | 
					
						
						|  | text = text.strip() | 
					
						
						|  | if not text: | 
					
						
						|  | return [] | 
					
						
						|  | tokens = text.split() | 
					
						
						|  | return tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BasicTokenizer(object): | 
					
						
						|  | """ | 
					
						
						|  | Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). | 
					
						
						|  | Args: | 
					
						
						|  | do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): | 
					
						
						|  | Whether or not to lowercase the input when tokenizing. | 
					
						
						|  | never_split (:obj:`Iterable`, `optional`): | 
					
						
						|  | Collection of tokens which will never be split during tokenization. Only has an effect when | 
					
						
						|  | :obj:`do_basic_tokenize=True` | 
					
						
						|  | tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): | 
					
						
						|  | Whether or not to tokenize Chinese characters. | 
					
						
						|  | This should likely be deactivated for Japanese (see this `issue | 
					
						
						|  | <https://github.com/huggingface/transformers/issues/328>`__). | 
					
						
						|  | strip_accents: (:obj:`bool`, `optional`): | 
					
						
						|  | Whether or not to strip all accents. If this option is not specified, then it will be determined by the | 
					
						
						|  | value for :obj:`lowercase` (as in the original BERT). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None): | 
					
						
						|  | if never_split is None: | 
					
						
						|  | never_split = [] | 
					
						
						|  | self.do_lower_case = do_lower_case | 
					
						
						|  | self.never_split = set(never_split) | 
					
						
						|  | self.tokenize_chinese_chars = tokenize_chinese_chars | 
					
						
						|  | self.strip_accents = strip_accents | 
					
						
						|  |  | 
					
						
						|  | def tokenize(self, text, never_split=None): | 
					
						
						|  | """ | 
					
						
						|  | Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see | 
					
						
						|  | WordPieceTokenizer. | 
					
						
						|  | Args: | 
					
						
						|  | **never_split**: (`optional`) list of str | 
					
						
						|  | Kept for backward compatibility purposes. Now implemented directly at the base class level (see | 
					
						
						|  | :func:`PreTrainedTokenizer.tokenize`) List of token not to split. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | never_split = self.never_split.union( | 
					
						
						|  | set(never_split)) if never_split else self.never_split | 
					
						
						|  | text = self._clean_text(text) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.tokenize_chinese_chars: | 
					
						
						|  | text = self._tokenize_chinese_chars(text) | 
					
						
						|  | orig_tokens = whitespace_tokenize(text) | 
					
						
						|  | split_tokens = [] | 
					
						
						|  | for token in orig_tokens: | 
					
						
						|  | if token not in never_split: | 
					
						
						|  | if self.do_lower_case: | 
					
						
						|  | token = token.lower() | 
					
						
						|  | if self.strip_accents is not False: | 
					
						
						|  | token = self._run_strip_accents(token) | 
					
						
						|  | elif self.strip_accents: | 
					
						
						|  | token = self._run_strip_accents(token) | 
					
						
						|  | split_tokens.extend(self._run_split_on_punc(token, never_split)) | 
					
						
						|  |  | 
					
						
						|  | output_tokens = whitespace_tokenize(" ".join(split_tokens)) | 
					
						
						|  | return output_tokens | 
					
						
						|  |  | 
					
						
						|  | def _run_strip_accents(self, text): | 
					
						
						|  | """Strips accents from a piece of text.""" | 
					
						
						|  | text = unicodedata.normalize("NFD", text) | 
					
						
						|  | output = [] | 
					
						
						|  | for char in text: | 
					
						
						|  | cat = unicodedata.category(char) | 
					
						
						|  | if cat == "Mn": | 
					
						
						|  | continue | 
					
						
						|  | output.append(char) | 
					
						
						|  | return "".join(output) | 
					
						
						|  |  | 
					
						
						|  | def _run_split_on_punc(self, text, never_split=None): | 
					
						
						|  | """Splits punctuation on a piece of text.""" | 
					
						
						|  | if never_split is not None and text in never_split: | 
					
						
						|  | return [text] | 
					
						
						|  | chars = list(text) | 
					
						
						|  | i = 0 | 
					
						
						|  | start_new_word = True | 
					
						
						|  | output = [] | 
					
						
						|  | while i < len(chars): | 
					
						
						|  | char = chars[i] | 
					
						
						|  | if _is_punctuation(char): | 
					
						
						|  | output.append([char]) | 
					
						
						|  | start_new_word = True | 
					
						
						|  | else: | 
					
						
						|  | if start_new_word: | 
					
						
						|  | output.append([]) | 
					
						
						|  | start_new_word = False | 
					
						
						|  | output[-1].append(char) | 
					
						
						|  | i += 1 | 
					
						
						|  |  | 
					
						
						|  | return ["".join(x) for x in output] | 
					
						
						|  |  | 
					
						
						|  | def _tokenize_chinese_chars(self, text): | 
					
						
						|  | """Adds whitespace around any CJK character.""" | 
					
						
						|  | output = [] | 
					
						
						|  | for char in text: | 
					
						
						|  | cp = ord(char) | 
					
						
						|  | if self._is_chinese_char(cp): | 
					
						
						|  | output.append(" ") | 
					
						
						|  | output.append(char) | 
					
						
						|  | output.append(" ") | 
					
						
						|  | else: | 
					
						
						|  | output.append(char) | 
					
						
						|  | return "".join(output) | 
					
						
						|  |  | 
					
						
						|  | def _is_chinese_char(self, cp): | 
					
						
						|  | """Checks whether CP is the codepoint of a CJK character.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | (cp >= 0x4E00 and cp <= 0x9FFF) | 
					
						
						|  | or (cp >= 0x3400 and cp <= 0x4DBF) | 
					
						
						|  | or (cp >= 0x20000 and cp <= 0x2A6DF) | 
					
						
						|  | or (cp >= 0x2A700 and cp <= 0x2B73F) | 
					
						
						|  | or (cp >= 0x2B740 and cp <= 0x2B81F) | 
					
						
						|  | or (cp >= 0x2B820 and cp <= 0x2CEAF) | 
					
						
						|  | or (cp >= 0xF900 and cp <= 0xFAFF) | 
					
						
						|  | or (cp >= 0x2F800 and cp <= 0x2FA1F) | 
					
						
						|  | ): | 
					
						
						|  | return True | 
					
						
						|  |  | 
					
						
						|  | return False | 
					
						
						|  |  | 
					
						
						|  | def _clean_text(self, text): | 
					
						
						|  | """Performs invalid character removal and whitespace cleanup on text.""" | 
					
						
						|  | output = [] | 
					
						
						|  | for char in text: | 
					
						
						|  | cp = ord(char) | 
					
						
						|  | if cp == 0 or cp == 0xFFFD or _is_control(char): | 
					
						
						|  | continue | 
					
						
						|  | if _is_whitespace(char): | 
					
						
						|  | output.append(" ") | 
					
						
						|  | else: | 
					
						
						|  | output.append(char) | 
					
						
						|  | return "".join(output) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class WordpieceTokenizer(object): | 
					
						
						|  | """Runs WordPiece tokenization.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, vocab, unk_token, max_input_chars_per_word=100): | 
					
						
						|  | self.vocab = vocab | 
					
						
						|  | self.unk_token = unk_token | 
					
						
						|  | self.max_input_chars_per_word = max_input_chars_per_word | 
					
						
						|  |  | 
					
						
						|  | def tokenize(self, text): | 
					
						
						|  | """ | 
					
						
						|  | Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform | 
					
						
						|  | tokenization using the given vocabulary. | 
					
						
						|  | For example, :obj:`input = "unaffable"` wil return as output :obj:`["un", "##aff", "##able"]`. | 
					
						
						|  | Args: | 
					
						
						|  | text: A single token or whitespace separated tokens. This should have | 
					
						
						|  | already been passed through `BasicTokenizer`. | 
					
						
						|  | Returns: | 
					
						
						|  | A list of wordpiece tokens. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | output_tokens = [] | 
					
						
						|  | for token in whitespace_tokenize(text): | 
					
						
						|  | chars = list(token) | 
					
						
						|  | if len(chars) > self.max_input_chars_per_word: | 
					
						
						|  | output_tokens.append(self.unk_token) | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | is_bad = False | 
					
						
						|  | start = 0 | 
					
						
						|  | sub_tokens = [] | 
					
						
						|  | while start < len(chars): | 
					
						
						|  | end = len(chars) | 
					
						
						|  | cur_substr = None | 
					
						
						|  | while start < end: | 
					
						
						|  | substr = "".join(chars[start:end]) | 
					
						
						|  | if start > 0: | 
					
						
						|  | substr = "##" + substr | 
					
						
						|  | if substr in self.vocab: | 
					
						
						|  | cur_substr = substr | 
					
						
						|  | break | 
					
						
						|  | end -= 1 | 
					
						
						|  | if cur_substr is None: | 
					
						
						|  | is_bad = True | 
					
						
						|  | break | 
					
						
						|  | sub_tokens.append(cur_substr) | 
					
						
						|  | start = end | 
					
						
						|  |  | 
					
						
						|  | if is_bad: | 
					
						
						|  | output_tokens.append(self.unk_token) | 
					
						
						|  | else: | 
					
						
						|  | output_tokens.extend(sub_tokens) | 
					
						
						|  | return output_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertTokenizer(PreTrainedTokenizer): | 
					
						
						|  | r""" | 
					
						
						|  | Construct a BERT tokenizer. Based on WordPiece. | 
					
						
						|  | This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. | 
					
						
						|  | Users should refer to this superclass for more information regarding those methods. | 
					
						
						|  | Args: | 
					
						
						|  | vocab_file (:obj:`str`): | 
					
						
						|  | File containing the vocabulary. | 
					
						
						|  | do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): | 
					
						
						|  | Whether or not to lowercase the input when tokenizing. | 
					
						
						|  | do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`): | 
					
						
						|  | Whether or not to do basic tokenization before WordPiece. | 
					
						
						|  | never_split (:obj:`Iterable`, `optional`): | 
					
						
						|  | Collection of tokens which will never be split during tokenization. Only has an effect when | 
					
						
						|  | :obj:`do_basic_tokenize=True` | 
					
						
						|  | unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`): | 
					
						
						|  | The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | 
					
						
						|  | token instead. | 
					
						
						|  | sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`): | 
					
						
						|  | The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | 
					
						
						|  | sequence classification or for a text and a question for question answering. It is also used as the last | 
					
						
						|  | token of a sequence built with special tokens. | 
					
						
						|  | pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`): | 
					
						
						|  | The token used for padding, for example when batching sequences of different lengths. | 
					
						
						|  | cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`): | 
					
						
						|  | The classifier token which is used when doing sequence classification (classification of the whole sequence | 
					
						
						|  | instead of per-token classification). It is the first token of the sequence when built with special tokens. | 
					
						
						|  | mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`): | 
					
						
						|  | The token used for masking values. This is the token used when training this model with masked language | 
					
						
						|  | modeling. This is the token which the model will try to predict. | 
					
						
						|  | tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): | 
					
						
						|  | Whether or not to tokenize Chinese characters. | 
					
						
						|  | This should likely be deactivated for Japanese (see this `issue | 
					
						
						|  | <https://github.com/huggingface/transformers/issues/328>`__). | 
					
						
						|  | strip_accents: (:obj:`bool`, `optional`): | 
					
						
						|  | Whether or not to strip all accents. If this option is not specified, then it will be determined by the | 
					
						
						|  | value for :obj:`lowercase` (as in the original BERT). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | vocab_files_names = VOCAB_FILES_NAMES | 
					
						
						|  | pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | 
					
						
						|  | pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION | 
					
						
						|  | max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_file, | 
					
						
						|  | do_lower_case=True, | 
					
						
						|  | do_basic_tokenize=True, | 
					
						
						|  | never_split=None, | 
					
						
						|  | unk_token="[UNK]", | 
					
						
						|  | sep_token="[SEP]", | 
					
						
						|  | pad_token="[PAD]", | 
					
						
						|  | cls_token="[CLS]", | 
					
						
						|  | mask_token="[MASK]", | 
					
						
						|  | tokenize_chinese_chars=True, | 
					
						
						|  | strip_accents=None, | 
					
						
						|  | **kwargs | 
					
						
						|  | ): | 
					
						
						|  | if not os.path.isfile(vocab_file): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " | 
					
						
						|  | "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format( | 
					
						
						|  | vocab_file) | 
					
						
						|  | ) | 
					
						
						|  | self.vocab = load_vocab(vocab_file) | 
					
						
						|  |  | 
					
						
						|  | super().__init__( | 
					
						
						|  | do_lower_case=do_lower_case, | 
					
						
						|  | do_basic_tokenize=do_basic_tokenize, | 
					
						
						|  | never_split=never_split, | 
					
						
						|  | unk_token=unk_token, | 
					
						
						|  | sep_token=sep_token, | 
					
						
						|  | pad_token=pad_token, | 
					
						
						|  | cls_token=cls_token, | 
					
						
						|  | mask_token=mask_token, | 
					
						
						|  | tokenize_chinese_chars=tokenize_chinese_chars, | 
					
						
						|  | strip_accents=strip_accents, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.ids_to_tokens = collections.OrderedDict( | 
					
						
						|  | [(ids, tok) for tok, ids in self.vocab.items()]) | 
					
						
						|  | self.do_basic_tokenize = do_basic_tokenize | 
					
						
						|  | if do_basic_tokenize: | 
					
						
						|  | self.basic_tokenizer = BasicTokenizer( | 
					
						
						|  | do_lower_case=do_lower_case, | 
					
						
						|  | never_split=never_split, | 
					
						
						|  | tokenize_chinese_chars=tokenize_chinese_chars, | 
					
						
						|  | strip_accents=strip_accents, | 
					
						
						|  | ) | 
					
						
						|  | self.wordpiece_tokenizer = WordpieceTokenizer( | 
					
						
						|  | vocab=self.vocab, unk_token=self.unk_token) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def do_lower_case(self): | 
					
						
						|  | return self.basic_tokenizer.do_lower_case | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def vocab_size(self): | 
					
						
						|  | return len(self.vocab) | 
					
						
						|  |  | 
					
						
						|  | def get_vocab(self): | 
					
						
						|  | return dict(self.vocab, **self.added_tokens_encoder) | 
					
						
						|  |  | 
					
						
						|  | def _tokenize(self, text): | 
					
						
						|  | split_tokens = [] | 
					
						
						|  | if self.do_basic_tokenize: | 
					
						
						|  | for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if token in self.basic_tokenizer.never_split: | 
					
						
						|  | split_tokens.append(token) | 
					
						
						|  | else: | 
					
						
						|  | split_tokens += self.wordpiece_tokenizer.tokenize(token) | 
					
						
						|  | else: | 
					
						
						|  | split_tokens = self.wordpiece_tokenizer.tokenize(text) | 
					
						
						|  | return split_tokens | 
					
						
						|  |  | 
					
						
						|  | def _convert_token_to_id(self, token): | 
					
						
						|  | """ Converts a token (str) in an id using the vocab. """ | 
					
						
						|  | return self.vocab.get(token, self.vocab.get(self.unk_token)) | 
					
						
						|  |  | 
					
						
						|  | def _convert_id_to_token(self, index): | 
					
						
						|  | """Converts an index (integer) in a token (str) using the vocab.""" | 
					
						
						|  | return self.ids_to_tokens.get(index, self.unk_token) | 
					
						
						|  |  | 
					
						
						|  | def convert_tokens_to_string(self, tokens): | 
					
						
						|  | """ Converts a sequence of tokens (string) in a single string. """ | 
					
						
						|  | out_string = " ".join(tokens).replace(" ##", "").strip() | 
					
						
						|  | return out_string | 
					
						
						|  |  | 
					
						
						|  | def build_inputs_with_special_tokens( | 
					
						
						|  | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | 
					
						
						|  | adding special tokens. A BERT sequence has the following format: | 
					
						
						|  | - single sequence: ``[CLS] X `` | 
					
						
						|  | - pair of sequences: ``[CLS] A [SEP] B [SEP]`` | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (:obj:`List[int]`): | 
					
						
						|  | List of IDs to which the special tokens will be added. | 
					
						
						|  | token_ids_1 (:obj:`List[int]`, `optional`): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  | Returns: | 
					
						
						|  | :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. | 
					
						
						|  | """ | 
					
						
						|  | if token_ids_1 is None: | 
					
						
						|  | return [self.cls_token_id] + token_ids_0 | 
					
						
						|  | cls = [self.cls_token_id] | 
					
						
						|  | sep = [self.sep_token_id] | 
					
						
						|  | return cls + token_ids_0 + sep + token_ids_1 + sep | 
					
						
						|  |  | 
					
						
						|  | def get_special_tokens_mask( | 
					
						
						|  | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | 
					
						
						|  | special tokens using the tokenizer ``prepare_for_model`` method. | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (:obj:`List[int]`): | 
					
						
						|  | List of IDs. | 
					
						
						|  | token_ids_1 (:obj:`List[int]`, `optional`): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  | already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): | 
					
						
						|  | Whether or not the token list is already formatted with special tokens for the model. | 
					
						
						|  | Returns: | 
					
						
						|  | :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if already_has_special_tokens: | 
					
						
						|  | if token_ids_1 is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You should not supply a second sequence if the provided sequence of " | 
					
						
						|  | "ids is already formatted with special tokens for the model." | 
					
						
						|  | ) | 
					
						
						|  | return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) | 
					
						
						|  |  | 
					
						
						|  | if token_ids_1 is not None: | 
					
						
						|  | return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] | 
					
						
						|  | return [1] + ([0] * len(token_ids_0)) + [1] | 
					
						
						|  |  | 
					
						
						|  | def create_token_type_ids_from_sequences( | 
					
						
						|  | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence | 
					
						
						|  | pair mask has the following format: | 
					
						
						|  | :: | 
					
						
						|  | 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | 
					
						
						|  | | first sequence    | second sequence | | 
					
						
						|  | If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s). | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (:obj:`List[int]`): | 
					
						
						|  | List of IDs. | 
					
						
						|  | token_ids_1 (:obj:`List[int]`, `optional`): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  | Returns: | 
					
						
						|  | :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given | 
					
						
						|  | sequence(s). | 
					
						
						|  | """ | 
					
						
						|  | sep = [self.sep_token_id] | 
					
						
						|  | cls = [self.cls_token_id] | 
					
						
						|  | if token_ids_1 is None: | 
					
						
						|  | return len(cls + token_ids_0 + sep) * [0] | 
					
						
						|  | return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] | 
					
						
						|  |  | 
					
						
						|  | def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | 
					
						
						|  | index = 0 | 
					
						
						|  | if os.path.isdir(save_directory): | 
					
						
						|  | vocab_file = os.path.join( | 
					
						
						|  | save_directory, (filename_prefix + "-" if filename_prefix else "") + | 
					
						
						|  | VOCAB_FILES_NAMES["vocab_file"] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | vocab_file = (filename_prefix + | 
					
						
						|  | "-" if filename_prefix else "") + save_directory | 
					
						
						|  | with open(vocab_file, "w", encoding="utf-8") as writer: | 
					
						
						|  | for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): | 
					
						
						|  | if index != token_index: | 
					
						
						|  | print( | 
					
						
						|  | "Saving vocabulary to {}: vocabulary indices are not consecutive." | 
					
						
						|  | " Please check that the vocabulary is not corrupted!".format( | 
					
						
						|  | vocab_file) | 
					
						
						|  | ) | 
					
						
						|  | index = token_index | 
					
						
						|  | writer.write(token + "\n") | 
					
						
						|  | index += 1 | 
					
						
						|  | return (vocab_file,) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from huggingface_hub import PyTorchModelHubMixin | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _frame_from_video(video): | 
					
						
						|  | while video.isOpened(): | 
					
						
						|  | success, frame = video.read() | 
					
						
						|  | if success: | 
					
						
						|  | yield frame | 
					
						
						|  | else: | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | v_mean = np.array([0.485, 0.456, 0.406]).reshape(1,1,3) | 
					
						
						|  | v_std = np.array([0.229, 0.224, 0.225]).reshape(1,1,3) | 
					
						
						|  | def normalize(data): | 
					
						
						|  | return (data/255.0-v_mean)/v_std | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def frames2tensor(vid_list, fnum=8, target_size=(224, 224), device=torch.device('cuda')): | 
					
						
						|  | assert(len(vid_list) >= fnum) | 
					
						
						|  | step = len(vid_list) // fnum | 
					
						
						|  | vid_list = vid_list[::step][:fnum] | 
					
						
						|  | vid_list = [cv2.resize(x[:,:,::-1], target_size) for x in vid_list] | 
					
						
						|  | vid_tube = [np.expand_dims(normalize(x), axis=(0, 1)) for x in vid_list] | 
					
						
						|  | vid_tube = np.concatenate(vid_tube, axis=1) | 
					
						
						|  | vid_tube = np.transpose(vid_tube, (0, 1, 4, 2, 3)) | 
					
						
						|  | vid_tube = torch.from_numpy(vid_tube).to(device, non_blocking=True).float() | 
					
						
						|  | return vid_tube | 
					
						
						|  |  | 
					
						
						|  | def vid2tensor(path: str, fnum: int=8, target_size: tuple=(224, 224), device=torch.device('cuda')): | 
					
						
						|  | video = cv2.VideoCapture(path) | 
					
						
						|  | frames = [x for x in _frame_from_video(video)] | 
					
						
						|  | return frames2tensor(frames, fnum, target_size, device) | 
					
						
						|  |  | 
					
						
						|  | def get_text_feat_dict(texts, clip, text_feat_d={}): | 
					
						
						|  | for t in texts: | 
					
						
						|  | feat = clip.get_txt_feat(t) | 
					
						
						|  | text_feat_d[t] = feat | 
					
						
						|  | return text_feat_d | 
					
						
						|  |  | 
					
						
						|  | def get_vid_feat(frames, vlm): | 
					
						
						|  | return vlm.get_vid_features(frames) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def retrieve_text(frames, | 
					
						
						|  | texts, | 
					
						
						|  | model, | 
					
						
						|  | topk:int=5, | 
					
						
						|  | device=torch.device('cuda')): | 
					
						
						|  |  | 
					
						
						|  | vlm = model.to(device) | 
					
						
						|  | config = vlm.config | 
					
						
						|  |  | 
					
						
						|  | fn = config.num_frames | 
					
						
						|  | size_t = config.size_t | 
					
						
						|  | frames_tensor = frames2tensor(frames, fnum=fn, target_size=(size_t, size_t), device=device) | 
					
						
						|  | vid_feat = vlm.get_vid_feat(frames_tensor) | 
					
						
						|  |  | 
					
						
						|  | text_feat_d = {} | 
					
						
						|  | text_feat_d = get_text_feat_dict(texts, vlm, text_feat_d) | 
					
						
						|  | text_feats = [text_feat_d[t] for t in texts] | 
					
						
						|  | text_feats_tensor = torch.cat(text_feats, 0) | 
					
						
						|  |  | 
					
						
						|  | probs, idxs = vlm.predict_label(vid_feat, text_feats_tensor, top=topk) | 
					
						
						|  |  | 
					
						
						|  | ret_texts = [texts[i] for i in idxs.long().numpy()[0].tolist()] | 
					
						
						|  | return ret_texts, probs.float().numpy()[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def setup_internvideo2(config): | 
					
						
						|  |  | 
					
						
						|  | model = InternVideo2_Stage2(config=config, is_pretrain=True) | 
					
						
						|  |  | 
					
						
						|  | torch.set_float32_matmul_precision('high') | 
					
						
						|  | model = torch.compile(model) | 
					
						
						|  |  | 
					
						
						|  | model = model.to(torch.device(config.device)) | 
					
						
						|  | model_without_ddp = model | 
					
						
						|  |  | 
					
						
						|  | if (config.pretrained_path.strip() and (os.path.isfile(config.pretrained_path)) or "s3://" in config.pretrained_path): | 
					
						
						|  | checkpoint = torch.load(config.pretrained_path, map_location="cpu") | 
					
						
						|  | try: | 
					
						
						|  | if "model" in checkpoint.keys(): | 
					
						
						|  | state_dict = checkpoint["model"] | 
					
						
						|  | else: | 
					
						
						|  | state_dict = checkpoint["module"] | 
					
						
						|  | except: | 
					
						
						|  | state_dict = checkpoint | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | a = len(state_dict) | 
					
						
						|  | interpolate_pos_embed_internvideo2_new(state_dict, model_without_ddp.vision_encoder, orig_t_size=config.origin_num_frames) | 
					
						
						|  | assert a == len(state_dict), state_dict.keys() | 
					
						
						|  |  | 
					
						
						|  | msg = model_without_ddp.load_state_dict(state_dict, strict=False) | 
					
						
						|  |  | 
					
						
						|  | model_without_ddp = model_without_ddp.to(torch.float32) | 
					
						
						|  |  | 
					
						
						|  | return model_without_ddp.eval() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DictToClass: | 
					
						
						|  | def __init__(self, data): | 
					
						
						|  | for key, value in data.items(): | 
					
						
						|  | key = str(key) | 
					
						
						|  | if isinstance(value, dict): | 
					
						
						|  | setattr(self, key, DictToClass(value)) | 
					
						
						|  | elif isinstance(value, list): | 
					
						
						|  | setattr(self, key, [ | 
					
						
						|  | DictToClass(item) if isinstance(item, dict) else item | 
					
						
						|  | for item in value | 
					
						
						|  | ]) | 
					
						
						|  | else: | 
					
						
						|  | setattr(self, key, value) | 
					
						
						|  |  | 
					
						
						|  | def __repr__(self): | 
					
						
						|  | """方便调试的对象表示""" | 
					
						
						|  | attrs = ', '.join(f"{k}={v!r}" for k, v in self.__dict__.items()) | 
					
						
						|  | return f"{self.__class__.__name__}({attrs})" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def instance2dict(obj): | 
					
						
						|  | """将类实例及其嵌套属性转换为字典""" | 
					
						
						|  | if isinstance(obj, (str, int, float, bool, type(None))): | 
					
						
						|  |  | 
					
						
						|  | return obj | 
					
						
						|  | elif isinstance(obj, dict): | 
					
						
						|  |  | 
					
						
						|  | return {k: instance2dict(v) for k, v in obj.items()} | 
					
						
						|  | elif isinstance(obj, (list, tuple, set)): | 
					
						
						|  |  | 
					
						
						|  | return type(obj)(instance2dict(item) for item in obj) | 
					
						
						|  | elif hasattr(obj, '__dict__'): | 
					
						
						|  |  | 
					
						
						|  | result = {} | 
					
						
						|  | for key, value in obj.__dict__.items(): | 
					
						
						|  |  | 
					
						
						|  | if not key.startswith('_'): | 
					
						
						|  | result[key] = instance2dict(value) | 
					
						
						|  | return result | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | return str(obj) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternVideo2_Stage2_Config(PretrainedConfig): | 
					
						
						|  | _auto_class='AutoConfig' | 
					
						
						|  | def __init__(self, **kwargs): | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternVideo2_Stage2( | 
					
						
						|  | PreTrainedModel, | 
					
						
						|  | ): | 
					
						
						|  | """docstring for InternVideo2_Stage2""" | 
					
						
						|  |  | 
					
						
						|  | _auto_class="AutoModel" | 
					
						
						|  | config_class=InternVideo2_Stage2_Config | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, | 
					
						
						|  | config: InternVideo2_Stage2_Config, | 
					
						
						|  | is_pretrain: bool=True): | 
					
						
						|  |  | 
					
						
						|  | super(InternVideo2_Stage2, self).__init__(config) | 
					
						
						|  |  | 
					
						
						|  | config = config.to_dict() | 
					
						
						|  | self._config = DictToClass(config) if isinstance(config, dict) else config | 
					
						
						|  |  | 
					
						
						|  | self.tokenizer = BertTokenizer.from_pretrained(self._config.model.text_encoder.pretrained, local_files_only=True, use_safetensors=True) | 
					
						
						|  |  | 
					
						
						|  | self.is_pretrain = is_pretrain | 
					
						
						|  | self.vision_width = self._config.model.vision_encoder.clip_embed_dim | 
					
						
						|  | self.text_width = self._config.model.text_encoder.d_model | 
					
						
						|  | self.embed_dim = self._config.model.embed_dim | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.vision_encoder = self.build_vision_encoder() | 
					
						
						|  | self.text_encoder = self.build_text_encoder() | 
					
						
						|  |  | 
					
						
						|  | self.vision_proj = nn.Linear(self.vision_width, self.embed_dim) | 
					
						
						|  | self.text_proj = nn.Linear(self.text_width, self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | def freeze_vision(self): | 
					
						
						|  | """freeze vision encoder""" | 
					
						
						|  | for p in self.vision_encoder.parameters(): | 
					
						
						|  | p.requires_grad = False | 
					
						
						|  |  | 
					
						
						|  | def freeze_text(self): | 
					
						
						|  | """freeze text encoder""" | 
					
						
						|  | for p in self.text_encoder.parameters(): | 
					
						
						|  | p.requires_grad = False | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def dtype(self): | 
					
						
						|  | return self.vision_encoder.patch_embed.proj.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | def encode_vision(self, | 
					
						
						|  | image: torch.Tensor, | 
					
						
						|  | test: bool=False): | 
					
						
						|  | """encode image / videos as features. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | image (torch.Tensor): The input images. | 
					
						
						|  | test (bool): Whether testing. | 
					
						
						|  |  | 
					
						
						|  | Returns: tuple. | 
					
						
						|  | - vision_embeds (torch.Tensor): The output features. Shape: [B,N,C]. | 
					
						
						|  | - pooled_vision_embeds (torch.Tensor): The pooled output features. Shape: [B,1,C]. | 
					
						
						|  | - student_output (torch.Tensor): The features of alignment. Shape: [K,B,N,C]. | 
					
						
						|  | - clip_output (torch.Tensor): The features of clip. Shape: [K,B,N,C]. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | T = image.shape[1] | 
					
						
						|  | use_image = True if T == 1 else False | 
					
						
						|  | image = image.permute(0, 2, 1, 3, 4).to(self.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if test: | 
					
						
						|  | vision_embeds, pooled_vision_embeds, _, _ = self.vision_encoder( | 
					
						
						|  | image, None, use_image) | 
					
						
						|  | return vision_embeds, pooled_vision_embeds | 
					
						
						|  | else: | 
					
						
						|  | mask, targets_clip_middle_vis, targets_clip_final_vis = self.encode_teacher(image) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | vision_embeds, pooled_vision_embeds, student_output, student_output_final = self.vision_encoder( | 
					
						
						|  | image, mask, use_image) | 
					
						
						|  | return vision_embeds, pooled_vision_embeds, student_output, student_output_final, targets_clip_middle_vis, targets_clip_final_vis | 
					
						
						|  |  | 
					
						
						|  | def encode_text(self, | 
					
						
						|  | text: dict): | 
					
						
						|  | """encode text. | 
					
						
						|  | Args: | 
					
						
						|  | text (dict): The output of huggingface's `PreTrainedTokenizer`. contains keys: | 
					
						
						|  | - input_ids (torch.Tensor): Token ids to be fed to a model. Shape: [B,L]. | 
					
						
						|  | - attention_mask (torch.Tensor): The mask indicate padded tokens. Shape: [B,L]. 0 is padded token. | 
					
						
						|  | - other keys refer to "https://huggingface.co/docs/transformers/v4.21.2/en/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__". | 
					
						
						|  | Returns: tuple. | 
					
						
						|  | - text_embeds (torch.Tensor): The features of all tokens. Shape: [B,L,C]. | 
					
						
						|  | - pooled_text_embeds (torch.Tensor): The pooled features. Shape: [B,C]. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | text_output = self.get_text_encoder()( | 
					
						
						|  | text.input_ids, | 
					
						
						|  | attention_mask=text.attention_mask, | 
					
						
						|  | return_dict=True, | 
					
						
						|  | mode="text", | 
					
						
						|  | ) | 
					
						
						|  | text_embeds = text_output.last_hidden_state | 
					
						
						|  | pooled_text_embeds = text_embeds[:, 0] | 
					
						
						|  | return text_embeds, pooled_text_embeds | 
					
						
						|  |  | 
					
						
						|  | def build_vision_encoder(self): | 
					
						
						|  | """build vision encoder | 
					
						
						|  | Returns: (vision_encoder, clip_teacher). Each is a `nn.Module`. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | encoder_name = self._config.model.vision_encoder.name | 
					
						
						|  |  | 
					
						
						|  | if encoder_name == 'pretrain_internvideo2_1b_patch14_224': | 
					
						
						|  | vision_encoder = pretrain_internvideo2_1b_patch14_224(self._config.model) | 
					
						
						|  | elif encoder_name == 'pretrain_internvideo2_6b_patch14_224': | 
					
						
						|  | vision_encoder = pretrain_internvideo2_6b_patch14_224(self._config.model) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Not implemented: {encoder_name}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_size = self._config.model.vision_encoder.img_size | 
					
						
						|  | num_frames = self._config.model.vision_encoder.num_frames | 
					
						
						|  | tublet_size = self._config.model.vision_encoder.tubelet_size | 
					
						
						|  | patch_size = self._config.model.vision_encoder.patch_size | 
					
						
						|  | self.clip_img_size = self._config.model.vision_encoder.clip_input_resolution | 
					
						
						|  | self.video_mask_type = self._config.model.vision_encoder.video_mask_type | 
					
						
						|  | self.video_window_size = (num_frames // tublet_size, img_size // patch_size, img_size // patch_size) | 
					
						
						|  | self.video_mask_ratio = self._config.model.vision_encoder.video_mask_ratio | 
					
						
						|  | self.image_mask_type = self._config.model.vision_encoder.image_mask_type | 
					
						
						|  | self.image_window_size = (1, img_size // patch_size, img_size // patch_size) | 
					
						
						|  | self.image_mask_ratio = self._config.model.vision_encoder.image_mask_ratio | 
					
						
						|  |  | 
					
						
						|  | return vision_encoder | 
					
						
						|  |  | 
					
						
						|  | def build_text_encoder(self): | 
					
						
						|  | """build text_encoder and possiblly video-to-text multimodal fusion encoder. | 
					
						
						|  | Returns: nn.Module. The text encoder | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | encoder_name = self._config.model.text_encoder.name | 
					
						
						|  |  | 
					
						
						|  | if "bert" in encoder_name: | 
					
						
						|  | text_encoder = build_bert( | 
					
						
						|  | self._config.model, | 
					
						
						|  | self.is_pretrain, | 
					
						
						|  | self._config.gradient_checkpointing, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Not implemented: {encoder_name}") | 
					
						
						|  |  | 
					
						
						|  | return text_encoder | 
					
						
						|  |  | 
					
						
						|  | def get_text_encoder(self): | 
					
						
						|  | """get text encoder, used for text and cross-modal encoding""" | 
					
						
						|  | encoder = self.text_encoder | 
					
						
						|  | return encoder.bert if hasattr(encoder, "bert") else encoder | 
					
						
						|  |  | 
					
						
						|  | def get_vid_feat(self, | 
					
						
						|  | frames: torch.Tensor): | 
					
						
						|  | """get the video features for the given frames. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | frames (torch.Tensor): The input frames. Shape: [B,T,C,H,W]. | 
					
						
						|  |  | 
					
						
						|  | Returns: tuple. | 
					
						
						|  | - vision_embeds (torch.Tensor): The output features. Shape: [B,N,C]. | 
					
						
						|  | - pooled_vision_embeds (torch.Tensor): The pooled output features. Shape: [B,1,C]. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | _, vfeat = self.encode_vision(frames, test=True) | 
					
						
						|  | vfeat = self.vision_proj(vfeat) | 
					
						
						|  | vfeat /= vfeat.norm(dim=-1, keepdim=True) | 
					
						
						|  | return vfeat | 
					
						
						|  |  | 
					
						
						|  | def get_txt_feat(self, | 
					
						
						|  | text: str): | 
					
						
						|  | """get the text features for the given text.""" | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | text = self.tokenizer( | 
					
						
						|  | text, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | truncation=True, | 
					
						
						|  | max_length=self._config.max_txt_l, | 
					
						
						|  | return_tensors="pt",).to(self._config.device) | 
					
						
						|  | _, tfeat = self.encode_text(text) | 
					
						
						|  | tfeat = self.text_proj(tfeat) | 
					
						
						|  | tfeat /= tfeat.norm(dim=-1, keepdim=True) | 
					
						
						|  | return tfeat | 
					
						
						|  |  | 
					
						
						|  | def predict_label(self, | 
					
						
						|  | vid_feat: torch.Tensor, | 
					
						
						|  | txt_feat: torch.Tensor, | 
					
						
						|  | top: int=5): | 
					
						
						|  | label_probs = (100.0 * vid_feat @ txt_feat.T).softmax(dim=-1) | 
					
						
						|  | top_probs, top_labels = label_probs.float().cpu().topk(top, dim=-1) | 
					
						
						|  | return top_probs, top_labels | 
					
						
						|  |  |