[Init] upload model
Browse files- README.md +66 -3
- config.json +37 -0
- model.safetensors +3 -0
- modeling_config.py +21 -0
- modeling_videomaev2.py +535 -0
- preprocessor_config.json +18 -0
README.md
CHANGED
|
@@ -1,3 +1,66 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: cc-by-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: "cc-by-nc-4.0"
|
| 3 |
+
tags:
|
| 4 |
+
- vision
|
| 5 |
+
- video-classification
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# VideoMAE-v2 (base-sized model, Pretrained on UnlabeledHybrid-1M)
|
| 9 |
+
|
| 10 |
+
VideoMAEv2-Base model pre-trained for 800 epochs in a self-supervised way on UnlabeldHybrid-1M dataset. It was introduced in the paper [[CVPR23]VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking](https://arxiv.org/abs/2203.12602) by Wang et al. and first released in [GitHub](https://github.com/OpenGVLab/VideoMAEv2).
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
## Intended uses & limitations
|
| 14 |
+
|
| 15 |
+
You can use the raw model for video feature extraction.
|
| 16 |
+
|
| 17 |
+
### How to use
|
| 18 |
+
|
| 19 |
+
Here is how to use this model to extract a video feature:
|
| 20 |
+
|
| 21 |
+
```python
|
| 22 |
+
from transformers import VideoMAEImageProcessor, AutoModel, AutoConfig
|
| 23 |
+
import numpy as np
|
| 24 |
+
import torch
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
config = AutoConfig.from_pretrained("./", trust_remote_code=True)
|
| 28 |
+
model = AutoModel.from_pretrained('./', config=config, trust_remote_code=True)
|
| 29 |
+
|
| 30 |
+
video = list(np.random.rand(16, 3, 224, 224))
|
| 31 |
+
|
| 32 |
+
processor = VideoMAEImageProcessor.from_pretrained("./")
|
| 33 |
+
model = AutoModel.from_pretrained("./",config=config, trust_remote_code=True)
|
| 34 |
+
|
| 35 |
+
# B, T, C, H, W -> B, C, T, H, W
|
| 36 |
+
inputs = processor(video, return_tensors="pt")
|
| 37 |
+
inputs['pixel_values'] = inputs['pixel_values'].permute(0, 2, 1, 3, 4)
|
| 38 |
+
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
outputs = model(**inputs)
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
### BibTeX entry and citation info
|
| 47 |
+
|
| 48 |
+
```bibtex
|
| 49 |
+
@InProceedings{wang2023videomaev2,
|
| 50 |
+
author = {Wang, Limin and Huang, Bingkun and Zhao, Zhiyu and Tong, Zhan and He, Yinan and Wang, Yi and Wang, Yali and Qiao, Yu},
|
| 51 |
+
title = {VideoMAE V2: Scaling Video Masked Autoencoders With Dual Masking},
|
| 52 |
+
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
| 53 |
+
month = {June},
|
| 54 |
+
year = {2023},
|
| 55 |
+
pages = {14549-14560}
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
@misc{videomaev2,
|
| 59 |
+
title={VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking},
|
| 60 |
+
author={Limin Wang and Bingkun Huang and Zhiyu Zhao and Zhan Tong and Yinan He and Yi Wang and Yali Wang and Yu Qiao},
|
| 61 |
+
year={2023},
|
| 62 |
+
eprint={2303.16727},
|
| 63 |
+
archivePrefix={arXiv},
|
| 64 |
+
primaryClass={cs.CV}
|
| 65 |
+
}
|
| 66 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "./",
|
| 3 |
+
"model_type": "VideoMAEv2_Base",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"VideoMAEv2_Base"
|
| 6 |
+
],
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoModel": "modeling_videomaev2.VideoMAEv2",
|
| 9 |
+
"AutoConfig": "modeling_config.VideoMAEv2Config"
|
| 10 |
+
},
|
| 11 |
+
"model_config":{
|
| 12 |
+
"img_size": 224,
|
| 13 |
+
"patch_size": 16,
|
| 14 |
+
"in_chans": 3,
|
| 15 |
+
"num_classes": 0,
|
| 16 |
+
"embed_dim": 768,
|
| 17 |
+
"depth": 12,
|
| 18 |
+
"num_heads": 12,
|
| 19 |
+
"mlp_ratio": 4,
|
| 20 |
+
"qkv_bias": true,
|
| 21 |
+
"qk_scale": null,
|
| 22 |
+
"drop_rate": 0.0,
|
| 23 |
+
"attn_drop_rate": 0.0,
|
| 24 |
+
"drop_path_rate": 0.0,
|
| 25 |
+
"norm_layer": "nn.LayerNorm",
|
| 26 |
+
"layer_norm_eps": 1e-6,
|
| 27 |
+
"init_values": 0.0,
|
| 28 |
+
"use_learnable_pos_emb": false,
|
| 29 |
+
"tubelet_size": 2,
|
| 30 |
+
"use_mean_pooling": true,
|
| 31 |
+
"with_cp": false,
|
| 32 |
+
"num_frames": 16,
|
| 33 |
+
"cos_attn": false
|
| 34 |
+
},
|
| 35 |
+
"transformers_version": "4.38.0",
|
| 36 |
+
"use_cache": true
|
| 37 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ebffa1874066ea227330016e58a848e9e2bb1ff5605746459bded1122a42176d
|
| 3 |
+
size 344924592
|
modeling_config.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import re, ast
|
| 3 |
+
from transformers import AutoConfig, LlamaConfig
|
| 4 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 5 |
+
from transformers.utils import logging
|
| 6 |
+
|
| 7 |
+
from easydict import EasyDict as MyEasyDict
|
| 8 |
+
from importlib import import_module
|
| 9 |
+
import os.path as osp
|
| 10 |
+
import argparse
|
| 11 |
+
import json
|
| 12 |
+
from copy import deepcopy
|
| 13 |
+
import sys
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class VideoMAEv2Config(PretrainedConfig):
|
| 17 |
+
model_type = 'VideoMAEv2_Base'
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
**kwargs):
|
| 21 |
+
super().__init__(**kwargs)
|
modeling_videomaev2.py
ADDED
|
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# Based on BEiT, timm, DINO and DeiT code bases
|
| 3 |
+
# https://github.com/microsoft/unilm/tree/master/beit
|
| 4 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
| 5 |
+
# https://github.com/facebookresearch/deit
|
| 6 |
+
# https://github.com/facebookresearch/dino
|
| 7 |
+
# --------------------------------------------------------'
|
| 8 |
+
from functools import partial
|
| 9 |
+
import logging
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
import torch.nn.functional as F
|
| 16 |
+
import torch.utils.checkpoint as cp
|
| 17 |
+
|
| 18 |
+
from transformers import AutoConfig, PreTrainedModel
|
| 19 |
+
|
| 20 |
+
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
| 21 |
+
from .modeling_config import VideoMAEv2Config
|
| 22 |
+
|
| 23 |
+
def _cfg(url='', **kwargs):
|
| 24 |
+
return {
|
| 25 |
+
'url': url,
|
| 26 |
+
'num_classes': 400,
|
| 27 |
+
'input_size': (3, 224, 224),
|
| 28 |
+
'pool_size': None,
|
| 29 |
+
'crop_pct': .9,
|
| 30 |
+
'interpolation': 'bicubic',
|
| 31 |
+
'mean': (0.5, 0.5, 0.5),
|
| 32 |
+
'std': (0.5, 0.5, 0.5),
|
| 33 |
+
**kwargs
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class DropPath(nn.Module):
|
| 38 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
def __init__(self, drop_prob=None):
|
| 42 |
+
super(DropPath, self).__init__()
|
| 43 |
+
self.drop_prob = drop_prob
|
| 44 |
+
|
| 45 |
+
def forward(self, x):
|
| 46 |
+
return drop_path(x, self.drop_prob, self.training)
|
| 47 |
+
|
| 48 |
+
def extra_repr(self) -> str:
|
| 49 |
+
return 'p={}'.format(self.drop_prob)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class Mlp(nn.Module):
|
| 53 |
+
|
| 54 |
+
def __init__(self,
|
| 55 |
+
in_features,
|
| 56 |
+
hidden_features=None,
|
| 57 |
+
out_features=None,
|
| 58 |
+
act_layer=nn.GELU,
|
| 59 |
+
drop=0.):
|
| 60 |
+
super().__init__()
|
| 61 |
+
out_features = out_features or in_features
|
| 62 |
+
hidden_features = hidden_features or in_features
|
| 63 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 64 |
+
self.act = act_layer()
|
| 65 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 66 |
+
self.drop = nn.Dropout(drop)
|
| 67 |
+
|
| 68 |
+
def forward(self, x):
|
| 69 |
+
x = self.fc1(x)
|
| 70 |
+
x = self.act(x)
|
| 71 |
+
# x = self.drop(x)
|
| 72 |
+
# commit this for the orignal BERT implement
|
| 73 |
+
x = self.fc2(x)
|
| 74 |
+
x = self.drop(x)
|
| 75 |
+
return x
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class CosAttention(nn.Module):
|
| 79 |
+
|
| 80 |
+
def __init__(self,
|
| 81 |
+
dim,
|
| 82 |
+
num_heads=8,
|
| 83 |
+
qkv_bias=False,
|
| 84 |
+
qk_scale=None,
|
| 85 |
+
attn_drop=0.,
|
| 86 |
+
proj_drop=0.,
|
| 87 |
+
attn_head_dim=None):
|
| 88 |
+
super().__init__()
|
| 89 |
+
self.num_heads = num_heads
|
| 90 |
+
head_dim = dim // num_heads
|
| 91 |
+
if attn_head_dim is not None:
|
| 92 |
+
head_dim = attn_head_dim
|
| 93 |
+
all_head_dim = head_dim * self.num_heads
|
| 94 |
+
# self.scale = qk_scale or head_dim**-0.5
|
| 95 |
+
# DO NOT RENAME [self.scale] (for no weight decay)
|
| 96 |
+
if qk_scale is None:
|
| 97 |
+
self.scale = nn.Parameter(
|
| 98 |
+
torch.log(10 * torch.ones((num_heads, 1, 1))),
|
| 99 |
+
requires_grad=True)
|
| 100 |
+
else:
|
| 101 |
+
self.scale = qk_scale
|
| 102 |
+
|
| 103 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
| 104 |
+
if qkv_bias:
|
| 105 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
| 106 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
| 107 |
+
else:
|
| 108 |
+
self.q_bias = None
|
| 109 |
+
self.v_bias = None
|
| 110 |
+
|
| 111 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 112 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
| 113 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 114 |
+
|
| 115 |
+
def forward(self, x):
|
| 116 |
+
B, N, C = x.shape
|
| 117 |
+
qkv_bias = None
|
| 118 |
+
if self.q_bias is not None:
|
| 119 |
+
qkv_bias = torch.cat(
|
| 120 |
+
(self.q_bias,
|
| 121 |
+
torch.zeros_like(self.v_bias,
|
| 122 |
+
requires_grad=False), self.v_bias))
|
| 123 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
| 124 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
| 125 |
+
q, k, v = qkv[0], qkv[1], qkv[
|
| 126 |
+
2] # make torchscript happy (cannot use tensor as tuple)
|
| 127 |
+
|
| 128 |
+
attn = (
|
| 129 |
+
F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
| 130 |
+
|
| 131 |
+
# torch.log(torch.tensor(1. / 0.01)) = 4.6052
|
| 132 |
+
logit_scale = torch.clamp(self.scale, max=4.6052).exp()
|
| 133 |
+
|
| 134 |
+
attn = attn * logit_scale
|
| 135 |
+
|
| 136 |
+
attn = attn.softmax(dim=-1)
|
| 137 |
+
attn = self.attn_drop(attn)
|
| 138 |
+
|
| 139 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
| 140 |
+
|
| 141 |
+
x = self.proj(x)
|
| 142 |
+
x = self.proj_drop(x)
|
| 143 |
+
return x
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
class Attention(nn.Module):
|
| 147 |
+
|
| 148 |
+
def __init__(self,
|
| 149 |
+
dim,
|
| 150 |
+
num_heads=8,
|
| 151 |
+
qkv_bias=False,
|
| 152 |
+
qk_scale=None,
|
| 153 |
+
attn_drop=0.,
|
| 154 |
+
proj_drop=0.,
|
| 155 |
+
attn_head_dim=None):
|
| 156 |
+
super().__init__()
|
| 157 |
+
self.num_heads = num_heads
|
| 158 |
+
head_dim = dim // num_heads
|
| 159 |
+
if attn_head_dim is not None:
|
| 160 |
+
head_dim = attn_head_dim
|
| 161 |
+
all_head_dim = head_dim * self.num_heads
|
| 162 |
+
self.scale = qk_scale or head_dim**-0.5
|
| 163 |
+
|
| 164 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
| 165 |
+
if qkv_bias:
|
| 166 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
| 167 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
| 168 |
+
else:
|
| 169 |
+
self.q_bias = None
|
| 170 |
+
self.v_bias = None
|
| 171 |
+
|
| 172 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 173 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
| 174 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 175 |
+
|
| 176 |
+
def forward(self, x):
|
| 177 |
+
B, N, C = x.shape
|
| 178 |
+
qkv_bias = None
|
| 179 |
+
if self.q_bias is not None:
|
| 180 |
+
qkv_bias = torch.cat(
|
| 181 |
+
(self.q_bias,
|
| 182 |
+
torch.zeros_like(self.v_bias,
|
| 183 |
+
requires_grad=False), self.v_bias))
|
| 184 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
| 185 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
| 186 |
+
q, k, v = qkv[0], qkv[1], qkv[
|
| 187 |
+
2] # make torchscript happy (cannot use tensor as tuple)
|
| 188 |
+
|
| 189 |
+
q = q * self.scale
|
| 190 |
+
attn = (q @ k.transpose(-2, -1))
|
| 191 |
+
|
| 192 |
+
attn = attn.softmax(dim=-1)
|
| 193 |
+
attn = self.attn_drop(attn)
|
| 194 |
+
|
| 195 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
| 196 |
+
|
| 197 |
+
x = self.proj(x)
|
| 198 |
+
x = self.proj_drop(x)
|
| 199 |
+
return x
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
class Block(nn.Module):
|
| 203 |
+
|
| 204 |
+
def __init__(self,
|
| 205 |
+
dim,
|
| 206 |
+
num_heads,
|
| 207 |
+
mlp_ratio=4.,
|
| 208 |
+
qkv_bias=False,
|
| 209 |
+
qk_scale=None,
|
| 210 |
+
drop=0.,
|
| 211 |
+
attn_drop=0.,
|
| 212 |
+
drop_path=0.,
|
| 213 |
+
init_values=None,
|
| 214 |
+
act_layer=nn.GELU,
|
| 215 |
+
norm_layer=nn.LayerNorm,
|
| 216 |
+
attn_head_dim=None,
|
| 217 |
+
cos_attn=False):
|
| 218 |
+
super().__init__()
|
| 219 |
+
self.norm1 = norm_layer(dim)
|
| 220 |
+
if cos_attn:
|
| 221 |
+
self.attn = CosAttention(
|
| 222 |
+
dim,
|
| 223 |
+
num_heads=num_heads,
|
| 224 |
+
qkv_bias=qkv_bias,
|
| 225 |
+
qk_scale=qk_scale,
|
| 226 |
+
attn_drop=attn_drop,
|
| 227 |
+
proj_drop=drop,
|
| 228 |
+
attn_head_dim=attn_head_dim)
|
| 229 |
+
else:
|
| 230 |
+
self.attn = Attention(
|
| 231 |
+
dim,
|
| 232 |
+
num_heads=num_heads,
|
| 233 |
+
qkv_bias=qkv_bias,
|
| 234 |
+
qk_scale=qk_scale,
|
| 235 |
+
attn_drop=attn_drop,
|
| 236 |
+
proj_drop=drop,
|
| 237 |
+
attn_head_dim=attn_head_dim)
|
| 238 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
| 239 |
+
self.drop_path = DropPath(
|
| 240 |
+
drop_path) if drop_path > 0. else nn.Identity()
|
| 241 |
+
self.norm2 = norm_layer(dim)
|
| 242 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 243 |
+
self.mlp = Mlp(
|
| 244 |
+
in_features=dim,
|
| 245 |
+
hidden_features=mlp_hidden_dim,
|
| 246 |
+
act_layer=act_layer,
|
| 247 |
+
drop=drop)
|
| 248 |
+
|
| 249 |
+
if init_values > 0:
|
| 250 |
+
self.gamma_1 = nn.Parameter(
|
| 251 |
+
init_values * torch.ones((dim)), requires_grad=True)
|
| 252 |
+
self.gamma_2 = nn.Parameter(
|
| 253 |
+
init_values * torch.ones((dim)), requires_grad=True)
|
| 254 |
+
else:
|
| 255 |
+
self.gamma_1, self.gamma_2 = None, None
|
| 256 |
+
|
| 257 |
+
def forward(self, x):
|
| 258 |
+
if self.gamma_1 is None:
|
| 259 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
| 260 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 261 |
+
else:
|
| 262 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
|
| 263 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
| 264 |
+
return x
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
class PatchEmbed(nn.Module):
|
| 268 |
+
""" Image to Patch Embedding
|
| 269 |
+
"""
|
| 270 |
+
|
| 271 |
+
def __init__(self,
|
| 272 |
+
img_size=224,
|
| 273 |
+
patch_size=16,
|
| 274 |
+
in_chans=3,
|
| 275 |
+
embed_dim=768,
|
| 276 |
+
num_frames=16,
|
| 277 |
+
tubelet_size=2):
|
| 278 |
+
super().__init__()
|
| 279 |
+
img_size = to_2tuple(img_size)
|
| 280 |
+
patch_size = to_2tuple(patch_size)
|
| 281 |
+
num_spatial_patches = (img_size[0] // patch_size[0]) * (
|
| 282 |
+
img_size[1] // patch_size[1])
|
| 283 |
+
num_patches = num_spatial_patches * (num_frames // tubelet_size)
|
| 284 |
+
|
| 285 |
+
self.img_size = img_size
|
| 286 |
+
self.tubelet_size = tubelet_size
|
| 287 |
+
self.patch_size = patch_size
|
| 288 |
+
self.num_patches = num_patches
|
| 289 |
+
self.proj = nn.Conv3d(
|
| 290 |
+
in_channels=in_chans,
|
| 291 |
+
out_channels=embed_dim,
|
| 292 |
+
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]),
|
| 293 |
+
stride=(self.tubelet_size, patch_size[0], patch_size[1]))
|
| 294 |
+
|
| 295 |
+
def forward(self, x, **kwargs):
|
| 296 |
+
B, C, T, H, W = x.shape
|
| 297 |
+
assert H == self.img_size[0] and W == self.img_size[
|
| 298 |
+
1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
| 299 |
+
# b, c, l -> b, l, c
|
| 300 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
| 301 |
+
return x
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
# sin-cos position encoding
|
| 305 |
+
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
|
| 306 |
+
def get_sinusoid_encoding_table(n_position, d_hid):
|
| 307 |
+
''' Sinusoid position encoding table '''
|
| 308 |
+
|
| 309 |
+
# TODO: make it with torch instead of numpy
|
| 310 |
+
def get_position_angle_vec(position):
|
| 311 |
+
return [
|
| 312 |
+
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
|
| 313 |
+
for hid_j in range(d_hid)
|
| 314 |
+
]
|
| 315 |
+
|
| 316 |
+
sinusoid_table = np.array(
|
| 317 |
+
[get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
| 318 |
+
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
| 319 |
+
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
| 320 |
+
|
| 321 |
+
return torch.tensor(
|
| 322 |
+
sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
class VisionTransformer(nn.Module):
|
| 326 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
| 327 |
+
"""
|
| 328 |
+
|
| 329 |
+
def __init__(self,
|
| 330 |
+
img_size=224,
|
| 331 |
+
patch_size=16,
|
| 332 |
+
in_chans=3,
|
| 333 |
+
num_classes=1000,
|
| 334 |
+
embed_dim=768,
|
| 335 |
+
depth=12,
|
| 336 |
+
num_heads=12,
|
| 337 |
+
mlp_ratio=4.,
|
| 338 |
+
qkv_bias=False,
|
| 339 |
+
qk_scale=None,
|
| 340 |
+
drop_rate=0.,
|
| 341 |
+
attn_drop_rate=0.,
|
| 342 |
+
drop_path_rate=0.,
|
| 343 |
+
head_drop_rate=0.,
|
| 344 |
+
norm_layer=nn.LayerNorm,
|
| 345 |
+
layer_norm_eps=1e-12,
|
| 346 |
+
init_values=0.,
|
| 347 |
+
use_learnable_pos_emb=False,
|
| 348 |
+
init_scale=0.,
|
| 349 |
+
num_frames=16,
|
| 350 |
+
tubelet_size=2,
|
| 351 |
+
use_mean_pooling=True,
|
| 352 |
+
with_cp=False,
|
| 353 |
+
cos_attn=False):
|
| 354 |
+
super().__init__()
|
| 355 |
+
self.num_classes = num_classes
|
| 356 |
+
# num_features for consistency with other models
|
| 357 |
+
self.num_features = self.embed_dim = embed_dim
|
| 358 |
+
self.tubelet_size = tubelet_size
|
| 359 |
+
self.patch_embed = PatchEmbed(
|
| 360 |
+
img_size=img_size,
|
| 361 |
+
patch_size=patch_size,
|
| 362 |
+
in_chans=in_chans,
|
| 363 |
+
embed_dim=embed_dim,
|
| 364 |
+
num_frames=num_frames,
|
| 365 |
+
tubelet_size=tubelet_size)
|
| 366 |
+
num_patches = self.patch_embed.num_patches
|
| 367 |
+
self.with_cp = with_cp
|
| 368 |
+
|
| 369 |
+
norm_layer = partial(eval(norm_layer), eps=layer_norm_eps)
|
| 370 |
+
|
| 371 |
+
if use_learnable_pos_emb:
|
| 372 |
+
self.pos_embed = nn.Parameter(
|
| 373 |
+
torch.zeros(1, num_patches, embed_dim))
|
| 374 |
+
else:
|
| 375 |
+
# sine-cosine positional embeddings is on the way
|
| 376 |
+
self.pos_embed = get_sinusoid_encoding_table(
|
| 377 |
+
num_patches, embed_dim)
|
| 378 |
+
|
| 379 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
| 380 |
+
|
| 381 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
| 382 |
+
] # stochastic depth decay rule
|
| 383 |
+
self.blocks = nn.ModuleList([
|
| 384 |
+
Block(
|
| 385 |
+
dim=embed_dim,
|
| 386 |
+
num_heads=num_heads,
|
| 387 |
+
mlp_ratio=mlp_ratio,
|
| 388 |
+
qkv_bias=qkv_bias,
|
| 389 |
+
qk_scale=qk_scale,
|
| 390 |
+
drop=drop_rate,
|
| 391 |
+
attn_drop=attn_drop_rate,
|
| 392 |
+
drop_path=dpr[i],
|
| 393 |
+
norm_layer=norm_layer,
|
| 394 |
+
init_values=init_values,
|
| 395 |
+
cos_attn=cos_attn) for i in range(depth)
|
| 396 |
+
])
|
| 397 |
+
self.norm = nn.Identity() if use_mean_pooling else norm_layer(
|
| 398 |
+
embed_dim)
|
| 399 |
+
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
| 400 |
+
self.head_dropout = nn.Dropout(head_drop_rate)
|
| 401 |
+
self.head = nn.Linear(
|
| 402 |
+
embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
| 403 |
+
|
| 404 |
+
if use_learnable_pos_emb:
|
| 405 |
+
trunc_normal_(self.pos_embed, std=.02)
|
| 406 |
+
|
| 407 |
+
self.apply(self._init_weights)
|
| 408 |
+
if num_classes > 0:
|
| 409 |
+
self.head.weight.data.mul_(init_scale)
|
| 410 |
+
self.head.bias.data.mul_(init_scale)
|
| 411 |
+
|
| 412 |
+
def _init_weights(self, m):
|
| 413 |
+
if isinstance(m, nn.Linear):
|
| 414 |
+
trunc_normal_(m.weight, std=.02)
|
| 415 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 416 |
+
nn.init.constant_(m.bias, 0)
|
| 417 |
+
elif isinstance(m, nn.LayerNorm):
|
| 418 |
+
nn.init.constant_(m.bias, 0)
|
| 419 |
+
nn.init.constant_(m.weight, 1.0)
|
| 420 |
+
|
| 421 |
+
def get_num_layers(self):
|
| 422 |
+
return len(self.blocks)
|
| 423 |
+
|
| 424 |
+
@torch.jit.ignore
|
| 425 |
+
def no_weight_decay(self):
|
| 426 |
+
return {'pos_embed', 'cls_token'}
|
| 427 |
+
|
| 428 |
+
def get_classifier(self):
|
| 429 |
+
return self.head
|
| 430 |
+
|
| 431 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
| 432 |
+
self.num_classes = num_classes
|
| 433 |
+
self.head = nn.Linear(
|
| 434 |
+
self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
| 435 |
+
|
| 436 |
+
def forward_features(self, x):
|
| 437 |
+
B = x.size(0)
|
| 438 |
+
|
| 439 |
+
x = self.patch_embed(x)
|
| 440 |
+
|
| 441 |
+
if self.pos_embed is not None:
|
| 442 |
+
x = x + self.pos_embed.expand(B, -1, -1).type_as(x).to(
|
| 443 |
+
x.device).clone().detach()
|
| 444 |
+
x = self.pos_drop(x)
|
| 445 |
+
|
| 446 |
+
for blk in self.blocks:
|
| 447 |
+
if self.with_cp:
|
| 448 |
+
x = cp.checkpoint(blk, x)
|
| 449 |
+
else:
|
| 450 |
+
x = blk(x)
|
| 451 |
+
|
| 452 |
+
if self.fc_norm is not None:
|
| 453 |
+
return self.fc_norm(x.mean(1))
|
| 454 |
+
else:
|
| 455 |
+
return self.norm(x[:, 0])
|
| 456 |
+
|
| 457 |
+
def forward(self, x):
|
| 458 |
+
x = self.forward_features(x)
|
| 459 |
+
x = self.head_dropout(x)
|
| 460 |
+
x = self.head(x)
|
| 461 |
+
return x
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
class VideoMAEv2(PreTrainedModel):
|
| 467 |
+
config_class = VideoMAEv2Config
|
| 468 |
+
def __init__(self, config=None):
|
| 469 |
+
super().__init__(config=config)
|
| 470 |
+
self.model_config = config.model_config
|
| 471 |
+
logger.info("Model config: {}".format(self.model_config))
|
| 472 |
+
self.model = VisionTransformer(**self.model_config)
|
| 473 |
+
|
| 474 |
+
def forward(self, pixel_values):
|
| 475 |
+
return self.model(pixel_values)
|
| 476 |
+
|
| 477 |
+
def extract_features(self, pixel_values):
|
| 478 |
+
return self.model.forward_features(pixel_values)
|
| 479 |
+
def vit_small_patch16_224(pretrained=False, **kwargs):
|
| 480 |
+
model = VisionTransformer(
|
| 481 |
+
patch_size=16,
|
| 482 |
+
embed_dim=384,
|
| 483 |
+
depth=12,
|
| 484 |
+
num_heads=6,
|
| 485 |
+
mlp_ratio=4,
|
| 486 |
+
qkv_bias=True,
|
| 487 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
| 488 |
+
**kwargs)
|
| 489 |
+
model.default_cfg = _cfg()
|
| 490 |
+
return model
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
def vit_base_patch16_224(pretrained=False, **kwargs):
|
| 495 |
+
model = VisionTransformer(
|
| 496 |
+
patch_size=16,
|
| 497 |
+
embed_dim=768,
|
| 498 |
+
depth=12,
|
| 499 |
+
num_heads=12,
|
| 500 |
+
mlp_ratio=4,
|
| 501 |
+
qkv_bias=True,
|
| 502 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
| 503 |
+
**kwargs)
|
| 504 |
+
model.default_cfg = _cfg()
|
| 505 |
+
return model
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
# @register_model
|
| 509 |
+
def vit_huge_patch16_224(pretrained=False, **kwargs):
|
| 510 |
+
model = VisionTransformer(
|
| 511 |
+
patch_size=16,
|
| 512 |
+
embed_dim=1280,
|
| 513 |
+
depth=32,
|
| 514 |
+
num_heads=16,
|
| 515 |
+
mlp_ratio=4,
|
| 516 |
+
qkv_bias=True,
|
| 517 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
| 518 |
+
**kwargs)
|
| 519 |
+
model.default_cfg = _cfg()
|
| 520 |
+
return model
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
# @register_model
|
| 524 |
+
def vit_giant_patch14_224(pretrained=False, **kwargs):
|
| 525 |
+
model = VisionTransformer(
|
| 526 |
+
patch_size=14,
|
| 527 |
+
embed_dim=1408,
|
| 528 |
+
depth=40,
|
| 529 |
+
num_heads=16,
|
| 530 |
+
mlp_ratio=48 / 11,
|
| 531 |
+
qkv_bias=True,
|
| 532 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
| 533 |
+
**kwargs)
|
| 534 |
+
model.default_cfg = _cfg()
|
| 535 |
+
return model
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_center_crop": true,
|
| 3 |
+
"do_normalize": true,
|
| 4 |
+
"do_resize": true,
|
| 5 |
+
"feature_extractor_type": "VideoMAEFeatureExtractor",
|
| 6 |
+
"image_mean": [
|
| 7 |
+
0.485,
|
| 8 |
+
0.456,
|
| 9 |
+
0.406
|
| 10 |
+
],
|
| 11 |
+
"image_std": [
|
| 12 |
+
0.229,
|
| 13 |
+
0.224,
|
| 14 |
+
0.225
|
| 15 |
+
],
|
| 16 |
+
"resample": 2,
|
| 17 |
+
"size": 224
|
| 18 |
+
}
|