File size: 7,179 Bytes
d79115c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import argparse
import torch
from torch.utils.data import DataLoader, Dataset
from torch.optim import AdamW
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.nn.utils.rnn import pad_sequence
from tqdm import tqdm
from src.modeling_openpeer import OpenPeerLLM
from src.configuration_openpeer import OpenPeerConfig
from src.tokenization_openpeer import OpenPeerTokenizer

class TextDataset(Dataset):
    def __init__(self, texts, tokenizer, max_length=1024):
        self.tokenizer = tokenizer
        self.texts = texts
        self.max_length = max_length
        
    def __len__(self):
        return len(self.texts)
        
    def __getitem__(self, idx):
        text = self.texts[idx]
        encoded = self.tokenizer(text, 
                               truncation=True,
                               max_length=self.max_length)
        
        input_ids = encoded["input_ids"]
        attention_mask = encoded["attention_mask"]
        
        # Create labels for causal LM (shifted input_ids)
        labels = input_ids[1:] + [self.tokenizer.eos_token_id]
        
        return {
            "input_ids": torch.tensor(input_ids),
            "attention_mask": torch.tensor(attention_mask),
            "labels": torch.tensor(labels)
        }

def collate_fn(batch):
    input_ids = [item["input_ids"] for item in batch]
    attention_mask = [item["attention_mask"] for item in batch]
    labels = [item["labels"] for item in batch]
    
    # Pad sequences
    input_ids = pad_sequence(input_ids, batch_first=True, padding_value=0)
    attention_mask = pad_sequence(attention_mask, batch_first=True, padding_value=0)
    labels = pad_sequence(labels, batch_first=True, padding_value=-100)  # -100 is ignored in loss
    
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "labels": labels
    }

def train(

    model,

    train_dataloader,

    optimizer,

    scheduler,

    num_epochs,

    device,

    save_path,

    log_interval=100

):
    model.train()
    total_steps = 0
    best_loss = float('inf')
    
    for epoch in range(num_epochs):
        print(f"\nEpoch {epoch+1}/{num_epochs}")
        progress_bar = tqdm(train_dataloader, desc="Training")
        epoch_loss = 0
        
        for batch_idx, batch in enumerate(progress_bar):
            # Move batch to device
            input_ids = batch["input_ids"].to(device)
            attention_mask = batch["attention_mask"].to(device)
            labels = batch["labels"].to(device)
            
            # Forward pass
            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                labels=labels
            )
            
            loss = outputs["loss"]
            epoch_loss += loss.item()
            
            # Backward pass
            optimizer.zero_grad()
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()
            scheduler.step()
            
            total_steps += 1
            
            # Update progress bar
            progress_bar.set_postfix({"loss": f"{loss.item():.4f}"})
            
            # Save best model
            if loss.item() < best_loss:
                best_loss = loss.item()
                torch.save({
                    "epoch": epoch,
                    "model_state_dict": model.state_dict(),
                    "optimizer_state_dict": optimizer.state_dict(),
                    "loss": best_loss,
                }, f"{save_path}/best_model.pt")
                
        # Save checkpoint
        avg_epoch_loss = epoch_loss / len(train_dataloader)
        print(f"Epoch {epoch+1} average loss: {avg_epoch_loss:.4f}")
        
        checkpoint = {
            "epoch": epoch,
            "model_state_dict": model.state_dict(),
            "optimizer_state_dict": optimizer.state_dict(),
            "loss": avg_epoch_loss,
        }
        torch.save(checkpoint, f"{save_path}/checkpoint_epoch_{epoch+1}.pt")

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--train_data", type=str, required=True, help="Path to training data file")
    parser.add_argument("--save_path", type=str, required=True, help="Directory to save model checkpoints")
    parser.add_argument("--load_checkpoint", type=str, help="Path to model checkpoint to continue training")
    parser.add_argument("--num_epochs", type=int, default=3, help="Number of training epochs")
    parser.add_argument("--batch_size", type=int, default=8, help="Training batch size")
    parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate")
    parser.add_argument("--max_length", type=int, default=1024, help="Maximum sequence length")
    args = parser.parse_args()
    
    # Create save directory if it doesn't exist
    os.makedirs(args.save_path, exist_ok=True)
    
    # Set device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    
    # Initialize model and tokenizer
    config = OpenPeerConfig()
    model = OpenPeerLLM(config).to(device)
    tokenizer = OpenPeerTokenizer()
    
    # Load checkpoint if specified
    start_epoch = 0
    if args.load_checkpoint and os.path.exists(args.load_checkpoint):
        print(f"Loading checkpoint: {args.load_checkpoint}")
        checkpoint = torch.load(args.load_checkpoint, map_location=device)
        model.load_state_dict(checkpoint["model_state_dict"])
        start_epoch = checkpoint["epoch"] + 1
        print(f"Resuming from epoch {start_epoch}")
        
    # Load training data
    print("Loading training data...")
    with open(args.train_data, 'r', encoding='utf-8') as f:
        texts = [line.strip() for line in f.readlines() if line.strip()]
        
    # Create dataset and dataloader
    print("Creating dataset...")
    dataset = TextDataset(texts, tokenizer, max_length=args.max_length)
    train_dataloader = DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=True,
        collate_fn=collate_fn,
        num_workers=4
    )
    
    # Initialize optimizer and scheduler
    optimizer = AdamW(model.parameters(), lr=args.learning_rate)
    scheduler = CosineAnnealingLR(optimizer, T_max=len(train_dataloader) * args.num_epochs)
    
    # Load optimizer state if resuming training
    if args.load_checkpoint and os.path.exists(args.load_checkpoint):
        checkpoint = torch.load(args.load_checkpoint, map_location=device)
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
    
    # Train the model
    print("Starting training...")
    train(
        model=model,
        train_dataloader=train_dataloader,
        optimizer=optimizer,
        scheduler=scheduler,
        num_epochs=args.num_epochs,
        device=device,
        save_path=args.save_path,
    )
    
if __name__ == "__main__":
    main()