Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +2702 -0
- config.json +34 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 1024,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,2702 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
library_name: sentence-transformers
|
| 5 |
+
license: mit
|
| 6 |
+
pipeline_tag: sentence-similarity
|
| 7 |
+
tags:
|
| 8 |
+
- feature-extraction
|
| 9 |
+
- mteb
|
| 10 |
+
- sentence-similarity
|
| 11 |
+
- sentence-transformers
|
| 12 |
+
|
| 13 |
+
model-index:
|
| 14 |
+
- name: GIST-large-Embedding-v0
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
type: Classification
|
| 18 |
+
dataset:
|
| 19 |
+
type: mteb/amazon_counterfactual
|
| 20 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
| 21 |
+
config: en
|
| 22 |
+
split: test
|
| 23 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
| 24 |
+
metrics:
|
| 25 |
+
- type: accuracy
|
| 26 |
+
value: 75.5820895522388
|
| 27 |
+
- type: ap
|
| 28 |
+
value: 38.32190121241783
|
| 29 |
+
- type: f1
|
| 30 |
+
value: 69.44777155231054
|
| 31 |
+
- task:
|
| 32 |
+
type: Classification
|
| 33 |
+
dataset:
|
| 34 |
+
type: mteb/amazon_polarity
|
| 35 |
+
name: MTEB AmazonPolarityClassification
|
| 36 |
+
config: default
|
| 37 |
+
split: test
|
| 38 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
| 39 |
+
metrics:
|
| 40 |
+
- type: accuracy
|
| 41 |
+
value: 93.40514999999998
|
| 42 |
+
- type: ap
|
| 43 |
+
value: 90.2011565132406
|
| 44 |
+
- type: f1
|
| 45 |
+
value: 93.39486246843605
|
| 46 |
+
- task:
|
| 47 |
+
type: Classification
|
| 48 |
+
dataset:
|
| 49 |
+
type: mteb/amazon_reviews_multi
|
| 50 |
+
name: MTEB AmazonReviewsClassification (en)
|
| 51 |
+
config: en
|
| 52 |
+
split: test
|
| 53 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 54 |
+
metrics:
|
| 55 |
+
- type: accuracy
|
| 56 |
+
value: 49.05999999999999
|
| 57 |
+
- type: f1
|
| 58 |
+
value: 48.58702718571088
|
| 59 |
+
- task:
|
| 60 |
+
type: Retrieval
|
| 61 |
+
dataset:
|
| 62 |
+
type: arguana
|
| 63 |
+
name: MTEB ArguAna
|
| 64 |
+
config: default
|
| 65 |
+
split: test
|
| 66 |
+
revision: None
|
| 67 |
+
metrics:
|
| 68 |
+
- type: map_at_1
|
| 69 |
+
value: 38.407000000000004
|
| 70 |
+
- type: map_at_10
|
| 71 |
+
value: 54.822
|
| 72 |
+
- type: map_at_100
|
| 73 |
+
value: 55.387
|
| 74 |
+
- type: map_at_1000
|
| 75 |
+
value: 55.388999999999996
|
| 76 |
+
- type: map_at_3
|
| 77 |
+
value: 50.308
|
| 78 |
+
- type: map_at_5
|
| 79 |
+
value: 53.199
|
| 80 |
+
- type: mrr_at_1
|
| 81 |
+
value: 39.900000000000006
|
| 82 |
+
- type: mrr_at_10
|
| 83 |
+
value: 55.385
|
| 84 |
+
- type: mrr_at_100
|
| 85 |
+
value: 55.936
|
| 86 |
+
- type: mrr_at_1000
|
| 87 |
+
value: 55.93900000000001
|
| 88 |
+
- type: mrr_at_3
|
| 89 |
+
value: 50.853
|
| 90 |
+
- type: mrr_at_5
|
| 91 |
+
value: 53.738
|
| 92 |
+
- type: ndcg_at_1
|
| 93 |
+
value: 38.407000000000004
|
| 94 |
+
- type: ndcg_at_10
|
| 95 |
+
value: 63.38
|
| 96 |
+
- type: ndcg_at_100
|
| 97 |
+
value: 65.52900000000001
|
| 98 |
+
- type: ndcg_at_1000
|
| 99 |
+
value: 65.58800000000001
|
| 100 |
+
- type: ndcg_at_3
|
| 101 |
+
value: 54.26
|
| 102 |
+
- type: ndcg_at_5
|
| 103 |
+
value: 59.488
|
| 104 |
+
- type: precision_at_1
|
| 105 |
+
value: 38.407000000000004
|
| 106 |
+
- type: precision_at_10
|
| 107 |
+
value: 9.04
|
| 108 |
+
- type: precision_at_100
|
| 109 |
+
value: 0.992
|
| 110 |
+
- type: precision_at_1000
|
| 111 |
+
value: 0.1
|
| 112 |
+
- type: precision_at_3
|
| 113 |
+
value: 21.906
|
| 114 |
+
- type: precision_at_5
|
| 115 |
+
value: 15.690000000000001
|
| 116 |
+
- type: recall_at_1
|
| 117 |
+
value: 38.407000000000004
|
| 118 |
+
- type: recall_at_10
|
| 119 |
+
value: 90.398
|
| 120 |
+
- type: recall_at_100
|
| 121 |
+
value: 99.21799999999999
|
| 122 |
+
- type: recall_at_1000
|
| 123 |
+
value: 99.644
|
| 124 |
+
- type: recall_at_3
|
| 125 |
+
value: 65.718
|
| 126 |
+
- type: recall_at_5
|
| 127 |
+
value: 78.45
|
| 128 |
+
- task:
|
| 129 |
+
type: Clustering
|
| 130 |
+
dataset:
|
| 131 |
+
type: mteb/arxiv-clustering-p2p
|
| 132 |
+
name: MTEB ArxivClusteringP2P
|
| 133 |
+
config: default
|
| 134 |
+
split: test
|
| 135 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
| 136 |
+
metrics:
|
| 137 |
+
- type: v_measure
|
| 138 |
+
value: 48.49766333679089
|
| 139 |
+
- task:
|
| 140 |
+
type: Clustering
|
| 141 |
+
dataset:
|
| 142 |
+
type: mteb/arxiv-clustering-s2s
|
| 143 |
+
name: MTEB ArxivClusteringS2S
|
| 144 |
+
config: default
|
| 145 |
+
split: test
|
| 146 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
| 147 |
+
metrics:
|
| 148 |
+
- type: v_measure
|
| 149 |
+
value: 42.57731111438094
|
| 150 |
+
- task:
|
| 151 |
+
type: Reranking
|
| 152 |
+
dataset:
|
| 153 |
+
type: mteb/askubuntudupquestions-reranking
|
| 154 |
+
name: MTEB AskUbuntuDupQuestions
|
| 155 |
+
config: default
|
| 156 |
+
split: test
|
| 157 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
| 158 |
+
metrics:
|
| 159 |
+
- type: map
|
| 160 |
+
value: 64.70120072857361
|
| 161 |
+
- type: mrr
|
| 162 |
+
value: 77.86714593501297
|
| 163 |
+
- task:
|
| 164 |
+
type: STS
|
| 165 |
+
dataset:
|
| 166 |
+
type: mteb/biosses-sts
|
| 167 |
+
name: MTEB BIOSSES
|
| 168 |
+
config: default
|
| 169 |
+
split: test
|
| 170 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
| 171 |
+
metrics:
|
| 172 |
+
- type: cos_sim_pearson
|
| 173 |
+
value: 90.73821860690765
|
| 174 |
+
- type: cos_sim_spearman
|
| 175 |
+
value: 89.17070651383446
|
| 176 |
+
- type: euclidean_pearson
|
| 177 |
+
value: 88.28303958293029
|
| 178 |
+
- type: euclidean_spearman
|
| 179 |
+
value: 88.81889126856979
|
| 180 |
+
- type: manhattan_pearson
|
| 181 |
+
value: 88.09080621828731
|
| 182 |
+
- type: manhattan_spearman
|
| 183 |
+
value: 88.55924679817751
|
| 184 |
+
- task:
|
| 185 |
+
type: Classification
|
| 186 |
+
dataset:
|
| 187 |
+
type: mteb/banking77
|
| 188 |
+
name: MTEB Banking77Classification
|
| 189 |
+
config: default
|
| 190 |
+
split: test
|
| 191 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
| 192 |
+
metrics:
|
| 193 |
+
- type: accuracy
|
| 194 |
+
value: 88.10064935064933
|
| 195 |
+
- type: f1
|
| 196 |
+
value: 88.08460758973867
|
| 197 |
+
- task:
|
| 198 |
+
type: Clustering
|
| 199 |
+
dataset:
|
| 200 |
+
type: mteb/biorxiv-clustering-p2p
|
| 201 |
+
name: MTEB BiorxivClusteringP2P
|
| 202 |
+
config: default
|
| 203 |
+
split: test
|
| 204 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
| 205 |
+
metrics:
|
| 206 |
+
- type: v_measure
|
| 207 |
+
value: 39.338228337929976
|
| 208 |
+
- task:
|
| 209 |
+
type: Clustering
|
| 210 |
+
dataset:
|
| 211 |
+
type: mteb/biorxiv-clustering-s2s
|
| 212 |
+
name: MTEB BiorxivClusteringS2S
|
| 213 |
+
config: default
|
| 214 |
+
split: test
|
| 215 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
| 216 |
+
metrics:
|
| 217 |
+
- type: v_measure
|
| 218 |
+
value: 36.179156232378226
|
| 219 |
+
- task:
|
| 220 |
+
type: Retrieval
|
| 221 |
+
dataset:
|
| 222 |
+
type: BeIR/cqadupstack
|
| 223 |
+
name: MTEB CQADupstackAndroidRetrieval
|
| 224 |
+
config: default
|
| 225 |
+
split: test
|
| 226 |
+
revision: None
|
| 227 |
+
metrics:
|
| 228 |
+
- type: map_at_1
|
| 229 |
+
value: 33.440999999999995
|
| 230 |
+
- type: map_at_10
|
| 231 |
+
value: 45.495000000000005
|
| 232 |
+
- type: map_at_100
|
| 233 |
+
value: 47.132000000000005
|
| 234 |
+
- type: map_at_1000
|
| 235 |
+
value: 47.253
|
| 236 |
+
- type: map_at_3
|
| 237 |
+
value: 41.766
|
| 238 |
+
- type: map_at_5
|
| 239 |
+
value: 43.873
|
| 240 |
+
- type: mrr_at_1
|
| 241 |
+
value: 40.772999999999996
|
| 242 |
+
- type: mrr_at_10
|
| 243 |
+
value: 51.627
|
| 244 |
+
- type: mrr_at_100
|
| 245 |
+
value: 52.364
|
| 246 |
+
- type: mrr_at_1000
|
| 247 |
+
value: 52.397000000000006
|
| 248 |
+
- type: mrr_at_3
|
| 249 |
+
value: 48.951
|
| 250 |
+
- type: mrr_at_5
|
| 251 |
+
value: 50.746
|
| 252 |
+
- type: ndcg_at_1
|
| 253 |
+
value: 40.772999999999996
|
| 254 |
+
- type: ndcg_at_10
|
| 255 |
+
value: 52.306
|
| 256 |
+
- type: ndcg_at_100
|
| 257 |
+
value: 57.753
|
| 258 |
+
- type: ndcg_at_1000
|
| 259 |
+
value: 59.36900000000001
|
| 260 |
+
- type: ndcg_at_3
|
| 261 |
+
value: 47.177
|
| 262 |
+
- type: ndcg_at_5
|
| 263 |
+
value: 49.71
|
| 264 |
+
- type: precision_at_1
|
| 265 |
+
value: 40.772999999999996
|
| 266 |
+
- type: precision_at_10
|
| 267 |
+
value: 10.129000000000001
|
| 268 |
+
- type: precision_at_100
|
| 269 |
+
value: 1.617
|
| 270 |
+
- type: precision_at_1000
|
| 271 |
+
value: 0.208
|
| 272 |
+
- type: precision_at_3
|
| 273 |
+
value: 22.985
|
| 274 |
+
- type: precision_at_5
|
| 275 |
+
value: 16.652
|
| 276 |
+
- type: recall_at_1
|
| 277 |
+
value: 33.440999999999995
|
| 278 |
+
- type: recall_at_10
|
| 279 |
+
value: 65.121
|
| 280 |
+
- type: recall_at_100
|
| 281 |
+
value: 87.55199999999999
|
| 282 |
+
- type: recall_at_1000
|
| 283 |
+
value: 97.41300000000001
|
| 284 |
+
- type: recall_at_3
|
| 285 |
+
value: 49.958999999999996
|
| 286 |
+
- type: recall_at_5
|
| 287 |
+
value: 57.14900000000001
|
| 288 |
+
- task:
|
| 289 |
+
type: Retrieval
|
| 290 |
+
dataset:
|
| 291 |
+
type: BeIR/cqadupstack
|
| 292 |
+
name: MTEB CQADupstackEnglishRetrieval
|
| 293 |
+
config: default
|
| 294 |
+
split: test
|
| 295 |
+
revision: None
|
| 296 |
+
metrics:
|
| 297 |
+
- type: map_at_1
|
| 298 |
+
value: 32.126
|
| 299 |
+
- type: map_at_10
|
| 300 |
+
value: 42.856
|
| 301 |
+
- type: map_at_100
|
| 302 |
+
value: 44.134
|
| 303 |
+
- type: map_at_1000
|
| 304 |
+
value: 44.274
|
| 305 |
+
- type: map_at_3
|
| 306 |
+
value: 39.594
|
| 307 |
+
- type: map_at_5
|
| 308 |
+
value: 41.504999999999995
|
| 309 |
+
- type: mrr_at_1
|
| 310 |
+
value: 40.127
|
| 311 |
+
- type: mrr_at_10
|
| 312 |
+
value: 48.736000000000004
|
| 313 |
+
- type: mrr_at_100
|
| 314 |
+
value: 49.303999999999995
|
| 315 |
+
- type: mrr_at_1000
|
| 316 |
+
value: 49.356
|
| 317 |
+
- type: mrr_at_3
|
| 318 |
+
value: 46.263
|
| 319 |
+
- type: mrr_at_5
|
| 320 |
+
value: 47.878
|
| 321 |
+
- type: ndcg_at_1
|
| 322 |
+
value: 40.127
|
| 323 |
+
- type: ndcg_at_10
|
| 324 |
+
value: 48.695
|
| 325 |
+
- type: ndcg_at_100
|
| 326 |
+
value: 52.846000000000004
|
| 327 |
+
- type: ndcg_at_1000
|
| 328 |
+
value: 54.964
|
| 329 |
+
- type: ndcg_at_3
|
| 330 |
+
value: 44.275
|
| 331 |
+
- type: ndcg_at_5
|
| 332 |
+
value: 46.54
|
| 333 |
+
- type: precision_at_1
|
| 334 |
+
value: 40.127
|
| 335 |
+
- type: precision_at_10
|
| 336 |
+
value: 9.229
|
| 337 |
+
- type: precision_at_100
|
| 338 |
+
value: 1.473
|
| 339 |
+
- type: precision_at_1000
|
| 340 |
+
value: 0.19499999999999998
|
| 341 |
+
- type: precision_at_3
|
| 342 |
+
value: 21.444
|
| 343 |
+
- type: precision_at_5
|
| 344 |
+
value: 15.389
|
| 345 |
+
- type: recall_at_1
|
| 346 |
+
value: 32.126
|
| 347 |
+
- type: recall_at_10
|
| 348 |
+
value: 58.971
|
| 349 |
+
- type: recall_at_100
|
| 350 |
+
value: 76.115
|
| 351 |
+
- type: recall_at_1000
|
| 352 |
+
value: 89.556
|
| 353 |
+
- type: recall_at_3
|
| 354 |
+
value: 45.891
|
| 355 |
+
- type: recall_at_5
|
| 356 |
+
value: 52.242
|
| 357 |
+
- task:
|
| 358 |
+
type: Retrieval
|
| 359 |
+
dataset:
|
| 360 |
+
type: BeIR/cqadupstack
|
| 361 |
+
name: MTEB CQADupstackGamingRetrieval
|
| 362 |
+
config: default
|
| 363 |
+
split: test
|
| 364 |
+
revision: None
|
| 365 |
+
metrics:
|
| 366 |
+
- type: map_at_1
|
| 367 |
+
value: 41.312
|
| 368 |
+
- type: map_at_10
|
| 369 |
+
value: 54.510000000000005
|
| 370 |
+
- type: map_at_100
|
| 371 |
+
value: 55.544000000000004
|
| 372 |
+
- type: map_at_1000
|
| 373 |
+
value: 55.593
|
| 374 |
+
- type: map_at_3
|
| 375 |
+
value: 50.859
|
| 376 |
+
- type: map_at_5
|
| 377 |
+
value: 52.839999999999996
|
| 378 |
+
- type: mrr_at_1
|
| 379 |
+
value: 47.147
|
| 380 |
+
- type: mrr_at_10
|
| 381 |
+
value: 57.678
|
| 382 |
+
- type: mrr_at_100
|
| 383 |
+
value: 58.287
|
| 384 |
+
- type: mrr_at_1000
|
| 385 |
+
value: 58.312
|
| 386 |
+
- type: mrr_at_3
|
| 387 |
+
value: 55.025999999999996
|
| 388 |
+
- type: mrr_at_5
|
| 389 |
+
value: 56.55
|
| 390 |
+
- type: ndcg_at_1
|
| 391 |
+
value: 47.147
|
| 392 |
+
- type: ndcg_at_10
|
| 393 |
+
value: 60.672000000000004
|
| 394 |
+
- type: ndcg_at_100
|
| 395 |
+
value: 64.411
|
| 396 |
+
- type: ndcg_at_1000
|
| 397 |
+
value: 65.35499999999999
|
| 398 |
+
- type: ndcg_at_3
|
| 399 |
+
value: 54.643
|
| 400 |
+
- type: ndcg_at_5
|
| 401 |
+
value: 57.461
|
| 402 |
+
- type: precision_at_1
|
| 403 |
+
value: 47.147
|
| 404 |
+
- type: precision_at_10
|
| 405 |
+
value: 9.881
|
| 406 |
+
- type: precision_at_100
|
| 407 |
+
value: 1.27
|
| 408 |
+
- type: precision_at_1000
|
| 409 |
+
value: 0.13799999999999998
|
| 410 |
+
- type: precision_at_3
|
| 411 |
+
value: 24.556
|
| 412 |
+
- type: precision_at_5
|
| 413 |
+
value: 16.814999999999998
|
| 414 |
+
- type: recall_at_1
|
| 415 |
+
value: 41.312
|
| 416 |
+
- type: recall_at_10
|
| 417 |
+
value: 75.62299999999999
|
| 418 |
+
- type: recall_at_100
|
| 419 |
+
value: 91.388
|
| 420 |
+
- type: recall_at_1000
|
| 421 |
+
value: 98.08
|
| 422 |
+
- type: recall_at_3
|
| 423 |
+
value: 59.40299999999999
|
| 424 |
+
- type: recall_at_5
|
| 425 |
+
value: 66.43900000000001
|
| 426 |
+
- task:
|
| 427 |
+
type: Retrieval
|
| 428 |
+
dataset:
|
| 429 |
+
type: BeIR/cqadupstack
|
| 430 |
+
name: MTEB CQADupstackGisRetrieval
|
| 431 |
+
config: default
|
| 432 |
+
split: test
|
| 433 |
+
revision: None
|
| 434 |
+
metrics:
|
| 435 |
+
- type: map_at_1
|
| 436 |
+
value: 27.609
|
| 437 |
+
- type: map_at_10
|
| 438 |
+
value: 37.614
|
| 439 |
+
- type: map_at_100
|
| 440 |
+
value: 38.584
|
| 441 |
+
- type: map_at_1000
|
| 442 |
+
value: 38.652
|
| 443 |
+
- type: map_at_3
|
| 444 |
+
value: 34.731
|
| 445 |
+
- type: map_at_5
|
| 446 |
+
value: 36.308
|
| 447 |
+
- type: mrr_at_1
|
| 448 |
+
value: 29.944
|
| 449 |
+
- type: mrr_at_10
|
| 450 |
+
value: 39.829
|
| 451 |
+
- type: mrr_at_100
|
| 452 |
+
value: 40.659
|
| 453 |
+
- type: mrr_at_1000
|
| 454 |
+
value: 40.709
|
| 455 |
+
- type: mrr_at_3
|
| 456 |
+
value: 37.269000000000005
|
| 457 |
+
- type: mrr_at_5
|
| 458 |
+
value: 38.625
|
| 459 |
+
- type: ndcg_at_1
|
| 460 |
+
value: 29.944
|
| 461 |
+
- type: ndcg_at_10
|
| 462 |
+
value: 43.082
|
| 463 |
+
- type: ndcg_at_100
|
| 464 |
+
value: 47.857
|
| 465 |
+
- type: ndcg_at_1000
|
| 466 |
+
value: 49.612
|
| 467 |
+
- type: ndcg_at_3
|
| 468 |
+
value: 37.578
|
| 469 |
+
- type: ndcg_at_5
|
| 470 |
+
value: 40.135
|
| 471 |
+
- type: precision_at_1
|
| 472 |
+
value: 29.944
|
| 473 |
+
- type: precision_at_10
|
| 474 |
+
value: 6.678000000000001
|
| 475 |
+
- type: precision_at_100
|
| 476 |
+
value: 0.951
|
| 477 |
+
- type: precision_at_1000
|
| 478 |
+
value: 0.11399999999999999
|
| 479 |
+
- type: precision_at_3
|
| 480 |
+
value: 16.045
|
| 481 |
+
- type: precision_at_5
|
| 482 |
+
value: 11.073
|
| 483 |
+
- type: recall_at_1
|
| 484 |
+
value: 27.609
|
| 485 |
+
- type: recall_at_10
|
| 486 |
+
value: 57.718
|
| 487 |
+
- type: recall_at_100
|
| 488 |
+
value: 79.768
|
| 489 |
+
- type: recall_at_1000
|
| 490 |
+
value: 92.868
|
| 491 |
+
- type: recall_at_3
|
| 492 |
+
value: 42.876
|
| 493 |
+
- type: recall_at_5
|
| 494 |
+
value: 49.104
|
| 495 |
+
- task:
|
| 496 |
+
type: Retrieval
|
| 497 |
+
dataset:
|
| 498 |
+
type: BeIR/cqadupstack
|
| 499 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
| 500 |
+
config: default
|
| 501 |
+
split: test
|
| 502 |
+
revision: None
|
| 503 |
+
metrics:
|
| 504 |
+
- type: map_at_1
|
| 505 |
+
value: 18.071
|
| 506 |
+
- type: map_at_10
|
| 507 |
+
value: 27.471
|
| 508 |
+
- type: map_at_100
|
| 509 |
+
value: 28.71
|
| 510 |
+
- type: map_at_1000
|
| 511 |
+
value: 28.833
|
| 512 |
+
- type: map_at_3
|
| 513 |
+
value: 24.698
|
| 514 |
+
- type: map_at_5
|
| 515 |
+
value: 26.461000000000002
|
| 516 |
+
- type: mrr_at_1
|
| 517 |
+
value: 22.387999999999998
|
| 518 |
+
- type: mrr_at_10
|
| 519 |
+
value: 32.522
|
| 520 |
+
- type: mrr_at_100
|
| 521 |
+
value: 33.393
|
| 522 |
+
- type: mrr_at_1000
|
| 523 |
+
value: 33.455
|
| 524 |
+
- type: mrr_at_3
|
| 525 |
+
value: 29.830000000000002
|
| 526 |
+
- type: mrr_at_5
|
| 527 |
+
value: 31.472
|
| 528 |
+
- type: ndcg_at_1
|
| 529 |
+
value: 22.387999999999998
|
| 530 |
+
- type: ndcg_at_10
|
| 531 |
+
value: 33.278999999999996
|
| 532 |
+
- type: ndcg_at_100
|
| 533 |
+
value: 39.043
|
| 534 |
+
- type: ndcg_at_1000
|
| 535 |
+
value: 41.763
|
| 536 |
+
- type: ndcg_at_3
|
| 537 |
+
value: 28.310999999999996
|
| 538 |
+
- type: ndcg_at_5
|
| 539 |
+
value: 31.007
|
| 540 |
+
- type: precision_at_1
|
| 541 |
+
value: 22.387999999999998
|
| 542 |
+
- type: precision_at_10
|
| 543 |
+
value: 6.157
|
| 544 |
+
- type: precision_at_100
|
| 545 |
+
value: 1.042
|
| 546 |
+
- type: precision_at_1000
|
| 547 |
+
value: 0.14200000000000002
|
| 548 |
+
- type: precision_at_3
|
| 549 |
+
value: 13.972000000000001
|
| 550 |
+
- type: precision_at_5
|
| 551 |
+
value: 10.274
|
| 552 |
+
- type: recall_at_1
|
| 553 |
+
value: 18.071
|
| 554 |
+
- type: recall_at_10
|
| 555 |
+
value: 46.025
|
| 556 |
+
- type: recall_at_100
|
| 557 |
+
value: 71.153
|
| 558 |
+
- type: recall_at_1000
|
| 559 |
+
value: 90.232
|
| 560 |
+
- type: recall_at_3
|
| 561 |
+
value: 32.311
|
| 562 |
+
- type: recall_at_5
|
| 563 |
+
value: 39.296
|
| 564 |
+
- task:
|
| 565 |
+
type: Retrieval
|
| 566 |
+
dataset:
|
| 567 |
+
type: BeIR/cqadupstack
|
| 568 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
| 569 |
+
config: default
|
| 570 |
+
split: test
|
| 571 |
+
revision: None
|
| 572 |
+
metrics:
|
| 573 |
+
- type: map_at_1
|
| 574 |
+
value: 30.813000000000002
|
| 575 |
+
- type: map_at_10
|
| 576 |
+
value: 42.594
|
| 577 |
+
- type: map_at_100
|
| 578 |
+
value: 43.949
|
| 579 |
+
- type: map_at_1000
|
| 580 |
+
value: 44.052
|
| 581 |
+
- type: map_at_3
|
| 582 |
+
value: 39.1
|
| 583 |
+
- type: map_at_5
|
| 584 |
+
value: 41.111
|
| 585 |
+
- type: mrr_at_1
|
| 586 |
+
value: 37.824999999999996
|
| 587 |
+
- type: mrr_at_10
|
| 588 |
+
value: 48.06
|
| 589 |
+
- type: mrr_at_100
|
| 590 |
+
value: 48.91
|
| 591 |
+
- type: mrr_at_1000
|
| 592 |
+
value: 48.946
|
| 593 |
+
- type: mrr_at_3
|
| 594 |
+
value: 45.509
|
| 595 |
+
- type: mrr_at_5
|
| 596 |
+
value: 47.073
|
| 597 |
+
- type: ndcg_at_1
|
| 598 |
+
value: 37.824999999999996
|
| 599 |
+
- type: ndcg_at_10
|
| 600 |
+
value: 48.882
|
| 601 |
+
- type: ndcg_at_100
|
| 602 |
+
value: 54.330999999999996
|
| 603 |
+
- type: ndcg_at_1000
|
| 604 |
+
value: 56.120999999999995
|
| 605 |
+
- type: ndcg_at_3
|
| 606 |
+
value: 43.529
|
| 607 |
+
- type: ndcg_at_5
|
| 608 |
+
value: 46.217999999999996
|
| 609 |
+
- type: precision_at_1
|
| 610 |
+
value: 37.824999999999996
|
| 611 |
+
- type: precision_at_10
|
| 612 |
+
value: 8.845
|
| 613 |
+
- type: precision_at_100
|
| 614 |
+
value: 1.34
|
| 615 |
+
- type: precision_at_1000
|
| 616 |
+
value: 0.168
|
| 617 |
+
- type: precision_at_3
|
| 618 |
+
value: 20.757
|
| 619 |
+
- type: precision_at_5
|
| 620 |
+
value: 14.802999999999999
|
| 621 |
+
- type: recall_at_1
|
| 622 |
+
value: 30.813000000000002
|
| 623 |
+
- type: recall_at_10
|
| 624 |
+
value: 61.895999999999994
|
| 625 |
+
- type: recall_at_100
|
| 626 |
+
value: 84.513
|
| 627 |
+
- type: recall_at_1000
|
| 628 |
+
value: 95.817
|
| 629 |
+
- type: recall_at_3
|
| 630 |
+
value: 47.099000000000004
|
| 631 |
+
- type: recall_at_5
|
| 632 |
+
value: 54.031
|
| 633 |
+
- task:
|
| 634 |
+
type: Retrieval
|
| 635 |
+
dataset:
|
| 636 |
+
type: BeIR/cqadupstack
|
| 637 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
| 638 |
+
config: default
|
| 639 |
+
split: test
|
| 640 |
+
revision: None
|
| 641 |
+
metrics:
|
| 642 |
+
- type: map_at_1
|
| 643 |
+
value: 25.735999999999997
|
| 644 |
+
- type: map_at_10
|
| 645 |
+
value: 36.799
|
| 646 |
+
- type: map_at_100
|
| 647 |
+
value: 38.246
|
| 648 |
+
- type: map_at_1000
|
| 649 |
+
value: 38.353
|
| 650 |
+
- type: map_at_3
|
| 651 |
+
value: 33.133
|
| 652 |
+
- type: map_at_5
|
| 653 |
+
value: 34.954
|
| 654 |
+
- type: mrr_at_1
|
| 655 |
+
value: 31.849
|
| 656 |
+
- type: mrr_at_10
|
| 657 |
+
value: 41.928
|
| 658 |
+
- type: mrr_at_100
|
| 659 |
+
value: 42.846000000000004
|
| 660 |
+
- type: mrr_at_1000
|
| 661 |
+
value: 42.894
|
| 662 |
+
- type: mrr_at_3
|
| 663 |
+
value: 39.117000000000004
|
| 664 |
+
- type: mrr_at_5
|
| 665 |
+
value: 40.521
|
| 666 |
+
- type: ndcg_at_1
|
| 667 |
+
value: 31.849
|
| 668 |
+
- type: ndcg_at_10
|
| 669 |
+
value: 43.143
|
| 670 |
+
- type: ndcg_at_100
|
| 671 |
+
value: 48.963
|
| 672 |
+
- type: ndcg_at_1000
|
| 673 |
+
value: 51.041000000000004
|
| 674 |
+
- type: ndcg_at_3
|
| 675 |
+
value: 37.218
|
| 676 |
+
- type: ndcg_at_5
|
| 677 |
+
value: 39.542
|
| 678 |
+
- type: precision_at_1
|
| 679 |
+
value: 31.849
|
| 680 |
+
- type: precision_at_10
|
| 681 |
+
value: 8.231
|
| 682 |
+
- type: precision_at_100
|
| 683 |
+
value: 1.277
|
| 684 |
+
- type: precision_at_1000
|
| 685 |
+
value: 0.164
|
| 686 |
+
- type: precision_at_3
|
| 687 |
+
value: 18.037
|
| 688 |
+
- type: precision_at_5
|
| 689 |
+
value: 12.945
|
| 690 |
+
- type: recall_at_1
|
| 691 |
+
value: 25.735999999999997
|
| 692 |
+
- type: recall_at_10
|
| 693 |
+
value: 56.735
|
| 694 |
+
- type: recall_at_100
|
| 695 |
+
value: 81.04
|
| 696 |
+
- type: recall_at_1000
|
| 697 |
+
value: 94.845
|
| 698 |
+
- type: recall_at_3
|
| 699 |
+
value: 40.239999999999995
|
| 700 |
+
- type: recall_at_5
|
| 701 |
+
value: 46.378
|
| 702 |
+
- task:
|
| 703 |
+
type: Retrieval
|
| 704 |
+
dataset:
|
| 705 |
+
type: BeIR/cqadupstack
|
| 706 |
+
name: MTEB CQADupstackRetrieval
|
| 707 |
+
config: default
|
| 708 |
+
split: test
|
| 709 |
+
revision: None
|
| 710 |
+
metrics:
|
| 711 |
+
- type: map_at_1
|
| 712 |
+
value: 27.580333333333336
|
| 713 |
+
- type: map_at_10
|
| 714 |
+
value: 37.70558333333334
|
| 715 |
+
- type: map_at_100
|
| 716 |
+
value: 38.94941666666667
|
| 717 |
+
- type: map_at_1000
|
| 718 |
+
value: 39.062083333333334
|
| 719 |
+
- type: map_at_3
|
| 720 |
+
value: 34.63333333333334
|
| 721 |
+
- type: map_at_5
|
| 722 |
+
value: 36.35241666666666
|
| 723 |
+
- type: mrr_at_1
|
| 724 |
+
value: 32.64866666666667
|
| 725 |
+
- type: mrr_at_10
|
| 726 |
+
value: 42.018499999999996
|
| 727 |
+
- type: mrr_at_100
|
| 728 |
+
value: 42.83391666666666
|
| 729 |
+
- type: mrr_at_1000
|
| 730 |
+
value: 42.884166666666665
|
| 731 |
+
- type: mrr_at_3
|
| 732 |
+
value: 39.476499999999994
|
| 733 |
+
- type: mrr_at_5
|
| 734 |
+
value: 40.96983333333334
|
| 735 |
+
- type: ndcg_at_1
|
| 736 |
+
value: 32.64866666666667
|
| 737 |
+
- type: ndcg_at_10
|
| 738 |
+
value: 43.43866666666667
|
| 739 |
+
- type: ndcg_at_100
|
| 740 |
+
value: 48.569833333333335
|
| 741 |
+
- type: ndcg_at_1000
|
| 742 |
+
value: 50.6495
|
| 743 |
+
- type: ndcg_at_3
|
| 744 |
+
value: 38.327166666666656
|
| 745 |
+
- type: ndcg_at_5
|
| 746 |
+
value: 40.76941666666667
|
| 747 |
+
- type: precision_at_1
|
| 748 |
+
value: 32.64866666666667
|
| 749 |
+
- type: precision_at_10
|
| 750 |
+
value: 7.652333333333332
|
| 751 |
+
- type: precision_at_100
|
| 752 |
+
value: 1.2066666666666666
|
| 753 |
+
- type: precision_at_1000
|
| 754 |
+
value: 0.15841666666666668
|
| 755 |
+
- type: precision_at_3
|
| 756 |
+
value: 17.75108333333333
|
| 757 |
+
- type: precision_at_5
|
| 758 |
+
value: 12.641916666666669
|
| 759 |
+
- type: recall_at_1
|
| 760 |
+
value: 27.580333333333336
|
| 761 |
+
- type: recall_at_10
|
| 762 |
+
value: 56.02591666666667
|
| 763 |
+
- type: recall_at_100
|
| 764 |
+
value: 78.317
|
| 765 |
+
- type: recall_at_1000
|
| 766 |
+
value: 92.52608333333332
|
| 767 |
+
- type: recall_at_3
|
| 768 |
+
value: 41.84283333333333
|
| 769 |
+
- type: recall_at_5
|
| 770 |
+
value: 48.105666666666664
|
| 771 |
+
- task:
|
| 772 |
+
type: Retrieval
|
| 773 |
+
dataset:
|
| 774 |
+
type: BeIR/cqadupstack
|
| 775 |
+
name: MTEB CQADupstackStatsRetrieval
|
| 776 |
+
config: default
|
| 777 |
+
split: test
|
| 778 |
+
revision: None
|
| 779 |
+
metrics:
|
| 780 |
+
- type: map_at_1
|
| 781 |
+
value: 27.876
|
| 782 |
+
- type: map_at_10
|
| 783 |
+
value: 34.521
|
| 784 |
+
- type: map_at_100
|
| 785 |
+
value: 35.581
|
| 786 |
+
- type: map_at_1000
|
| 787 |
+
value: 35.674
|
| 788 |
+
- type: map_at_3
|
| 789 |
+
value: 32.501000000000005
|
| 790 |
+
- type: map_at_5
|
| 791 |
+
value: 33.602
|
| 792 |
+
- type: mrr_at_1
|
| 793 |
+
value: 31.441999999999997
|
| 794 |
+
- type: mrr_at_10
|
| 795 |
+
value: 37.669999999999995
|
| 796 |
+
- type: mrr_at_100
|
| 797 |
+
value: 38.523
|
| 798 |
+
- type: mrr_at_1000
|
| 799 |
+
value: 38.59
|
| 800 |
+
- type: mrr_at_3
|
| 801 |
+
value: 35.762
|
| 802 |
+
- type: mrr_at_5
|
| 803 |
+
value: 36.812
|
| 804 |
+
- type: ndcg_at_1
|
| 805 |
+
value: 31.441999999999997
|
| 806 |
+
- type: ndcg_at_10
|
| 807 |
+
value: 38.46
|
| 808 |
+
- type: ndcg_at_100
|
| 809 |
+
value: 43.479
|
| 810 |
+
- type: ndcg_at_1000
|
| 811 |
+
value: 45.858
|
| 812 |
+
- type: ndcg_at_3
|
| 813 |
+
value: 34.668
|
| 814 |
+
- type: ndcg_at_5
|
| 815 |
+
value: 36.416
|
| 816 |
+
- type: precision_at_1
|
| 817 |
+
value: 31.441999999999997
|
| 818 |
+
- type: precision_at_10
|
| 819 |
+
value: 5.782
|
| 820 |
+
- type: precision_at_100
|
| 821 |
+
value: 0.91
|
| 822 |
+
- type: precision_at_1000
|
| 823 |
+
value: 0.11900000000000001
|
| 824 |
+
- type: precision_at_3
|
| 825 |
+
value: 14.417
|
| 826 |
+
- type: precision_at_5
|
| 827 |
+
value: 9.876999999999999
|
| 828 |
+
- type: recall_at_1
|
| 829 |
+
value: 27.876
|
| 830 |
+
- type: recall_at_10
|
| 831 |
+
value: 47.556
|
| 832 |
+
- type: recall_at_100
|
| 833 |
+
value: 70.39699999999999
|
| 834 |
+
- type: recall_at_1000
|
| 835 |
+
value: 87.969
|
| 836 |
+
- type: recall_at_3
|
| 837 |
+
value: 37.226
|
| 838 |
+
- type: recall_at_5
|
| 839 |
+
value: 41.43
|
| 840 |
+
- task:
|
| 841 |
+
type: Retrieval
|
| 842 |
+
dataset:
|
| 843 |
+
type: BeIR/cqadupstack
|
| 844 |
+
name: MTEB CQADupstackTexRetrieval
|
| 845 |
+
config: default
|
| 846 |
+
split: test
|
| 847 |
+
revision: None
|
| 848 |
+
metrics:
|
| 849 |
+
- type: map_at_1
|
| 850 |
+
value: 18.854000000000003
|
| 851 |
+
- type: map_at_10
|
| 852 |
+
value: 26.632
|
| 853 |
+
- type: map_at_100
|
| 854 |
+
value: 27.849
|
| 855 |
+
- type: map_at_1000
|
| 856 |
+
value: 27.977
|
| 857 |
+
- type: map_at_3
|
| 858 |
+
value: 24.089
|
| 859 |
+
- type: map_at_5
|
| 860 |
+
value: 25.477
|
| 861 |
+
- type: mrr_at_1
|
| 862 |
+
value: 22.987
|
| 863 |
+
- type: mrr_at_10
|
| 864 |
+
value: 30.781999999999996
|
| 865 |
+
- type: mrr_at_100
|
| 866 |
+
value: 31.746000000000002
|
| 867 |
+
- type: mrr_at_1000
|
| 868 |
+
value: 31.818
|
| 869 |
+
- type: mrr_at_3
|
| 870 |
+
value: 28.43
|
| 871 |
+
- type: mrr_at_5
|
| 872 |
+
value: 29.791
|
| 873 |
+
- type: ndcg_at_1
|
| 874 |
+
value: 22.987
|
| 875 |
+
- type: ndcg_at_10
|
| 876 |
+
value: 31.585
|
| 877 |
+
- type: ndcg_at_100
|
| 878 |
+
value: 37.32
|
| 879 |
+
- type: ndcg_at_1000
|
| 880 |
+
value: 40.072
|
| 881 |
+
- type: ndcg_at_3
|
| 882 |
+
value: 27.058
|
| 883 |
+
- type: ndcg_at_5
|
| 884 |
+
value: 29.137999999999998
|
| 885 |
+
- type: precision_at_1
|
| 886 |
+
value: 22.987
|
| 887 |
+
- type: precision_at_10
|
| 888 |
+
value: 5.76
|
| 889 |
+
- type: precision_at_100
|
| 890 |
+
value: 1.018
|
| 891 |
+
- type: precision_at_1000
|
| 892 |
+
value: 0.14400000000000002
|
| 893 |
+
- type: precision_at_3
|
| 894 |
+
value: 12.767000000000001
|
| 895 |
+
- type: precision_at_5
|
| 896 |
+
value: 9.257
|
| 897 |
+
- type: recall_at_1
|
| 898 |
+
value: 18.854000000000003
|
| 899 |
+
- type: recall_at_10
|
| 900 |
+
value: 42.349
|
| 901 |
+
- type: recall_at_100
|
| 902 |
+
value: 68.15299999999999
|
| 903 |
+
- type: recall_at_1000
|
| 904 |
+
value: 87.44
|
| 905 |
+
- type: recall_at_3
|
| 906 |
+
value: 29.715999999999998
|
| 907 |
+
- type: recall_at_5
|
| 908 |
+
value: 35.085
|
| 909 |
+
- task:
|
| 910 |
+
type: Retrieval
|
| 911 |
+
dataset:
|
| 912 |
+
type: BeIR/cqadupstack
|
| 913 |
+
name: MTEB CQADupstackUnixRetrieval
|
| 914 |
+
config: default
|
| 915 |
+
split: test
|
| 916 |
+
revision: None
|
| 917 |
+
metrics:
|
| 918 |
+
- type: map_at_1
|
| 919 |
+
value: 28.094
|
| 920 |
+
- type: map_at_10
|
| 921 |
+
value: 38.22
|
| 922 |
+
- type: map_at_100
|
| 923 |
+
value: 39.352
|
| 924 |
+
- type: map_at_1000
|
| 925 |
+
value: 39.452
|
| 926 |
+
- type: map_at_3
|
| 927 |
+
value: 35.339
|
| 928 |
+
- type: map_at_5
|
| 929 |
+
value: 36.78
|
| 930 |
+
- type: mrr_at_1
|
| 931 |
+
value: 33.022
|
| 932 |
+
- type: mrr_at_10
|
| 933 |
+
value: 42.466
|
| 934 |
+
- type: mrr_at_100
|
| 935 |
+
value: 43.3
|
| 936 |
+
- type: mrr_at_1000
|
| 937 |
+
value: 43.356
|
| 938 |
+
- type: mrr_at_3
|
| 939 |
+
value: 40.159
|
| 940 |
+
- type: mrr_at_5
|
| 941 |
+
value: 41.272999999999996
|
| 942 |
+
- type: ndcg_at_1
|
| 943 |
+
value: 33.022
|
| 944 |
+
- type: ndcg_at_10
|
| 945 |
+
value: 43.976
|
| 946 |
+
- type: ndcg_at_100
|
| 947 |
+
value: 49.008
|
| 948 |
+
- type: ndcg_at_1000
|
| 949 |
+
value: 51.154999999999994
|
| 950 |
+
- type: ndcg_at_3
|
| 951 |
+
value: 38.891
|
| 952 |
+
- type: ndcg_at_5
|
| 953 |
+
value: 40.897
|
| 954 |
+
- type: precision_at_1
|
| 955 |
+
value: 33.022
|
| 956 |
+
- type: precision_at_10
|
| 957 |
+
value: 7.396999999999999
|
| 958 |
+
- type: precision_at_100
|
| 959 |
+
value: 1.1199999999999999
|
| 960 |
+
- type: precision_at_1000
|
| 961 |
+
value: 0.14200000000000002
|
| 962 |
+
- type: precision_at_3
|
| 963 |
+
value: 17.724
|
| 964 |
+
- type: precision_at_5
|
| 965 |
+
value: 12.239
|
| 966 |
+
- type: recall_at_1
|
| 967 |
+
value: 28.094
|
| 968 |
+
- type: recall_at_10
|
| 969 |
+
value: 57.162
|
| 970 |
+
- type: recall_at_100
|
| 971 |
+
value: 78.636
|
| 972 |
+
- type: recall_at_1000
|
| 973 |
+
value: 93.376
|
| 974 |
+
- type: recall_at_3
|
| 975 |
+
value: 43.328
|
| 976 |
+
- type: recall_at_5
|
| 977 |
+
value: 48.252
|
| 978 |
+
- task:
|
| 979 |
+
type: Retrieval
|
| 980 |
+
dataset:
|
| 981 |
+
type: BeIR/cqadupstack
|
| 982 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
| 983 |
+
config: default
|
| 984 |
+
split: test
|
| 985 |
+
revision: None
|
| 986 |
+
metrics:
|
| 987 |
+
- type: map_at_1
|
| 988 |
+
value: 24.937
|
| 989 |
+
- type: map_at_10
|
| 990 |
+
value: 34.82
|
| 991 |
+
- type: map_at_100
|
| 992 |
+
value: 36.405
|
| 993 |
+
- type: map_at_1000
|
| 994 |
+
value: 36.626
|
| 995 |
+
- type: map_at_3
|
| 996 |
+
value: 31.548
|
| 997 |
+
- type: map_at_5
|
| 998 |
+
value: 33.355000000000004
|
| 999 |
+
- type: mrr_at_1
|
| 1000 |
+
value: 30.435000000000002
|
| 1001 |
+
- type: mrr_at_10
|
| 1002 |
+
value: 39.946
|
| 1003 |
+
- type: mrr_at_100
|
| 1004 |
+
value: 40.873
|
| 1005 |
+
- type: mrr_at_1000
|
| 1006 |
+
value: 40.910000000000004
|
| 1007 |
+
- type: mrr_at_3
|
| 1008 |
+
value: 37.088
|
| 1009 |
+
- type: mrr_at_5
|
| 1010 |
+
value: 38.808
|
| 1011 |
+
- type: ndcg_at_1
|
| 1012 |
+
value: 30.435000000000002
|
| 1013 |
+
- type: ndcg_at_10
|
| 1014 |
+
value: 41.25
|
| 1015 |
+
- type: ndcg_at_100
|
| 1016 |
+
value: 47.229
|
| 1017 |
+
- type: ndcg_at_1000
|
| 1018 |
+
value: 49.395
|
| 1019 |
+
- type: ndcg_at_3
|
| 1020 |
+
value: 35.801
|
| 1021 |
+
- type: ndcg_at_5
|
| 1022 |
+
value: 38.457
|
| 1023 |
+
- type: precision_at_1
|
| 1024 |
+
value: 30.435000000000002
|
| 1025 |
+
- type: precision_at_10
|
| 1026 |
+
value: 8.083
|
| 1027 |
+
- type: precision_at_100
|
| 1028 |
+
value: 1.601
|
| 1029 |
+
- type: precision_at_1000
|
| 1030 |
+
value: 0.247
|
| 1031 |
+
- type: precision_at_3
|
| 1032 |
+
value: 17.061999999999998
|
| 1033 |
+
- type: precision_at_5
|
| 1034 |
+
value: 12.767000000000001
|
| 1035 |
+
- type: recall_at_1
|
| 1036 |
+
value: 24.937
|
| 1037 |
+
- type: recall_at_10
|
| 1038 |
+
value: 53.905
|
| 1039 |
+
- type: recall_at_100
|
| 1040 |
+
value: 80.607
|
| 1041 |
+
- type: recall_at_1000
|
| 1042 |
+
value: 93.728
|
| 1043 |
+
- type: recall_at_3
|
| 1044 |
+
value: 38.446000000000005
|
| 1045 |
+
- type: recall_at_5
|
| 1046 |
+
value: 45.188
|
| 1047 |
+
- task:
|
| 1048 |
+
type: Retrieval
|
| 1049 |
+
dataset:
|
| 1050 |
+
type: BeIR/cqadupstack
|
| 1051 |
+
name: MTEB CQADupstackWordpressRetrieval
|
| 1052 |
+
config: default
|
| 1053 |
+
split: test
|
| 1054 |
+
revision: None
|
| 1055 |
+
metrics:
|
| 1056 |
+
- type: map_at_1
|
| 1057 |
+
value: 22.095000000000002
|
| 1058 |
+
- type: map_at_10
|
| 1059 |
+
value: 30.935000000000002
|
| 1060 |
+
- type: map_at_100
|
| 1061 |
+
value: 31.907000000000004
|
| 1062 |
+
- type: map_at_1000
|
| 1063 |
+
value: 32.006
|
| 1064 |
+
- type: map_at_3
|
| 1065 |
+
value: 28.242
|
| 1066 |
+
- type: map_at_5
|
| 1067 |
+
value: 29.963
|
| 1068 |
+
- type: mrr_at_1
|
| 1069 |
+
value: 23.845
|
| 1070 |
+
- type: mrr_at_10
|
| 1071 |
+
value: 32.978
|
| 1072 |
+
- type: mrr_at_100
|
| 1073 |
+
value: 33.802
|
| 1074 |
+
- type: mrr_at_1000
|
| 1075 |
+
value: 33.867000000000004
|
| 1076 |
+
- type: mrr_at_3
|
| 1077 |
+
value: 30.314000000000004
|
| 1078 |
+
- type: mrr_at_5
|
| 1079 |
+
value: 32.089
|
| 1080 |
+
- type: ndcg_at_1
|
| 1081 |
+
value: 23.845
|
| 1082 |
+
- type: ndcg_at_10
|
| 1083 |
+
value: 35.934
|
| 1084 |
+
- type: ndcg_at_100
|
| 1085 |
+
value: 40.598
|
| 1086 |
+
- type: ndcg_at_1000
|
| 1087 |
+
value: 43.089
|
| 1088 |
+
- type: ndcg_at_3
|
| 1089 |
+
value: 30.776999999999997
|
| 1090 |
+
- type: ndcg_at_5
|
| 1091 |
+
value: 33.711999999999996
|
| 1092 |
+
- type: precision_at_1
|
| 1093 |
+
value: 23.845
|
| 1094 |
+
- type: precision_at_10
|
| 1095 |
+
value: 5.656
|
| 1096 |
+
- type: precision_at_100
|
| 1097 |
+
value: 0.861
|
| 1098 |
+
- type: precision_at_1000
|
| 1099 |
+
value: 0.12
|
| 1100 |
+
- type: precision_at_3
|
| 1101 |
+
value: 13.247
|
| 1102 |
+
- type: precision_at_5
|
| 1103 |
+
value: 9.612
|
| 1104 |
+
- type: recall_at_1
|
| 1105 |
+
value: 22.095000000000002
|
| 1106 |
+
- type: recall_at_10
|
| 1107 |
+
value: 49.25
|
| 1108 |
+
- type: recall_at_100
|
| 1109 |
+
value: 70.482
|
| 1110 |
+
- type: recall_at_1000
|
| 1111 |
+
value: 88.98899999999999
|
| 1112 |
+
- type: recall_at_3
|
| 1113 |
+
value: 35.619
|
| 1114 |
+
- type: recall_at_5
|
| 1115 |
+
value: 42.674
|
| 1116 |
+
- task:
|
| 1117 |
+
type: Retrieval
|
| 1118 |
+
dataset:
|
| 1119 |
+
type: climate-fever
|
| 1120 |
+
name: MTEB ClimateFEVER
|
| 1121 |
+
config: default
|
| 1122 |
+
split: test
|
| 1123 |
+
revision: None
|
| 1124 |
+
metrics:
|
| 1125 |
+
- type: map_at_1
|
| 1126 |
+
value: 14.154
|
| 1127 |
+
- type: map_at_10
|
| 1128 |
+
value: 24.654999999999998
|
| 1129 |
+
- type: map_at_100
|
| 1130 |
+
value: 26.723999999999997
|
| 1131 |
+
- type: map_at_1000
|
| 1132 |
+
value: 26.912000000000003
|
| 1133 |
+
- type: map_at_3
|
| 1134 |
+
value: 20.4
|
| 1135 |
+
- type: map_at_5
|
| 1136 |
+
value: 22.477
|
| 1137 |
+
- type: mrr_at_1
|
| 1138 |
+
value: 32.117000000000004
|
| 1139 |
+
- type: mrr_at_10
|
| 1140 |
+
value: 44.590999999999994
|
| 1141 |
+
- type: mrr_at_100
|
| 1142 |
+
value: 45.425
|
| 1143 |
+
- type: mrr_at_1000
|
| 1144 |
+
value: 45.456
|
| 1145 |
+
- type: mrr_at_3
|
| 1146 |
+
value: 41.281
|
| 1147 |
+
- type: mrr_at_5
|
| 1148 |
+
value: 43.219
|
| 1149 |
+
- type: ndcg_at_1
|
| 1150 |
+
value: 32.117000000000004
|
| 1151 |
+
- type: ndcg_at_10
|
| 1152 |
+
value: 33.994
|
| 1153 |
+
- type: ndcg_at_100
|
| 1154 |
+
value: 41.438
|
| 1155 |
+
- type: ndcg_at_1000
|
| 1156 |
+
value: 44.611000000000004
|
| 1157 |
+
- type: ndcg_at_3
|
| 1158 |
+
value: 27.816000000000003
|
| 1159 |
+
- type: ndcg_at_5
|
| 1160 |
+
value: 29.816
|
| 1161 |
+
- type: precision_at_1
|
| 1162 |
+
value: 32.117000000000004
|
| 1163 |
+
- type: precision_at_10
|
| 1164 |
+
value: 10.756
|
| 1165 |
+
- type: precision_at_100
|
| 1166 |
+
value: 1.8679999999999999
|
| 1167 |
+
- type: precision_at_1000
|
| 1168 |
+
value: 0.246
|
| 1169 |
+
- type: precision_at_3
|
| 1170 |
+
value: 20.803
|
| 1171 |
+
- type: precision_at_5
|
| 1172 |
+
value: 15.987000000000002
|
| 1173 |
+
- type: recall_at_1
|
| 1174 |
+
value: 14.154
|
| 1175 |
+
- type: recall_at_10
|
| 1176 |
+
value: 40.489999999999995
|
| 1177 |
+
- type: recall_at_100
|
| 1178 |
+
value: 65.635
|
| 1179 |
+
- type: recall_at_1000
|
| 1180 |
+
value: 83.276
|
| 1181 |
+
- type: recall_at_3
|
| 1182 |
+
value: 25.241000000000003
|
| 1183 |
+
- type: recall_at_5
|
| 1184 |
+
value: 31.211
|
| 1185 |
+
- task:
|
| 1186 |
+
type: Retrieval
|
| 1187 |
+
dataset:
|
| 1188 |
+
type: dbpedia-entity
|
| 1189 |
+
name: MTEB DBPedia
|
| 1190 |
+
config: default
|
| 1191 |
+
split: test
|
| 1192 |
+
revision: None
|
| 1193 |
+
metrics:
|
| 1194 |
+
- type: map_at_1
|
| 1195 |
+
value: 9.332
|
| 1196 |
+
- type: map_at_10
|
| 1197 |
+
value: 20.462
|
| 1198 |
+
- type: map_at_100
|
| 1199 |
+
value: 29.473
|
| 1200 |
+
- type: map_at_1000
|
| 1201 |
+
value: 31.215
|
| 1202 |
+
- type: map_at_3
|
| 1203 |
+
value: 14.466999999999999
|
| 1204 |
+
- type: map_at_5
|
| 1205 |
+
value: 16.922
|
| 1206 |
+
- type: mrr_at_1
|
| 1207 |
+
value: 69.5
|
| 1208 |
+
- type: mrr_at_10
|
| 1209 |
+
value: 77.039
|
| 1210 |
+
- type: mrr_at_100
|
| 1211 |
+
value: 77.265
|
| 1212 |
+
- type: mrr_at_1000
|
| 1213 |
+
value: 77.271
|
| 1214 |
+
- type: mrr_at_3
|
| 1215 |
+
value: 75.5
|
| 1216 |
+
- type: mrr_at_5
|
| 1217 |
+
value: 76.4
|
| 1218 |
+
- type: ndcg_at_1
|
| 1219 |
+
value: 57.125
|
| 1220 |
+
- type: ndcg_at_10
|
| 1221 |
+
value: 42.958
|
| 1222 |
+
- type: ndcg_at_100
|
| 1223 |
+
value: 48.396
|
| 1224 |
+
- type: ndcg_at_1000
|
| 1225 |
+
value: 55.897
|
| 1226 |
+
- type: ndcg_at_3
|
| 1227 |
+
value: 47.188
|
| 1228 |
+
- type: ndcg_at_5
|
| 1229 |
+
value: 44.376
|
| 1230 |
+
- type: precision_at_1
|
| 1231 |
+
value: 69.5
|
| 1232 |
+
- type: precision_at_10
|
| 1233 |
+
value: 34.5
|
| 1234 |
+
- type: precision_at_100
|
| 1235 |
+
value: 11.18
|
| 1236 |
+
- type: precision_at_1000
|
| 1237 |
+
value: 2.13
|
| 1238 |
+
- type: precision_at_3
|
| 1239 |
+
value: 51.083
|
| 1240 |
+
- type: precision_at_5
|
| 1241 |
+
value: 43.1
|
| 1242 |
+
- type: recall_at_1
|
| 1243 |
+
value: 9.332
|
| 1244 |
+
- type: recall_at_10
|
| 1245 |
+
value: 26.422
|
| 1246 |
+
- type: recall_at_100
|
| 1247 |
+
value: 56.098000000000006
|
| 1248 |
+
- type: recall_at_1000
|
| 1249 |
+
value: 79.66
|
| 1250 |
+
- type: recall_at_3
|
| 1251 |
+
value: 15.703
|
| 1252 |
+
- type: recall_at_5
|
| 1253 |
+
value: 19.644000000000002
|
| 1254 |
+
- task:
|
| 1255 |
+
type: Classification
|
| 1256 |
+
dataset:
|
| 1257 |
+
type: mteb/emotion
|
| 1258 |
+
name: MTEB EmotionClassification
|
| 1259 |
+
config: default
|
| 1260 |
+
split: test
|
| 1261 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
| 1262 |
+
metrics:
|
| 1263 |
+
- type: accuracy
|
| 1264 |
+
value: 54.72
|
| 1265 |
+
- type: f1
|
| 1266 |
+
value: 49.67819606587526
|
| 1267 |
+
- task:
|
| 1268 |
+
type: Retrieval
|
| 1269 |
+
dataset:
|
| 1270 |
+
type: fever
|
| 1271 |
+
name: MTEB FEVER
|
| 1272 |
+
config: default
|
| 1273 |
+
split: test
|
| 1274 |
+
revision: None
|
| 1275 |
+
metrics:
|
| 1276 |
+
- type: map_at_1
|
| 1277 |
+
value: 74.97
|
| 1278 |
+
- type: map_at_10
|
| 1279 |
+
value: 82.956
|
| 1280 |
+
- type: map_at_100
|
| 1281 |
+
value: 83.193
|
| 1282 |
+
- type: map_at_1000
|
| 1283 |
+
value: 83.208
|
| 1284 |
+
- type: map_at_3
|
| 1285 |
+
value: 81.837
|
| 1286 |
+
- type: map_at_5
|
| 1287 |
+
value: 82.57
|
| 1288 |
+
- type: mrr_at_1
|
| 1289 |
+
value: 80.783
|
| 1290 |
+
- type: mrr_at_10
|
| 1291 |
+
value: 87.546
|
| 1292 |
+
- type: mrr_at_100
|
| 1293 |
+
value: 87.627
|
| 1294 |
+
- type: mrr_at_1000
|
| 1295 |
+
value: 87.63
|
| 1296 |
+
- type: mrr_at_3
|
| 1297 |
+
value: 86.79400000000001
|
| 1298 |
+
- type: mrr_at_5
|
| 1299 |
+
value: 87.32799999999999
|
| 1300 |
+
- type: ndcg_at_1
|
| 1301 |
+
value: 80.783
|
| 1302 |
+
- type: ndcg_at_10
|
| 1303 |
+
value: 86.54899999999999
|
| 1304 |
+
- type: ndcg_at_100
|
| 1305 |
+
value: 87.355
|
| 1306 |
+
- type: ndcg_at_1000
|
| 1307 |
+
value: 87.629
|
| 1308 |
+
- type: ndcg_at_3
|
| 1309 |
+
value: 84.82
|
| 1310 |
+
- type: ndcg_at_5
|
| 1311 |
+
value: 85.83800000000001
|
| 1312 |
+
- type: precision_at_1
|
| 1313 |
+
value: 80.783
|
| 1314 |
+
- type: precision_at_10
|
| 1315 |
+
value: 10.327
|
| 1316 |
+
- type: precision_at_100
|
| 1317 |
+
value: 1.094
|
| 1318 |
+
- type: precision_at_1000
|
| 1319 |
+
value: 0.11299999999999999
|
| 1320 |
+
- type: precision_at_3
|
| 1321 |
+
value: 32.218
|
| 1322 |
+
- type: precision_at_5
|
| 1323 |
+
value: 20.012
|
| 1324 |
+
- type: recall_at_1
|
| 1325 |
+
value: 74.97
|
| 1326 |
+
- type: recall_at_10
|
| 1327 |
+
value: 93.072
|
| 1328 |
+
- type: recall_at_100
|
| 1329 |
+
value: 96.218
|
| 1330 |
+
- type: recall_at_1000
|
| 1331 |
+
value: 97.991
|
| 1332 |
+
- type: recall_at_3
|
| 1333 |
+
value: 88.357
|
| 1334 |
+
- type: recall_at_5
|
| 1335 |
+
value: 90.983
|
| 1336 |
+
- task:
|
| 1337 |
+
type: Retrieval
|
| 1338 |
+
dataset:
|
| 1339 |
+
type: fiqa
|
| 1340 |
+
name: MTEB FiQA2018
|
| 1341 |
+
config: default
|
| 1342 |
+
split: test
|
| 1343 |
+
revision: None
|
| 1344 |
+
metrics:
|
| 1345 |
+
- type: map_at_1
|
| 1346 |
+
value: 21.12
|
| 1347 |
+
- type: map_at_10
|
| 1348 |
+
value: 35.908
|
| 1349 |
+
- type: map_at_100
|
| 1350 |
+
value: 37.895
|
| 1351 |
+
- type: map_at_1000
|
| 1352 |
+
value: 38.068000000000005
|
| 1353 |
+
- type: map_at_3
|
| 1354 |
+
value: 31.189
|
| 1355 |
+
- type: map_at_5
|
| 1356 |
+
value: 33.908
|
| 1357 |
+
- type: mrr_at_1
|
| 1358 |
+
value: 42.901
|
| 1359 |
+
- type: mrr_at_10
|
| 1360 |
+
value: 52.578
|
| 1361 |
+
- type: mrr_at_100
|
| 1362 |
+
value: 53.308
|
| 1363 |
+
- type: mrr_at_1000
|
| 1364 |
+
value: 53.342
|
| 1365 |
+
- type: mrr_at_3
|
| 1366 |
+
value: 50.385999999999996
|
| 1367 |
+
- type: mrr_at_5
|
| 1368 |
+
value: 51.62799999999999
|
| 1369 |
+
- type: ndcg_at_1
|
| 1370 |
+
value: 42.901
|
| 1371 |
+
- type: ndcg_at_10
|
| 1372 |
+
value: 44.302
|
| 1373 |
+
- type: ndcg_at_100
|
| 1374 |
+
value: 51.132999999999996
|
| 1375 |
+
- type: ndcg_at_1000
|
| 1376 |
+
value: 53.848
|
| 1377 |
+
- type: ndcg_at_3
|
| 1378 |
+
value: 40.464
|
| 1379 |
+
- type: ndcg_at_5
|
| 1380 |
+
value: 41.743
|
| 1381 |
+
- type: precision_at_1
|
| 1382 |
+
value: 42.901
|
| 1383 |
+
- type: precision_at_10
|
| 1384 |
+
value: 12.423
|
| 1385 |
+
- type: precision_at_100
|
| 1386 |
+
value: 1.968
|
| 1387 |
+
- type: precision_at_1000
|
| 1388 |
+
value: 0.246
|
| 1389 |
+
- type: precision_at_3
|
| 1390 |
+
value: 27.622999999999998
|
| 1391 |
+
- type: precision_at_5
|
| 1392 |
+
value: 20.278
|
| 1393 |
+
- type: recall_at_1
|
| 1394 |
+
value: 21.12
|
| 1395 |
+
- type: recall_at_10
|
| 1396 |
+
value: 52.091
|
| 1397 |
+
- type: recall_at_100
|
| 1398 |
+
value: 77.062
|
| 1399 |
+
- type: recall_at_1000
|
| 1400 |
+
value: 93.082
|
| 1401 |
+
- type: recall_at_3
|
| 1402 |
+
value: 37.223
|
| 1403 |
+
- type: recall_at_5
|
| 1404 |
+
value: 43.826
|
| 1405 |
+
- task:
|
| 1406 |
+
type: Retrieval
|
| 1407 |
+
dataset:
|
| 1408 |
+
type: hotpotqa
|
| 1409 |
+
name: MTEB HotpotQA
|
| 1410 |
+
config: default
|
| 1411 |
+
split: test
|
| 1412 |
+
revision: None
|
| 1413 |
+
metrics:
|
| 1414 |
+
- type: map_at_1
|
| 1415 |
+
value: 38.940000000000005
|
| 1416 |
+
- type: map_at_10
|
| 1417 |
+
value: 62.239999999999995
|
| 1418 |
+
- type: map_at_100
|
| 1419 |
+
value: 63.141000000000005
|
| 1420 |
+
- type: map_at_1000
|
| 1421 |
+
value: 63.205999999999996
|
| 1422 |
+
- type: map_at_3
|
| 1423 |
+
value: 58.738
|
| 1424 |
+
- type: map_at_5
|
| 1425 |
+
value: 60.924
|
| 1426 |
+
- type: mrr_at_1
|
| 1427 |
+
value: 77.88000000000001
|
| 1428 |
+
- type: mrr_at_10
|
| 1429 |
+
value: 83.7
|
| 1430 |
+
- type: mrr_at_100
|
| 1431 |
+
value: 83.882
|
| 1432 |
+
- type: mrr_at_1000
|
| 1433 |
+
value: 83.889
|
| 1434 |
+
- type: mrr_at_3
|
| 1435 |
+
value: 82.748
|
| 1436 |
+
- type: mrr_at_5
|
| 1437 |
+
value: 83.381
|
| 1438 |
+
- type: ndcg_at_1
|
| 1439 |
+
value: 77.88000000000001
|
| 1440 |
+
- type: ndcg_at_10
|
| 1441 |
+
value: 70.462
|
| 1442 |
+
- type: ndcg_at_100
|
| 1443 |
+
value: 73.564
|
| 1444 |
+
- type: ndcg_at_1000
|
| 1445 |
+
value: 74.78099999999999
|
| 1446 |
+
- type: ndcg_at_3
|
| 1447 |
+
value: 65.524
|
| 1448 |
+
- type: ndcg_at_5
|
| 1449 |
+
value: 68.282
|
| 1450 |
+
- type: precision_at_1
|
| 1451 |
+
value: 77.88000000000001
|
| 1452 |
+
- type: precision_at_10
|
| 1453 |
+
value: 14.81
|
| 1454 |
+
- type: precision_at_100
|
| 1455 |
+
value: 1.7229999999999999
|
| 1456 |
+
- type: precision_at_1000
|
| 1457 |
+
value: 0.188
|
| 1458 |
+
- type: precision_at_3
|
| 1459 |
+
value: 42.083999999999996
|
| 1460 |
+
- type: precision_at_5
|
| 1461 |
+
value: 27.43
|
| 1462 |
+
- type: recall_at_1
|
| 1463 |
+
value: 38.940000000000005
|
| 1464 |
+
- type: recall_at_10
|
| 1465 |
+
value: 74.051
|
| 1466 |
+
- type: recall_at_100
|
| 1467 |
+
value: 86.158
|
| 1468 |
+
- type: recall_at_1000
|
| 1469 |
+
value: 94.146
|
| 1470 |
+
- type: recall_at_3
|
| 1471 |
+
value: 63.126000000000005
|
| 1472 |
+
- type: recall_at_5
|
| 1473 |
+
value: 68.575
|
| 1474 |
+
- task:
|
| 1475 |
+
type: Classification
|
| 1476 |
+
dataset:
|
| 1477 |
+
type: mteb/imdb
|
| 1478 |
+
name: MTEB ImdbClassification
|
| 1479 |
+
config: default
|
| 1480 |
+
split: test
|
| 1481 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
| 1482 |
+
metrics:
|
| 1483 |
+
- type: accuracy
|
| 1484 |
+
value: 91.23440000000001
|
| 1485 |
+
- type: ap
|
| 1486 |
+
value: 87.33490392265892
|
| 1487 |
+
- type: f1
|
| 1488 |
+
value: 91.21374626021836
|
| 1489 |
+
- task:
|
| 1490 |
+
type: Retrieval
|
| 1491 |
+
dataset:
|
| 1492 |
+
type: msmarco
|
| 1493 |
+
name: MTEB MSMARCO
|
| 1494 |
+
config: default
|
| 1495 |
+
split: dev
|
| 1496 |
+
revision: None
|
| 1497 |
+
metrics:
|
| 1498 |
+
- type: map_at_1
|
| 1499 |
+
value: 22.137999999999998
|
| 1500 |
+
- type: map_at_10
|
| 1501 |
+
value: 34.471000000000004
|
| 1502 |
+
- type: map_at_100
|
| 1503 |
+
value: 35.634
|
| 1504 |
+
- type: map_at_1000
|
| 1505 |
+
value: 35.685
|
| 1506 |
+
- type: map_at_3
|
| 1507 |
+
value: 30.587999999999997
|
| 1508 |
+
- type: map_at_5
|
| 1509 |
+
value: 32.812999999999995
|
| 1510 |
+
- type: mrr_at_1
|
| 1511 |
+
value: 22.736
|
| 1512 |
+
- type: mrr_at_10
|
| 1513 |
+
value: 35.092
|
| 1514 |
+
- type: mrr_at_100
|
| 1515 |
+
value: 36.193999999999996
|
| 1516 |
+
- type: mrr_at_1000
|
| 1517 |
+
value: 36.238
|
| 1518 |
+
- type: mrr_at_3
|
| 1519 |
+
value: 31.28
|
| 1520 |
+
- type: mrr_at_5
|
| 1521 |
+
value: 33.498
|
| 1522 |
+
- type: ndcg_at_1
|
| 1523 |
+
value: 22.736
|
| 1524 |
+
- type: ndcg_at_10
|
| 1525 |
+
value: 41.388999999999996
|
| 1526 |
+
- type: ndcg_at_100
|
| 1527 |
+
value: 46.967999999999996
|
| 1528 |
+
- type: ndcg_at_1000
|
| 1529 |
+
value: 48.178
|
| 1530 |
+
- type: ndcg_at_3
|
| 1531 |
+
value: 33.503
|
| 1532 |
+
- type: ndcg_at_5
|
| 1533 |
+
value: 37.484
|
| 1534 |
+
- type: precision_at_1
|
| 1535 |
+
value: 22.736
|
| 1536 |
+
- type: precision_at_10
|
| 1537 |
+
value: 6.54
|
| 1538 |
+
- type: precision_at_100
|
| 1539 |
+
value: 0.9339999999999999
|
| 1540 |
+
- type: precision_at_1000
|
| 1541 |
+
value: 0.104
|
| 1542 |
+
- type: precision_at_3
|
| 1543 |
+
value: 14.249999999999998
|
| 1544 |
+
- type: precision_at_5
|
| 1545 |
+
value: 10.562000000000001
|
| 1546 |
+
- type: recall_at_1
|
| 1547 |
+
value: 22.137999999999998
|
| 1548 |
+
- type: recall_at_10
|
| 1549 |
+
value: 62.629999999999995
|
| 1550 |
+
- type: recall_at_100
|
| 1551 |
+
value: 88.375
|
| 1552 |
+
- type: recall_at_1000
|
| 1553 |
+
value: 97.529
|
| 1554 |
+
- type: recall_at_3
|
| 1555 |
+
value: 41.245
|
| 1556 |
+
- type: recall_at_5
|
| 1557 |
+
value: 50.808
|
| 1558 |
+
- task:
|
| 1559 |
+
type: Classification
|
| 1560 |
+
dataset:
|
| 1561 |
+
type: mteb/mtop_domain
|
| 1562 |
+
name: MTEB MTOPDomainClassification (en)
|
| 1563 |
+
config: en
|
| 1564 |
+
split: test
|
| 1565 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
| 1566 |
+
metrics:
|
| 1567 |
+
- type: accuracy
|
| 1568 |
+
value: 95.25079799361606
|
| 1569 |
+
- type: f1
|
| 1570 |
+
value: 95.00726023695032
|
| 1571 |
+
- task:
|
| 1572 |
+
type: Classification
|
| 1573 |
+
dataset:
|
| 1574 |
+
type: mteb/mtop_intent
|
| 1575 |
+
name: MTEB MTOPIntentClassification (en)
|
| 1576 |
+
config: en
|
| 1577 |
+
split: test
|
| 1578 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
| 1579 |
+
metrics:
|
| 1580 |
+
- type: accuracy
|
| 1581 |
+
value: 78.23757409940721
|
| 1582 |
+
- type: f1
|
| 1583 |
+
value: 58.534958803195714
|
| 1584 |
+
- task:
|
| 1585 |
+
type: Classification
|
| 1586 |
+
dataset:
|
| 1587 |
+
type: mteb/amazon_massive_intent
|
| 1588 |
+
name: MTEB MassiveIntentClassification (en)
|
| 1589 |
+
config: en
|
| 1590 |
+
split: test
|
| 1591 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 1592 |
+
metrics:
|
| 1593 |
+
- type: accuracy
|
| 1594 |
+
value: 76.20040349697378
|
| 1595 |
+
- type: f1
|
| 1596 |
+
value: 74.31261149784696
|
| 1597 |
+
- task:
|
| 1598 |
+
type: Classification
|
| 1599 |
+
dataset:
|
| 1600 |
+
type: mteb/amazon_massive_scenario
|
| 1601 |
+
name: MTEB MassiveScenarioClassification (en)
|
| 1602 |
+
config: en
|
| 1603 |
+
split: test
|
| 1604 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 1605 |
+
metrics:
|
| 1606 |
+
- type: accuracy
|
| 1607 |
+
value: 79.35104236718227
|
| 1608 |
+
- type: f1
|
| 1609 |
+
value: 79.7373049864316
|
| 1610 |
+
- task:
|
| 1611 |
+
type: Clustering
|
| 1612 |
+
dataset:
|
| 1613 |
+
type: mteb/medrxiv-clustering-p2p
|
| 1614 |
+
name: MTEB MedrxivClusteringP2P
|
| 1615 |
+
config: default
|
| 1616 |
+
split: test
|
| 1617 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
| 1618 |
+
metrics:
|
| 1619 |
+
- type: v_measure
|
| 1620 |
+
value: 34.478828180753126
|
| 1621 |
+
- task:
|
| 1622 |
+
type: Clustering
|
| 1623 |
+
dataset:
|
| 1624 |
+
type: mteb/medrxiv-clustering-s2s
|
| 1625 |
+
name: MTEB MedrxivClusteringS2S
|
| 1626 |
+
config: default
|
| 1627 |
+
split: test
|
| 1628 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
| 1629 |
+
metrics:
|
| 1630 |
+
- type: v_measure
|
| 1631 |
+
value: 32.25696147904426
|
| 1632 |
+
- task:
|
| 1633 |
+
type: Reranking
|
| 1634 |
+
dataset:
|
| 1635 |
+
type: mteb/mind_small
|
| 1636 |
+
name: MTEB MindSmallReranking
|
| 1637 |
+
config: default
|
| 1638 |
+
split: test
|
| 1639 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
| 1640 |
+
metrics:
|
| 1641 |
+
- type: map
|
| 1642 |
+
value: 32.82488548405117
|
| 1643 |
+
- type: mrr
|
| 1644 |
+
value: 34.066706809031096
|
| 1645 |
+
- task:
|
| 1646 |
+
type: Retrieval
|
| 1647 |
+
dataset:
|
| 1648 |
+
type: nfcorpus
|
| 1649 |
+
name: MTEB NFCorpus
|
| 1650 |
+
config: default
|
| 1651 |
+
split: test
|
| 1652 |
+
revision: None
|
| 1653 |
+
metrics:
|
| 1654 |
+
- type: map_at_1
|
| 1655 |
+
value: 6.557
|
| 1656 |
+
- type: map_at_10
|
| 1657 |
+
value: 15.055
|
| 1658 |
+
- type: map_at_100
|
| 1659 |
+
value: 19.575
|
| 1660 |
+
- type: map_at_1000
|
| 1661 |
+
value: 21.267
|
| 1662 |
+
- type: map_at_3
|
| 1663 |
+
value: 10.86
|
| 1664 |
+
- type: map_at_5
|
| 1665 |
+
value: 12.83
|
| 1666 |
+
- type: mrr_at_1
|
| 1667 |
+
value: 50.464
|
| 1668 |
+
- type: mrr_at_10
|
| 1669 |
+
value: 59.050999999999995
|
| 1670 |
+
- type: mrr_at_100
|
| 1671 |
+
value: 59.436
|
| 1672 |
+
- type: mrr_at_1000
|
| 1673 |
+
value: 59.476
|
| 1674 |
+
- type: mrr_at_3
|
| 1675 |
+
value: 56.811
|
| 1676 |
+
- type: mrr_at_5
|
| 1677 |
+
value: 58.08
|
| 1678 |
+
- type: ndcg_at_1
|
| 1679 |
+
value: 47.988
|
| 1680 |
+
- type: ndcg_at_10
|
| 1681 |
+
value: 38.645
|
| 1682 |
+
- type: ndcg_at_100
|
| 1683 |
+
value: 36.339
|
| 1684 |
+
- type: ndcg_at_1000
|
| 1685 |
+
value: 45.279
|
| 1686 |
+
- type: ndcg_at_3
|
| 1687 |
+
value: 43.35
|
| 1688 |
+
- type: ndcg_at_5
|
| 1689 |
+
value: 41.564
|
| 1690 |
+
- type: precision_at_1
|
| 1691 |
+
value: 49.845
|
| 1692 |
+
- type: precision_at_10
|
| 1693 |
+
value: 28.544999999999998
|
| 1694 |
+
- type: precision_at_100
|
| 1695 |
+
value: 9.322
|
| 1696 |
+
- type: precision_at_1000
|
| 1697 |
+
value: 2.258
|
| 1698 |
+
- type: precision_at_3
|
| 1699 |
+
value: 40.144000000000005
|
| 1700 |
+
- type: precision_at_5
|
| 1701 |
+
value: 35.913000000000004
|
| 1702 |
+
- type: recall_at_1
|
| 1703 |
+
value: 6.557
|
| 1704 |
+
- type: recall_at_10
|
| 1705 |
+
value: 19.5
|
| 1706 |
+
- type: recall_at_100
|
| 1707 |
+
value: 37.153999999999996
|
| 1708 |
+
- type: recall_at_1000
|
| 1709 |
+
value: 69.581
|
| 1710 |
+
- type: recall_at_3
|
| 1711 |
+
value: 12.133
|
| 1712 |
+
- type: recall_at_5
|
| 1713 |
+
value: 15.43
|
| 1714 |
+
- task:
|
| 1715 |
+
type: Retrieval
|
| 1716 |
+
dataset:
|
| 1717 |
+
type: nq
|
| 1718 |
+
name: MTEB NQ
|
| 1719 |
+
config: default
|
| 1720 |
+
split: test
|
| 1721 |
+
revision: None
|
| 1722 |
+
metrics:
|
| 1723 |
+
- type: map_at_1
|
| 1724 |
+
value: 31.740000000000002
|
| 1725 |
+
- type: map_at_10
|
| 1726 |
+
value: 48.150999999999996
|
| 1727 |
+
- type: map_at_100
|
| 1728 |
+
value: 49.125
|
| 1729 |
+
- type: map_at_1000
|
| 1730 |
+
value: 49.149
|
| 1731 |
+
- type: map_at_3
|
| 1732 |
+
value: 43.645
|
| 1733 |
+
- type: map_at_5
|
| 1734 |
+
value: 46.417
|
| 1735 |
+
- type: mrr_at_1
|
| 1736 |
+
value: 35.892
|
| 1737 |
+
- type: mrr_at_10
|
| 1738 |
+
value: 50.524
|
| 1739 |
+
- type: mrr_at_100
|
| 1740 |
+
value: 51.232
|
| 1741 |
+
- type: mrr_at_1000
|
| 1742 |
+
value: 51.24999999999999
|
| 1743 |
+
- type: mrr_at_3
|
| 1744 |
+
value: 46.852
|
| 1745 |
+
- type: mrr_at_5
|
| 1746 |
+
value: 49.146
|
| 1747 |
+
- type: ndcg_at_1
|
| 1748 |
+
value: 35.892
|
| 1749 |
+
- type: ndcg_at_10
|
| 1750 |
+
value: 56.08800000000001
|
| 1751 |
+
- type: ndcg_at_100
|
| 1752 |
+
value: 60.077000000000005
|
| 1753 |
+
- type: ndcg_at_1000
|
| 1754 |
+
value: 60.632
|
| 1755 |
+
- type: ndcg_at_3
|
| 1756 |
+
value: 47.765
|
| 1757 |
+
- type: ndcg_at_5
|
| 1758 |
+
value: 52.322
|
| 1759 |
+
- type: precision_at_1
|
| 1760 |
+
value: 35.892
|
| 1761 |
+
- type: precision_at_10
|
| 1762 |
+
value: 9.296
|
| 1763 |
+
- type: precision_at_100
|
| 1764 |
+
value: 1.154
|
| 1765 |
+
- type: precision_at_1000
|
| 1766 |
+
value: 0.12
|
| 1767 |
+
- type: precision_at_3
|
| 1768 |
+
value: 21.92
|
| 1769 |
+
- type: precision_at_5
|
| 1770 |
+
value: 15.781999999999998
|
| 1771 |
+
- type: recall_at_1
|
| 1772 |
+
value: 31.740000000000002
|
| 1773 |
+
- type: recall_at_10
|
| 1774 |
+
value: 77.725
|
| 1775 |
+
- type: recall_at_100
|
| 1776 |
+
value: 94.841
|
| 1777 |
+
- type: recall_at_1000
|
| 1778 |
+
value: 99.003
|
| 1779 |
+
- type: recall_at_3
|
| 1780 |
+
value: 56.407
|
| 1781 |
+
- type: recall_at_5
|
| 1782 |
+
value: 66.848
|
| 1783 |
+
- task:
|
| 1784 |
+
type: Retrieval
|
| 1785 |
+
dataset:
|
| 1786 |
+
type: quora
|
| 1787 |
+
name: MTEB QuoraRetrieval
|
| 1788 |
+
config: default
|
| 1789 |
+
split: test
|
| 1790 |
+
revision: None
|
| 1791 |
+
metrics:
|
| 1792 |
+
- type: map_at_1
|
| 1793 |
+
value: 71.429
|
| 1794 |
+
- type: map_at_10
|
| 1795 |
+
value: 85.42699999999999
|
| 1796 |
+
- type: map_at_100
|
| 1797 |
+
value: 86.063
|
| 1798 |
+
- type: map_at_1000
|
| 1799 |
+
value: 86.077
|
| 1800 |
+
- type: map_at_3
|
| 1801 |
+
value: 82.573
|
| 1802 |
+
- type: map_at_5
|
| 1803 |
+
value: 84.371
|
| 1804 |
+
- type: mrr_at_1
|
| 1805 |
+
value: 82.34
|
| 1806 |
+
- type: mrr_at_10
|
| 1807 |
+
value: 88.247
|
| 1808 |
+
- type: mrr_at_100
|
| 1809 |
+
value: 88.357
|
| 1810 |
+
- type: mrr_at_1000
|
| 1811 |
+
value: 88.357
|
| 1812 |
+
- type: mrr_at_3
|
| 1813 |
+
value: 87.38
|
| 1814 |
+
- type: mrr_at_5
|
| 1815 |
+
value: 87.981
|
| 1816 |
+
- type: ndcg_at_1
|
| 1817 |
+
value: 82.34
|
| 1818 |
+
- type: ndcg_at_10
|
| 1819 |
+
value: 88.979
|
| 1820 |
+
- type: ndcg_at_100
|
| 1821 |
+
value: 90.18599999999999
|
| 1822 |
+
- type: ndcg_at_1000
|
| 1823 |
+
value: 90.254
|
| 1824 |
+
- type: ndcg_at_3
|
| 1825 |
+
value: 86.378
|
| 1826 |
+
- type: ndcg_at_5
|
| 1827 |
+
value: 87.821
|
| 1828 |
+
- type: precision_at_1
|
| 1829 |
+
value: 82.34
|
| 1830 |
+
- type: precision_at_10
|
| 1831 |
+
value: 13.482
|
| 1832 |
+
- type: precision_at_100
|
| 1833 |
+
value: 1.537
|
| 1834 |
+
- type: precision_at_1000
|
| 1835 |
+
value: 0.157
|
| 1836 |
+
- type: precision_at_3
|
| 1837 |
+
value: 37.852999999999994
|
| 1838 |
+
- type: precision_at_5
|
| 1839 |
+
value: 24.798000000000002
|
| 1840 |
+
- type: recall_at_1
|
| 1841 |
+
value: 71.429
|
| 1842 |
+
- type: recall_at_10
|
| 1843 |
+
value: 95.64099999999999
|
| 1844 |
+
- type: recall_at_100
|
| 1845 |
+
value: 99.723
|
| 1846 |
+
- type: recall_at_1000
|
| 1847 |
+
value: 99.98
|
| 1848 |
+
- type: recall_at_3
|
| 1849 |
+
value: 88.011
|
| 1850 |
+
- type: recall_at_5
|
| 1851 |
+
value: 92.246
|
| 1852 |
+
- task:
|
| 1853 |
+
type: Clustering
|
| 1854 |
+
dataset:
|
| 1855 |
+
type: mteb/reddit-clustering
|
| 1856 |
+
name: MTEB RedditClustering
|
| 1857 |
+
config: default
|
| 1858 |
+
split: test
|
| 1859 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
| 1860 |
+
metrics:
|
| 1861 |
+
- type: v_measure
|
| 1862 |
+
value: 60.62148584103299
|
| 1863 |
+
- task:
|
| 1864 |
+
type: Clustering
|
| 1865 |
+
dataset:
|
| 1866 |
+
type: mteb/reddit-clustering-p2p
|
| 1867 |
+
name: MTEB RedditClusteringP2P
|
| 1868 |
+
config: default
|
| 1869 |
+
split: test
|
| 1870 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
| 1871 |
+
metrics:
|
| 1872 |
+
- type: v_measure
|
| 1873 |
+
value: 63.2923987272903
|
| 1874 |
+
- task:
|
| 1875 |
+
type: Retrieval
|
| 1876 |
+
dataset:
|
| 1877 |
+
type: scidocs
|
| 1878 |
+
name: MTEB SCIDOCS
|
| 1879 |
+
config: default
|
| 1880 |
+
split: test
|
| 1881 |
+
revision: None
|
| 1882 |
+
metrics:
|
| 1883 |
+
- type: map_at_1
|
| 1884 |
+
value: 5.128
|
| 1885 |
+
- type: map_at_10
|
| 1886 |
+
value: 14.63
|
| 1887 |
+
- type: map_at_100
|
| 1888 |
+
value: 17.285
|
| 1889 |
+
- type: map_at_1000
|
| 1890 |
+
value: 17.676
|
| 1891 |
+
- type: map_at_3
|
| 1892 |
+
value: 9.993
|
| 1893 |
+
- type: map_at_5
|
| 1894 |
+
value: 12.286999999999999
|
| 1895 |
+
- type: mrr_at_1
|
| 1896 |
+
value: 25.4
|
| 1897 |
+
- type: mrr_at_10
|
| 1898 |
+
value: 38.423
|
| 1899 |
+
- type: mrr_at_100
|
| 1900 |
+
value: 39.497
|
| 1901 |
+
- type: mrr_at_1000
|
| 1902 |
+
value: 39.531
|
| 1903 |
+
- type: mrr_at_3
|
| 1904 |
+
value: 34.9
|
| 1905 |
+
- type: mrr_at_5
|
| 1906 |
+
value: 37.01
|
| 1907 |
+
- type: ndcg_at_1
|
| 1908 |
+
value: 25.4
|
| 1909 |
+
- type: ndcg_at_10
|
| 1910 |
+
value: 24.062
|
| 1911 |
+
- type: ndcg_at_100
|
| 1912 |
+
value: 33.823
|
| 1913 |
+
- type: ndcg_at_1000
|
| 1914 |
+
value: 39.663
|
| 1915 |
+
- type: ndcg_at_3
|
| 1916 |
+
value: 22.246
|
| 1917 |
+
- type: ndcg_at_5
|
| 1918 |
+
value: 19.761
|
| 1919 |
+
- type: precision_at_1
|
| 1920 |
+
value: 25.4
|
| 1921 |
+
- type: precision_at_10
|
| 1922 |
+
value: 12.85
|
| 1923 |
+
- type: precision_at_100
|
| 1924 |
+
value: 2.71
|
| 1925 |
+
- type: precision_at_1000
|
| 1926 |
+
value: 0.41000000000000003
|
| 1927 |
+
- type: precision_at_3
|
| 1928 |
+
value: 21.4
|
| 1929 |
+
- type: precision_at_5
|
| 1930 |
+
value: 17.86
|
| 1931 |
+
- type: recall_at_1
|
| 1932 |
+
value: 5.128
|
| 1933 |
+
- type: recall_at_10
|
| 1934 |
+
value: 26.06
|
| 1935 |
+
- type: recall_at_100
|
| 1936 |
+
value: 54.993
|
| 1937 |
+
- type: recall_at_1000
|
| 1938 |
+
value: 83.165
|
| 1939 |
+
- type: recall_at_3
|
| 1940 |
+
value: 13.003
|
| 1941 |
+
- type: recall_at_5
|
| 1942 |
+
value: 18.117
|
| 1943 |
+
- task:
|
| 1944 |
+
type: STS
|
| 1945 |
+
dataset:
|
| 1946 |
+
type: mteb/sickr-sts
|
| 1947 |
+
name: MTEB SICK-R
|
| 1948 |
+
config: default
|
| 1949 |
+
split: test
|
| 1950 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
| 1951 |
+
metrics:
|
| 1952 |
+
- type: cos_sim_pearson
|
| 1953 |
+
value: 87.5466779326323
|
| 1954 |
+
- type: cos_sim_spearman
|
| 1955 |
+
value: 82.79782085421951
|
| 1956 |
+
- type: euclidean_pearson
|
| 1957 |
+
value: 84.76929982677339
|
| 1958 |
+
- type: euclidean_spearman
|
| 1959 |
+
value: 82.51802536005597
|
| 1960 |
+
- type: manhattan_pearson
|
| 1961 |
+
value: 84.76736312526177
|
| 1962 |
+
- type: manhattan_spearman
|
| 1963 |
+
value: 82.50799656335593
|
| 1964 |
+
- task:
|
| 1965 |
+
type: STS
|
| 1966 |
+
dataset:
|
| 1967 |
+
type: mteb/sts12-sts
|
| 1968 |
+
name: MTEB STS12
|
| 1969 |
+
config: default
|
| 1970 |
+
split: test
|
| 1971 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
| 1972 |
+
metrics:
|
| 1973 |
+
- type: cos_sim_pearson
|
| 1974 |
+
value: 86.40486308108694
|
| 1975 |
+
- type: cos_sim_spearman
|
| 1976 |
+
value: 77.12670500926937
|
| 1977 |
+
- type: euclidean_pearson
|
| 1978 |
+
value: 85.23836845503847
|
| 1979 |
+
- type: euclidean_spearman
|
| 1980 |
+
value: 78.41475117006176
|
| 1981 |
+
- type: manhattan_pearson
|
| 1982 |
+
value: 85.24302039610805
|
| 1983 |
+
- type: manhattan_spearman
|
| 1984 |
+
value: 78.4053162562707
|
| 1985 |
+
- task:
|
| 1986 |
+
type: STS
|
| 1987 |
+
dataset:
|
| 1988 |
+
type: mteb/sts13-sts
|
| 1989 |
+
name: MTEB STS13
|
| 1990 |
+
config: default
|
| 1991 |
+
split: test
|
| 1992 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
| 1993 |
+
metrics:
|
| 1994 |
+
- type: cos_sim_pearson
|
| 1995 |
+
value: 88.83570289087565
|
| 1996 |
+
- type: cos_sim_spearman
|
| 1997 |
+
value: 89.28563503553643
|
| 1998 |
+
- type: euclidean_pearson
|
| 1999 |
+
value: 87.77516003996445
|
| 2000 |
+
- type: euclidean_spearman
|
| 2001 |
+
value: 88.8656149534085
|
| 2002 |
+
- type: manhattan_pearson
|
| 2003 |
+
value: 87.75568872417946
|
| 2004 |
+
- type: manhattan_spearman
|
| 2005 |
+
value: 88.80445489340585
|
| 2006 |
+
- task:
|
| 2007 |
+
type: STS
|
| 2008 |
+
dataset:
|
| 2009 |
+
type: mteb/sts14-sts
|
| 2010 |
+
name: MTEB STS14
|
| 2011 |
+
config: default
|
| 2012 |
+
split: test
|
| 2013 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
| 2014 |
+
metrics:
|
| 2015 |
+
- type: cos_sim_pearson
|
| 2016 |
+
value: 86.776406555485
|
| 2017 |
+
- type: cos_sim_spearman
|
| 2018 |
+
value: 83.8288465070091
|
| 2019 |
+
- type: euclidean_pearson
|
| 2020 |
+
value: 85.37827999808123
|
| 2021 |
+
- type: euclidean_spearman
|
| 2022 |
+
value: 84.11079529992739
|
| 2023 |
+
- type: manhattan_pearson
|
| 2024 |
+
value: 85.35336495689121
|
| 2025 |
+
- type: manhattan_spearman
|
| 2026 |
+
value: 84.08618492649347
|
| 2027 |
+
- task:
|
| 2028 |
+
type: STS
|
| 2029 |
+
dataset:
|
| 2030 |
+
type: mteb/sts15-sts
|
| 2031 |
+
name: MTEB STS15
|
| 2032 |
+
config: default
|
| 2033 |
+
split: test
|
| 2034 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
| 2035 |
+
metrics:
|
| 2036 |
+
- type: cos_sim_pearson
|
| 2037 |
+
value: 88.57644404820684
|
| 2038 |
+
- type: cos_sim_spearman
|
| 2039 |
+
value: 89.69728364350713
|
| 2040 |
+
- type: euclidean_pearson
|
| 2041 |
+
value: 88.28202320389443
|
| 2042 |
+
- type: euclidean_spearman
|
| 2043 |
+
value: 88.9560567319321
|
| 2044 |
+
- type: manhattan_pearson
|
| 2045 |
+
value: 88.29461100044172
|
| 2046 |
+
- type: manhattan_spearman
|
| 2047 |
+
value: 88.96030920678558
|
| 2048 |
+
- task:
|
| 2049 |
+
type: STS
|
| 2050 |
+
dataset:
|
| 2051 |
+
type: mteb/sts16-sts
|
| 2052 |
+
name: MTEB STS16
|
| 2053 |
+
config: default
|
| 2054 |
+
split: test
|
| 2055 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
| 2056 |
+
metrics:
|
| 2057 |
+
- type: cos_sim_pearson
|
| 2058 |
+
value: 85.05211938460621
|
| 2059 |
+
- type: cos_sim_spearman
|
| 2060 |
+
value: 86.43413865667489
|
| 2061 |
+
- type: euclidean_pearson
|
| 2062 |
+
value: 85.62760689259562
|
| 2063 |
+
- type: euclidean_spearman
|
| 2064 |
+
value: 86.28867831982394
|
| 2065 |
+
- type: manhattan_pearson
|
| 2066 |
+
value: 85.60828879163458
|
| 2067 |
+
- type: manhattan_spearman
|
| 2068 |
+
value: 86.27823731462473
|
| 2069 |
+
- task:
|
| 2070 |
+
type: STS
|
| 2071 |
+
dataset:
|
| 2072 |
+
type: mteb/sts17-crosslingual-sts
|
| 2073 |
+
name: MTEB STS17 (en-en)
|
| 2074 |
+
config: en-en
|
| 2075 |
+
split: test
|
| 2076 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
| 2077 |
+
metrics:
|
| 2078 |
+
- type: cos_sim_pearson
|
| 2079 |
+
value: 90.00254140466377
|
| 2080 |
+
- type: cos_sim_spearman
|
| 2081 |
+
value: 89.66118745178284
|
| 2082 |
+
- type: euclidean_pearson
|
| 2083 |
+
value: 89.46985446236553
|
| 2084 |
+
- type: euclidean_spearman
|
| 2085 |
+
value: 88.92649032371526
|
| 2086 |
+
- type: manhattan_pearson
|
| 2087 |
+
value: 89.49600028180247
|
| 2088 |
+
- type: manhattan_spearman
|
| 2089 |
+
value: 88.86948431519099
|
| 2090 |
+
- task:
|
| 2091 |
+
type: STS
|
| 2092 |
+
dataset:
|
| 2093 |
+
type: mteb/sts22-crosslingual-sts
|
| 2094 |
+
name: MTEB STS22 (en)
|
| 2095 |
+
config: en
|
| 2096 |
+
split: test
|
| 2097 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
| 2098 |
+
metrics:
|
| 2099 |
+
- type: cos_sim_pearson
|
| 2100 |
+
value: 68.93578321067938
|
| 2101 |
+
- type: cos_sim_spearman
|
| 2102 |
+
value: 69.60639595839257
|
| 2103 |
+
- type: euclidean_pearson
|
| 2104 |
+
value: 70.33485090574897
|
| 2105 |
+
- type: euclidean_spearman
|
| 2106 |
+
value: 69.03380379185452
|
| 2107 |
+
- type: manhattan_pearson
|
| 2108 |
+
value: 70.42097254943839
|
| 2109 |
+
- type: manhattan_spearman
|
| 2110 |
+
value: 69.25296348304255
|
| 2111 |
+
- task:
|
| 2112 |
+
type: STS
|
| 2113 |
+
dataset:
|
| 2114 |
+
type: mteb/stsbenchmark-sts
|
| 2115 |
+
name: MTEB STSBenchmark
|
| 2116 |
+
config: default
|
| 2117 |
+
split: test
|
| 2118 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
| 2119 |
+
metrics:
|
| 2120 |
+
- type: cos_sim_pearson
|
| 2121 |
+
value: 87.29588700755069
|
| 2122 |
+
- type: cos_sim_spearman
|
| 2123 |
+
value: 88.30389489193672
|
| 2124 |
+
- type: euclidean_pearson
|
| 2125 |
+
value: 87.60349838180346
|
| 2126 |
+
- type: euclidean_spearman
|
| 2127 |
+
value: 87.91041868311692
|
| 2128 |
+
- type: manhattan_pearson
|
| 2129 |
+
value: 87.59373630607907
|
| 2130 |
+
- type: manhattan_spearman
|
| 2131 |
+
value: 87.88690174001724
|
| 2132 |
+
- task:
|
| 2133 |
+
type: Reranking
|
| 2134 |
+
dataset:
|
| 2135 |
+
type: mteb/scidocs-reranking
|
| 2136 |
+
name: MTEB SciDocsRR
|
| 2137 |
+
config: default
|
| 2138 |
+
split: test
|
| 2139 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
| 2140 |
+
metrics:
|
| 2141 |
+
- type: map
|
| 2142 |
+
value: 87.8030655700857
|
| 2143 |
+
- type: mrr
|
| 2144 |
+
value: 96.3950637234951
|
| 2145 |
+
- task:
|
| 2146 |
+
type: Retrieval
|
| 2147 |
+
dataset:
|
| 2148 |
+
type: scifact
|
| 2149 |
+
name: MTEB SciFact
|
| 2150 |
+
config: default
|
| 2151 |
+
split: test
|
| 2152 |
+
revision: None
|
| 2153 |
+
metrics:
|
| 2154 |
+
- type: map_at_1
|
| 2155 |
+
value: 60.028000000000006
|
| 2156 |
+
- type: map_at_10
|
| 2157 |
+
value: 69.855
|
| 2158 |
+
- type: map_at_100
|
| 2159 |
+
value: 70.257
|
| 2160 |
+
- type: map_at_1000
|
| 2161 |
+
value: 70.283
|
| 2162 |
+
- type: map_at_3
|
| 2163 |
+
value: 66.769
|
| 2164 |
+
- type: map_at_5
|
| 2165 |
+
value: 68.679
|
| 2166 |
+
- type: mrr_at_1
|
| 2167 |
+
value: 62.666999999999994
|
| 2168 |
+
- type: mrr_at_10
|
| 2169 |
+
value: 70.717
|
| 2170 |
+
- type: mrr_at_100
|
| 2171 |
+
value: 71.00800000000001
|
| 2172 |
+
- type: mrr_at_1000
|
| 2173 |
+
value: 71.033
|
| 2174 |
+
- type: mrr_at_3
|
| 2175 |
+
value: 68.389
|
| 2176 |
+
- type: mrr_at_5
|
| 2177 |
+
value: 69.939
|
| 2178 |
+
- type: ndcg_at_1
|
| 2179 |
+
value: 62.666999999999994
|
| 2180 |
+
- type: ndcg_at_10
|
| 2181 |
+
value: 74.715
|
| 2182 |
+
- type: ndcg_at_100
|
| 2183 |
+
value: 76.364
|
| 2184 |
+
- type: ndcg_at_1000
|
| 2185 |
+
value: 76.89399999999999
|
| 2186 |
+
- type: ndcg_at_3
|
| 2187 |
+
value: 69.383
|
| 2188 |
+
- type: ndcg_at_5
|
| 2189 |
+
value: 72.322
|
| 2190 |
+
- type: precision_at_1
|
| 2191 |
+
value: 62.666999999999994
|
| 2192 |
+
- type: precision_at_10
|
| 2193 |
+
value: 10.067
|
| 2194 |
+
- type: precision_at_100
|
| 2195 |
+
value: 1.09
|
| 2196 |
+
- type: precision_at_1000
|
| 2197 |
+
value: 0.11299999999999999
|
| 2198 |
+
- type: precision_at_3
|
| 2199 |
+
value: 27.111
|
| 2200 |
+
- type: precision_at_5
|
| 2201 |
+
value: 18.267
|
| 2202 |
+
- type: recall_at_1
|
| 2203 |
+
value: 60.028000000000006
|
| 2204 |
+
- type: recall_at_10
|
| 2205 |
+
value: 88.822
|
| 2206 |
+
- type: recall_at_100
|
| 2207 |
+
value: 96.167
|
| 2208 |
+
- type: recall_at_1000
|
| 2209 |
+
value: 100.0
|
| 2210 |
+
- type: recall_at_3
|
| 2211 |
+
value: 74.367
|
| 2212 |
+
- type: recall_at_5
|
| 2213 |
+
value: 81.661
|
| 2214 |
+
- task:
|
| 2215 |
+
type: PairClassification
|
| 2216 |
+
dataset:
|
| 2217 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
| 2218 |
+
name: MTEB SprintDuplicateQuestions
|
| 2219 |
+
config: default
|
| 2220 |
+
split: test
|
| 2221 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
| 2222 |
+
metrics:
|
| 2223 |
+
- type: cos_sim_accuracy
|
| 2224 |
+
value: 99.84554455445544
|
| 2225 |
+
- type: cos_sim_ap
|
| 2226 |
+
value: 96.54482863244152
|
| 2227 |
+
- type: cos_sim_f1
|
| 2228 |
+
value: 92.13709677419355
|
| 2229 |
+
- type: cos_sim_precision
|
| 2230 |
+
value: 92.88617886178862
|
| 2231 |
+
- type: cos_sim_recall
|
| 2232 |
+
value: 91.4
|
| 2233 |
+
- type: dot_accuracy
|
| 2234 |
+
value: 99.76039603960396
|
| 2235 |
+
- type: dot_ap
|
| 2236 |
+
value: 93.20115278887057
|
| 2237 |
+
- type: dot_f1
|
| 2238 |
+
value: 87.92079207920793
|
| 2239 |
+
- type: dot_precision
|
| 2240 |
+
value: 87.05882352941177
|
| 2241 |
+
- type: dot_recall
|
| 2242 |
+
value: 88.8
|
| 2243 |
+
- type: euclidean_accuracy
|
| 2244 |
+
value: 99.84950495049505
|
| 2245 |
+
- type: euclidean_ap
|
| 2246 |
+
value: 96.53268343961348
|
| 2247 |
+
- type: euclidean_f1
|
| 2248 |
+
value: 92.23697650663942
|
| 2249 |
+
- type: euclidean_precision
|
| 2250 |
+
value: 94.258872651357
|
| 2251 |
+
- type: euclidean_recall
|
| 2252 |
+
value: 90.3
|
| 2253 |
+
- type: manhattan_accuracy
|
| 2254 |
+
value: 99.85346534653465
|
| 2255 |
+
- type: manhattan_ap
|
| 2256 |
+
value: 96.54495433438355
|
| 2257 |
+
- type: manhattan_f1
|
| 2258 |
+
value: 92.51012145748987
|
| 2259 |
+
- type: manhattan_precision
|
| 2260 |
+
value: 93.64754098360656
|
| 2261 |
+
- type: manhattan_recall
|
| 2262 |
+
value: 91.4
|
| 2263 |
+
- type: max_accuracy
|
| 2264 |
+
value: 99.85346534653465
|
| 2265 |
+
- type: max_ap
|
| 2266 |
+
value: 96.54495433438355
|
| 2267 |
+
- type: max_f1
|
| 2268 |
+
value: 92.51012145748987
|
| 2269 |
+
- task:
|
| 2270 |
+
type: Clustering
|
| 2271 |
+
dataset:
|
| 2272 |
+
type: mteb/stackexchange-clustering
|
| 2273 |
+
name: MTEB StackExchangeClustering
|
| 2274 |
+
config: default
|
| 2275 |
+
split: test
|
| 2276 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
| 2277 |
+
metrics:
|
| 2278 |
+
- type: v_measure
|
| 2279 |
+
value: 66.46940443952006
|
| 2280 |
+
- task:
|
| 2281 |
+
type: Clustering
|
| 2282 |
+
dataset:
|
| 2283 |
+
type: mteb/stackexchange-clustering-p2p
|
| 2284 |
+
name: MTEB StackExchangeClusteringP2P
|
| 2285 |
+
config: default
|
| 2286 |
+
split: test
|
| 2287 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
| 2288 |
+
metrics:
|
| 2289 |
+
- type: v_measure
|
| 2290 |
+
value: 36.396194493841584
|
| 2291 |
+
- task:
|
| 2292 |
+
type: Reranking
|
| 2293 |
+
dataset:
|
| 2294 |
+
type: mteb/stackoverflowdupquestions-reranking
|
| 2295 |
+
name: MTEB StackOverflowDupQuestions
|
| 2296 |
+
config: default
|
| 2297 |
+
split: test
|
| 2298 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
| 2299 |
+
metrics:
|
| 2300 |
+
- type: map
|
| 2301 |
+
value: 54.881717673695555
|
| 2302 |
+
- type: mrr
|
| 2303 |
+
value: 55.73439224174519
|
| 2304 |
+
- task:
|
| 2305 |
+
type: Summarization
|
| 2306 |
+
dataset:
|
| 2307 |
+
type: mteb/summeval
|
| 2308 |
+
name: MTEB SummEval
|
| 2309 |
+
config: default
|
| 2310 |
+
split: test
|
| 2311 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
| 2312 |
+
metrics:
|
| 2313 |
+
- type: cos_sim_pearson
|
| 2314 |
+
value: 31.438177268254087
|
| 2315 |
+
- type: cos_sim_spearman
|
| 2316 |
+
value: 30.96177698848688
|
| 2317 |
+
- type: dot_pearson
|
| 2318 |
+
value: 30.513850376431435
|
| 2319 |
+
- type: dot_spearman
|
| 2320 |
+
value: 29.932421046509706
|
| 2321 |
+
- task:
|
| 2322 |
+
type: Retrieval
|
| 2323 |
+
dataset:
|
| 2324 |
+
type: trec-covid
|
| 2325 |
+
name: MTEB TRECCOVID
|
| 2326 |
+
config: default
|
| 2327 |
+
split: test
|
| 2328 |
+
revision: None
|
| 2329 |
+
metrics:
|
| 2330 |
+
- type: map_at_1
|
| 2331 |
+
value: 0.21
|
| 2332 |
+
- type: map_at_10
|
| 2333 |
+
value: 1.727
|
| 2334 |
+
- type: map_at_100
|
| 2335 |
+
value: 9.881
|
| 2336 |
+
- type: map_at_1000
|
| 2337 |
+
value: 24.245
|
| 2338 |
+
- type: map_at_3
|
| 2339 |
+
value: 0.615
|
| 2340 |
+
- type: map_at_5
|
| 2341 |
+
value: 0.966
|
| 2342 |
+
- type: mrr_at_1
|
| 2343 |
+
value: 78.0
|
| 2344 |
+
- type: mrr_at_10
|
| 2345 |
+
value: 87.333
|
| 2346 |
+
- type: mrr_at_100
|
| 2347 |
+
value: 87.333
|
| 2348 |
+
- type: mrr_at_1000
|
| 2349 |
+
value: 87.333
|
| 2350 |
+
- type: mrr_at_3
|
| 2351 |
+
value: 86.333
|
| 2352 |
+
- type: mrr_at_5
|
| 2353 |
+
value: 87.333
|
| 2354 |
+
- type: ndcg_at_1
|
| 2355 |
+
value: 74.0
|
| 2356 |
+
- type: ndcg_at_10
|
| 2357 |
+
value: 69.12700000000001
|
| 2358 |
+
- type: ndcg_at_100
|
| 2359 |
+
value: 53.893
|
| 2360 |
+
- type: ndcg_at_1000
|
| 2361 |
+
value: 49.639
|
| 2362 |
+
- type: ndcg_at_3
|
| 2363 |
+
value: 74.654
|
| 2364 |
+
- type: ndcg_at_5
|
| 2365 |
+
value: 73.232
|
| 2366 |
+
- type: precision_at_1
|
| 2367 |
+
value: 78.0
|
| 2368 |
+
- type: precision_at_10
|
| 2369 |
+
value: 72.8
|
| 2370 |
+
- type: precision_at_100
|
| 2371 |
+
value: 55.42
|
| 2372 |
+
- type: precision_at_1000
|
| 2373 |
+
value: 21.73
|
| 2374 |
+
- type: precision_at_3
|
| 2375 |
+
value: 79.333
|
| 2376 |
+
- type: precision_at_5
|
| 2377 |
+
value: 77.2
|
| 2378 |
+
- type: recall_at_1
|
| 2379 |
+
value: 0.21
|
| 2380 |
+
- type: recall_at_10
|
| 2381 |
+
value: 1.9709999999999999
|
| 2382 |
+
- type: recall_at_100
|
| 2383 |
+
value: 13.555
|
| 2384 |
+
- type: recall_at_1000
|
| 2385 |
+
value: 46.961999999999996
|
| 2386 |
+
- type: recall_at_3
|
| 2387 |
+
value: 0.66
|
| 2388 |
+
- type: recall_at_5
|
| 2389 |
+
value: 1.052
|
| 2390 |
+
- task:
|
| 2391 |
+
type: Retrieval
|
| 2392 |
+
dataset:
|
| 2393 |
+
type: webis-touche2020
|
| 2394 |
+
name: MTEB Touche2020
|
| 2395 |
+
config: default
|
| 2396 |
+
split: test
|
| 2397 |
+
revision: None
|
| 2398 |
+
metrics:
|
| 2399 |
+
- type: map_at_1
|
| 2400 |
+
value: 2.456
|
| 2401 |
+
- type: map_at_10
|
| 2402 |
+
value: 9.426
|
| 2403 |
+
- type: map_at_100
|
| 2404 |
+
value: 16.066
|
| 2405 |
+
- type: map_at_1000
|
| 2406 |
+
value: 17.652
|
| 2407 |
+
- type: map_at_3
|
| 2408 |
+
value: 5.2459999999999996
|
| 2409 |
+
- type: map_at_5
|
| 2410 |
+
value: 6.5360000000000005
|
| 2411 |
+
- type: mrr_at_1
|
| 2412 |
+
value: 34.694
|
| 2413 |
+
- type: mrr_at_10
|
| 2414 |
+
value: 47.666
|
| 2415 |
+
- type: mrr_at_100
|
| 2416 |
+
value: 48.681999999999995
|
| 2417 |
+
- type: mrr_at_1000
|
| 2418 |
+
value: 48.681999999999995
|
| 2419 |
+
- type: mrr_at_3
|
| 2420 |
+
value: 43.878
|
| 2421 |
+
- type: mrr_at_5
|
| 2422 |
+
value: 46.224
|
| 2423 |
+
- type: ndcg_at_1
|
| 2424 |
+
value: 31.633
|
| 2425 |
+
- type: ndcg_at_10
|
| 2426 |
+
value: 23.454
|
| 2427 |
+
- type: ndcg_at_100
|
| 2428 |
+
value: 36.616
|
| 2429 |
+
- type: ndcg_at_1000
|
| 2430 |
+
value: 48.596000000000004
|
| 2431 |
+
- type: ndcg_at_3
|
| 2432 |
+
value: 28.267999999999997
|
| 2433 |
+
- type: ndcg_at_5
|
| 2434 |
+
value: 25.630999999999997
|
| 2435 |
+
- type: precision_at_1
|
| 2436 |
+
value: 34.694
|
| 2437 |
+
- type: precision_at_10
|
| 2438 |
+
value: 20.204
|
| 2439 |
+
- type: precision_at_100
|
| 2440 |
+
value: 7.754999999999999
|
| 2441 |
+
- type: precision_at_1000
|
| 2442 |
+
value: 1.5709999999999997
|
| 2443 |
+
- type: precision_at_3
|
| 2444 |
+
value: 29.252
|
| 2445 |
+
- type: precision_at_5
|
| 2446 |
+
value: 24.898
|
| 2447 |
+
- type: recall_at_1
|
| 2448 |
+
value: 2.456
|
| 2449 |
+
- type: recall_at_10
|
| 2450 |
+
value: 14.951
|
| 2451 |
+
- type: recall_at_100
|
| 2452 |
+
value: 48.399
|
| 2453 |
+
- type: recall_at_1000
|
| 2454 |
+
value: 85.077
|
| 2455 |
+
- type: recall_at_3
|
| 2456 |
+
value: 6.1370000000000005
|
| 2457 |
+
- type: recall_at_5
|
| 2458 |
+
value: 8.671
|
| 2459 |
+
- task:
|
| 2460 |
+
type: Classification
|
| 2461 |
+
dataset:
|
| 2462 |
+
type: mteb/toxic_conversations_50k
|
| 2463 |
+
name: MTEB ToxicConversationsClassification
|
| 2464 |
+
config: default
|
| 2465 |
+
split: test
|
| 2466 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
| 2467 |
+
metrics:
|
| 2468 |
+
- type: accuracy
|
| 2469 |
+
value: 71.86240000000001
|
| 2470 |
+
- type: ap
|
| 2471 |
+
value: 14.678570078747494
|
| 2472 |
+
- type: f1
|
| 2473 |
+
value: 55.295967793934445
|
| 2474 |
+
- task:
|
| 2475 |
+
type: Classification
|
| 2476 |
+
dataset:
|
| 2477 |
+
type: mteb/tweet_sentiment_extraction
|
| 2478 |
+
name: MTEB TweetSentimentExtractionClassification
|
| 2479 |
+
config: default
|
| 2480 |
+
split: test
|
| 2481 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
| 2482 |
+
metrics:
|
| 2483 |
+
- type: accuracy
|
| 2484 |
+
value: 59.17374080362195
|
| 2485 |
+
- type: f1
|
| 2486 |
+
value: 59.54410874861454
|
| 2487 |
+
- task:
|
| 2488 |
+
type: Clustering
|
| 2489 |
+
dataset:
|
| 2490 |
+
type: mteb/twentynewsgroups-clustering
|
| 2491 |
+
name: MTEB TwentyNewsgroupsClustering
|
| 2492 |
+
config: default
|
| 2493 |
+
split: test
|
| 2494 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
| 2495 |
+
metrics:
|
| 2496 |
+
- type: v_measure
|
| 2497 |
+
value: 51.91227822485289
|
| 2498 |
+
- task:
|
| 2499 |
+
type: PairClassification
|
| 2500 |
+
dataset:
|
| 2501 |
+
type: mteb/twittersemeval2015-pairclassification
|
| 2502 |
+
name: MTEB TwitterSemEval2015
|
| 2503 |
+
config: default
|
| 2504 |
+
split: test
|
| 2505 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
| 2506 |
+
metrics:
|
| 2507 |
+
- type: cos_sim_accuracy
|
| 2508 |
+
value: 87.12523097097217
|
| 2509 |
+
- type: cos_sim_ap
|
| 2510 |
+
value: 77.59606075943269
|
| 2511 |
+
- type: cos_sim_f1
|
| 2512 |
+
value: 71.11395646606915
|
| 2513 |
+
- type: cos_sim_precision
|
| 2514 |
+
value: 69.07960199004975
|
| 2515 |
+
- type: cos_sim_recall
|
| 2516 |
+
value: 73.27176781002639
|
| 2517 |
+
- type: dot_accuracy
|
| 2518 |
+
value: 84.68736961316088
|
| 2519 |
+
- type: dot_ap
|
| 2520 |
+
value: 68.47167450741459
|
| 2521 |
+
- type: dot_f1
|
| 2522 |
+
value: 64.42152354914874
|
| 2523 |
+
- type: dot_precision
|
| 2524 |
+
value: 60.887949260042284
|
| 2525 |
+
- type: dot_recall
|
| 2526 |
+
value: 68.3905013192612
|
| 2527 |
+
- type: euclidean_accuracy
|
| 2528 |
+
value: 86.88084878106932
|
| 2529 |
+
- type: euclidean_ap
|
| 2530 |
+
value: 77.27351204978599
|
| 2531 |
+
- type: euclidean_f1
|
| 2532 |
+
value: 70.99179716629381
|
| 2533 |
+
- type: euclidean_precision
|
| 2534 |
+
value: 67.10526315789474
|
| 2535 |
+
- type: euclidean_recall
|
| 2536 |
+
value: 75.35620052770449
|
| 2537 |
+
- type: manhattan_accuracy
|
| 2538 |
+
value: 86.83316445133218
|
| 2539 |
+
- type: manhattan_ap
|
| 2540 |
+
value: 77.21835357308716
|
| 2541 |
+
- type: manhattan_f1
|
| 2542 |
+
value: 71.05587004676349
|
| 2543 |
+
- type: manhattan_precision
|
| 2544 |
+
value: 66.58210332103322
|
| 2545 |
+
- type: manhattan_recall
|
| 2546 |
+
value: 76.17414248021109
|
| 2547 |
+
- type: max_accuracy
|
| 2548 |
+
value: 87.12523097097217
|
| 2549 |
+
- type: max_ap
|
| 2550 |
+
value: 77.59606075943269
|
| 2551 |
+
- type: max_f1
|
| 2552 |
+
value: 71.11395646606915
|
| 2553 |
+
- task:
|
| 2554 |
+
type: PairClassification
|
| 2555 |
+
dataset:
|
| 2556 |
+
type: mteb/twitterurlcorpus-pairclassification
|
| 2557 |
+
name: MTEB TwitterURLCorpus
|
| 2558 |
+
config: default
|
| 2559 |
+
split: test
|
| 2560 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
| 2561 |
+
metrics:
|
| 2562 |
+
- type: cos_sim_accuracy
|
| 2563 |
+
value: 88.97232894787906
|
| 2564 |
+
- type: cos_sim_ap
|
| 2565 |
+
value: 85.9613736469497
|
| 2566 |
+
- type: cos_sim_f1
|
| 2567 |
+
value: 78.40216655382532
|
| 2568 |
+
- type: cos_sim_precision
|
| 2569 |
+
value: 72.97512437810946
|
| 2570 |
+
- type: cos_sim_recall
|
| 2571 |
+
value: 84.70126270403449
|
| 2572 |
+
- type: dot_accuracy
|
| 2573 |
+
value: 88.04866689952264
|
| 2574 |
+
- type: dot_ap
|
| 2575 |
+
value: 83.15465089499936
|
| 2576 |
+
- type: dot_f1
|
| 2577 |
+
value: 76.32698287879329
|
| 2578 |
+
- type: dot_precision
|
| 2579 |
+
value: 71.23223697378077
|
| 2580 |
+
- type: dot_recall
|
| 2581 |
+
value: 82.20665229442562
|
| 2582 |
+
- type: euclidean_accuracy
|
| 2583 |
+
value: 88.67543757519307
|
| 2584 |
+
- type: euclidean_ap
|
| 2585 |
+
value: 85.4524355531532
|
| 2586 |
+
- type: euclidean_f1
|
| 2587 |
+
value: 77.78729106950081
|
| 2588 |
+
- type: euclidean_precision
|
| 2589 |
+
value: 75.3009009009009
|
| 2590 |
+
- type: euclidean_recall
|
| 2591 |
+
value: 80.44348629504158
|
| 2592 |
+
- type: manhattan_accuracy
|
| 2593 |
+
value: 88.65991384328792
|
| 2594 |
+
- type: manhattan_ap
|
| 2595 |
+
value: 85.43109069046837
|
| 2596 |
+
- type: manhattan_f1
|
| 2597 |
+
value: 77.72639551396425
|
| 2598 |
+
- type: manhattan_precision
|
| 2599 |
+
value: 73.73402417962004
|
| 2600 |
+
- type: manhattan_recall
|
| 2601 |
+
value: 82.17585463504774
|
| 2602 |
+
- type: max_accuracy
|
| 2603 |
+
value: 88.97232894787906
|
| 2604 |
+
- type: max_ap
|
| 2605 |
+
value: 85.9613736469497
|
| 2606 |
+
- type: max_f1
|
| 2607 |
+
value: 78.40216655382532
|
| 2608 |
+
---
|
| 2609 |
+
<h1 align="center">GIST Large Embedding v0</h1>
|
| 2610 |
+
|
| 2611 |
+
*GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning*
|
| 2612 |
+
|
| 2613 |
+
The model is fine-tuned on top of the [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) using the [MEDI dataset](https://github.com/xlang-ai/instructor-embedding.git) augmented with mined triplets from the [MTEB Classification](https://huggingface.co/mteb) training dataset (excluding data from the Amazon Polarity Classification task).
|
| 2614 |
+
|
| 2615 |
+
The model does not require any instruction for generating embeddings. This means that queries for retrieval tasks can be directly encoded without crafting instructions.
|
| 2616 |
+
|
| 2617 |
+
Technical paper: [GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning](https://arxiv.org/abs/2402.16829)
|
| 2618 |
+
|
| 2619 |
+
|
| 2620 |
+
# Data
|
| 2621 |
+
|
| 2622 |
+
The dataset used is a compilation of the MEDI and MTEB Classification training datasets. Third-party datasets may be subject to additional terms and conditions under their associated licenses. A HuggingFace Dataset version of the compiled dataset, and the specific revision used to train the model, is available:
|
| 2623 |
+
|
| 2624 |
+
- Dataset: [avsolatorio/medi-data-mteb_avs_triplets](https://huggingface.co/datasets/avsolatorio/medi-data-mteb_avs_triplets)
|
| 2625 |
+
- Revision: 238a0499b6e6b690cc64ea56fde8461daa8341bb
|
| 2626 |
+
|
| 2627 |
+
The dataset contains a `task_type` key, which can be used to select only the mteb classification tasks (prefixed with `mteb_`).
|
| 2628 |
+
|
| 2629 |
+
The **MEDI Dataset** is published in the following paper: [One Embedder, Any Task: Instruction-Finetuned Text Embeddings](https://arxiv.org/abs/2212.09741).
|
| 2630 |
+
|
| 2631 |
+
The MTEB Benchmark results of the GIST embedding model, compared with the base model, suggest that the fine-tuning dataset has perturbed the model considerably, which resulted in significant improvements in certain tasks while adversely degrading performance in some.
|
| 2632 |
+
|
| 2633 |
+
The retrieval performance for the TRECCOVID task is of note. The fine-tuning dataset does not contain significant knowledge about COVID-19, which could have caused the observed performance degradation. We found some evidence, detailed in the paper, that thematic coverage of the fine-tuning data can affect downstream performance.
|
| 2634 |
+
|
| 2635 |
+
# Usage
|
| 2636 |
+
|
| 2637 |
+
The model can be easily loaded using the Sentence Transformers library.
|
| 2638 |
+
|
| 2639 |
+
```Python
|
| 2640 |
+
import torch.nn.functional as F
|
| 2641 |
+
from sentence_transformers import SentenceTransformer
|
| 2642 |
+
|
| 2643 |
+
revision = None # Replace with the specific revision to ensure reproducibility if the model is updated.
|
| 2644 |
+
|
| 2645 |
+
model = SentenceTransformer("avsolatorio/GIST-large-Embedding-v0", revision=revision)
|
| 2646 |
+
|
| 2647 |
+
texts = [
|
| 2648 |
+
"Illustration of the REaLTabFormer model. The left block shows the non-relational tabular data model using GPT-2 with a causal LM head. In contrast, the right block shows how a relational dataset's child table is modeled using a sequence-to-sequence (Seq2Seq) model. The Seq2Seq model uses the observations in the parent table to condition the generation of the observations in the child table. The trained GPT-2 model on the parent table, with weights frozen, is also used as the encoder in the Seq2Seq model.",
|
| 2649 |
+
"Predicting human mobility holds significant practical value, with applications ranging from enhancing disaster risk planning to simulating epidemic spread. In this paper, we present the GeoFormer, a decoder-only transformer model adapted from the GPT architecture to forecast human mobility.",
|
| 2650 |
+
"As the economies of Southeast Asia continue adopting digital technologies, policy makers increasingly ask how to prepare the workforce for emerging labor demands. However, little is known about the skills that workers need to adapt to these changes"
|
| 2651 |
+
]
|
| 2652 |
+
|
| 2653 |
+
# Compute embeddings
|
| 2654 |
+
embeddings = model.encode(texts, convert_to_tensor=True)
|
| 2655 |
+
|
| 2656 |
+
# Compute cosine-similarity for each pair of sentences
|
| 2657 |
+
scores = F.cosine_similarity(embeddings.unsqueeze(1), embeddings.unsqueeze(0), dim=-1)
|
| 2658 |
+
|
| 2659 |
+
print(scores.cpu().numpy())
|
| 2660 |
+
```
|
| 2661 |
+
|
| 2662 |
+
# Training Parameters
|
| 2663 |
+
|
| 2664 |
+
Below are the training parameters used to fine-tune the model:
|
| 2665 |
+
|
| 2666 |
+
```
|
| 2667 |
+
Epochs = 40
|
| 2668 |
+
Warmup ratio = 0.1
|
| 2669 |
+
Learning rate = 5e-6
|
| 2670 |
+
Batch size = 16
|
| 2671 |
+
Checkpoint step = 171000
|
| 2672 |
+
Contrastive loss temperature = 0.01
|
| 2673 |
+
```
|
| 2674 |
+
|
| 2675 |
+
|
| 2676 |
+
# Evaluation
|
| 2677 |
+
|
| 2678 |
+
The model was evaluated using the [MTEB Evaluation](https://huggingface.co/mteb) suite.
|
| 2679 |
+
|
| 2680 |
+
|
| 2681 |
+
# Citation
|
| 2682 |
+
|
| 2683 |
+
Please cite our work if you use GISTEmbed or the datasets we published in your projects or research. 🤗
|
| 2684 |
+
|
| 2685 |
+
```
|
| 2686 |
+
@article{solatorio2024gistembed,
|
| 2687 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 2688 |
+
author={Aivin V. Solatorio},
|
| 2689 |
+
journal={arXiv preprint arXiv:2402.16829},
|
| 2690 |
+
year={2024},
|
| 2691 |
+
URL={https://arxiv.org/abs/2402.16829}
|
| 2692 |
+
eprint={2402.16829},
|
| 2693 |
+
archivePrefix={arXiv},
|
| 2694 |
+
primaryClass={cs.LG}
|
| 2695 |
+
}
|
| 2696 |
+
```
|
| 2697 |
+
|
| 2698 |
+
# Acknowledgements
|
| 2699 |
+
|
| 2700 |
+
This work is supported by the "KCP IV - Exploring Data Use in the Development Economics Literature using Large Language Models (AI and LLMs)" project funded by the [Knowledge for Change Program (KCP)](https://www.worldbank.org/en/programs/knowledge-for-change) of the World Bank - RA-P503405-RESE-TF0C3444.
|
| 2701 |
+
|
| 2702 |
+
The findings, interpretations, and conclusions expressed in this material are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
|
config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "./temp/gist-large",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"document_prompt": null,
|
| 9 |
+
"gradient_checkpointing": false,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 1024,
|
| 13 |
+
"id2label": {
|
| 14 |
+
"0": "LABEL_0"
|
| 15 |
+
},
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
+
"intermediate_size": 4096,
|
| 18 |
+
"label2id": {
|
| 19 |
+
"LABEL_0": 0
|
| 20 |
+
},
|
| 21 |
+
"layer_norm_eps": 1e-12,
|
| 22 |
+
"max_position_embeddings": 512,
|
| 23 |
+
"model_type": "bert",
|
| 24 |
+
"num_attention_heads": 16,
|
| 25 |
+
"num_hidden_layers": 24,
|
| 26 |
+
"pad_token_id": 0,
|
| 27 |
+
"position_embedding_type": "absolute",
|
| 28 |
+
"query_prompt": null,
|
| 29 |
+
"torch_dtype": "float32",
|
| 30 |
+
"transformers_version": "4.45.2",
|
| 31 |
+
"type_vocab_size": 2,
|
| 32 |
+
"use_cache": true,
|
| 33 |
+
"vocab_size": 30522
|
| 34 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.1.1",
|
| 4 |
+
"transformers": "4.45.2",
|
| 5 |
+
"pytorch": "2.6.0"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c0402c8c231bed413465ccd6d8c09171f78774a540b42e0b381401c2a247b40a
|
| 3 |
+
size 1340612432
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": true
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"never_split": null,
|
| 51 |
+
"pad_token": "[PAD]",
|
| 52 |
+
"sep_token": "[SEP]",
|
| 53 |
+
"strip_accents": null,
|
| 54 |
+
"tokenize_chinese_chars": true,
|
| 55 |
+
"tokenizer_class": "BertTokenizer",
|
| 56 |
+
"unk_token": "[UNK]"
|
| 57 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|