Update README.md
Browse files
README.md
CHANGED
|
@@ -141,60 +141,6 @@ for res in output:
|
|
| 141 |
|
| 142 |
**For more usage details and parameter explanations, see the [documentation](https://www.paddleocr.ai/latest/en/version3.x/pipeline_usage/PaddleOCR-VL.html).**
|
| 143 |
|
| 144 |
-
## PaddleOCR-VL-0.9B Usage with transformers
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
Currently, we support inference using the PaddleOCR-VL-0.9B model with the `transformers` library, which can recognize texts, formulas, tables, and chart elements. In the future, we plan to support full document parsing inference with `transformers`. Below is a simple script we provide to support inference using the PaddleOCR-VL-0.9B model with `transformers`.
|
| 148 |
-
|
| 149 |
-
> [!NOTE]
|
| 150 |
-
> Note: We currently recommend using the official method for inference, as it is faster and supports page-level document parsing. The example code below only supports element-level recognition.
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
```python
|
| 154 |
-
from PIL import Image
|
| 155 |
-
import torch
|
| 156 |
-
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 157 |
-
|
| 158 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 159 |
-
|
| 160 |
-
CHOSEN_TASK = "ocr" # Options: 'ocr' | 'table' | 'chart' | 'formula'
|
| 161 |
-
PROMPTS = {
|
| 162 |
-
"ocr": "OCR:",
|
| 163 |
-
"table": "Table Recognition:",
|
| 164 |
-
"formula": "Formula Recognition:",
|
| 165 |
-
"chart": "Chart Recognition:",
|
| 166 |
-
}
|
| 167 |
-
|
| 168 |
-
model_path = "PaddlePaddle/PaddleOCR-VL"
|
| 169 |
-
image_path = "test.png"
|
| 170 |
-
image = Image.open(image_path).convert("RGB")
|
| 171 |
-
|
| 172 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 173 |
-
model_path, trust_remote_code=True, torch_dtype=torch.bfloat16
|
| 174 |
-
).to(DEVICE).eval()
|
| 175 |
-
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
| 176 |
-
|
| 177 |
-
messages = [
|
| 178 |
-
{"role": "user",
|
| 179 |
-
"content": [
|
| 180 |
-
{"type": "image", "image": image},
|
| 181 |
-
{"type": "text", "text": PROMPTS[CHOSEN_TASK]},
|
| 182 |
-
]
|
| 183 |
-
}
|
| 184 |
-
]
|
| 185 |
-
inputs = processor.apply_chat_template(
|
| 186 |
-
messages,
|
| 187 |
-
tokenize=True,
|
| 188 |
-
add_generation_prompt=True,
|
| 189 |
-
return_dict=True,
|
| 190 |
-
return_tensors="pt"
|
| 191 |
-
).to(DEVICE)
|
| 192 |
-
|
| 193 |
-
outputs = model.generate(**inputs, max_new_tokens=1024)
|
| 194 |
-
outputs = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 195 |
-
print(outputs)
|
| 196 |
-
```
|
| 197 |
-
|
| 198 |
## Performance
|
| 199 |
|
| 200 |
### Page-Level Document Parsing
|
|
|
|
| 141 |
|
| 142 |
**For more usage details and parameter explanations, see the [documentation](https://www.paddleocr.ai/latest/en/version3.x/pipeline_usage/PaddleOCR-VL.html).**
|
| 143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
## Performance
|
| 145 |
|
| 146 |
### Page-Level Document Parsing
|