| <div align="center"> | |
| # Parallel Scaling Law for Language Model | |
| _Yet Another Scaling Law beyond Parameters and Inference Time Scaling_ | |
| [](https://arxiv.org/abs/2505.10475) | |
| [](https://huggingface.co/ParScale) | |
| [](https://github.com/QwenLM/ParScale/) | |
| </div> | |
| ## Checkpoints | |
| > [!IMPORTANT] | |
| > All the released checkpoints were trained on public datasets and are for academic use only. | |
| β¨ are our recommendation for strong models. | |
| ### Base models for scaling training data to 1T tokens | |
| These models demonstrate strong competitiveness among existing small models, including SmolLM, gemma, and Llama-3.2 (see Table 4 for details). | |
| |Model|Description|Download| | |
| |:-:|:-:|:-:| | |
| |ParScale-1.8B-P1|β¨ Baseline $P=1$|[π€ ParScale/ParScale-1.8B-P1](https://huggingface.co/ParScale/ParScale-1.8B-P1)| | |
| |ParScale-1.8B-P2|β¨ ParScale $P=2$|[π€ ParScale/ParScale-1.8B-P2](https://huggingface.co/ParScale/ParScale-1.8B-P2)| | |
| |ParScale-1.8B-P4|β¨ ParScale $P=4$|[π€ ParScale/ParScale-1.8B-P4](https://huggingface.co/ParScale/ParScale-1.8B-P4)| | |
| |ParScale-1.8B-P8|β¨ ParScale $P=8$|[π€ ParScale/ParScale-1.8B-P8](https://huggingface.co/ParScale/ParScale-1.8B-P8)| | |
| ### Instruct models for scaling training data to 1T tokens | |
| We post-trained the aforementioned base model on SmolTalk-1M to enable conversational capabilities. | |
| |Model|Description|Download| | |
| |:-:|:-:|:-:| | |
| |ParScale-1.8B-P1-Inst|β¨ Baseline $P=1$|[π€ ParScale/ParScale-1.8B-P1-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P1-Inst)| | |
| |ParScale-1.8B-P2-Inst|β¨ ParScale $P=2$|[π€ ParScale/ParScale-1.8B-P2-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P2-Inst)| | |
| |ParScale-1.8B-P4-Inst|β¨ ParScale $P=4$|[π€ ParScale/ParScale-1.8B-P4-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P4-Inst)| | |
| |ParScale-1.8B-P8-Inst|β¨ ParScale $P=8$|[π€ ParScale/ParScale-1.8B-P8-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P8-Inst)| | |
| ### Continual Pretraining Qwen-2.5-3B | |
| We froze the parameters of Qwen-2.5-3B and only fine-tuned the newly introduced parameters on Stack-V2-Python. Since the following models share the same backbone parameters as Qwen-2.5-3B, they have the potential for dynamic parscale: switching P to adapt model capabilities during inference. | |
| |Model|Description|Download| | |
| |:-:|:-:|:-:| | |
| |ParScale-Qwen-3B-P2-Python|β¨ ParScale $P=2$|[π€ ParScale/ParScale-Qwen-3B-P2-Python](https://huggingface.co/ParScale/ParScale-Qwen-3B-P2-Python)| | |
| |ParScale-Qwen-3B-P4-Python|β¨ ParScale $P=4$|[π€ ParScale/ParScale-Qwen-3B-P4-Python](https://huggingface.co/ParScale/ParScale-Qwen-3B-P4-Python)| | |
| |ParScale-Qwen-3B-P8-Python|β¨ ParScale $P=8$|[π€ ParScale/ParScale-Qwen-3B-P8-Python](https://huggingface.co/ParScale/ParScale-Qwen-3B-P8-Python)| | |
| - For full pretraining on Stack-V2-Python | |
| |Model|Description|Download| | |
| |:-:|:-:|:-:| | |
| |ParScale-QwenInit-3B-P1-Python|Baseline $P=1$|[π€ ParScale/ParScale-QwenInit-3B-P1-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P1-Python)| | |
| |ParScale-QwenInit-3B-P2-Python|ParScale $P=2$|[π€ ParScale/ParScale-QwenInit-3B-P2-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P2-Python)| | |
| |ParScale-QwenInit-3B-P4-Python|ParScale $P=4$|[π€ ParScale/ParScale-QwenInit-3B-P4-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P4-Python)| | |
| |ParScale-QwenInit-3B-P8-Python|ParScale $P=8$|[π€ ParScale/ParScale-QwenInit-3B-P8-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P8-Python)| | |
| - For full pretraining on Pile | |
| |Model|Description|Download| | |
| |:-:|:-:|:-:| | |
| |ParScale-QwenInit-3B-P1-Pile|Baseline $P=1$|[π€ ParScale/ParScale-QwenInit-3B-P1-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P1-Pile)| | |
| |ParScale-QwenInit-3B-P2-Pile|ParScale $P=2$|[π€ ParScale/ParScale-QwenInit-3B-P2-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P2-Pile)| | |
| |ParScale-QwenInit-3B-P4-Pile|ParScale $P=4$|[π€ ParScale/ParScale-QwenInit-3B-P4-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P4-Pile)| | |
| |ParScale-QwenInit-3B-P8-Pile|ParScale $P=8$|[π€ ParScale/ParScale-QwenInit-3B-P8-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P8-Pile)| | |
| ### Checkpoints Used to Fit the Scaling Law | |
| Download link: https://huggingface.co/ParScale/ParScale-{size}-{P}-{dataset} | |
| - {size}: model size, from {0.7B, 0.9B, 1.3B, 1.8B, 3B, 4.7B} | |
| - {P}: number of parallels, from {P1, P2, P4, P8} | |
| - {dataset}: training dataset, from {Python, Pile} | |