NEO1_0-2B-SFT / modeling_neo_chat.py
Paranioar's picture
Upload folder using huggingface_hub
d585119 verified
from typing import List, Optional, Tuple, Union
import torch.utils.checkpoint
import transformers
from torch.nn import CrossEntropyLoss
from transformers import GenerationConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_neo_chat import NEOChatConfig
from .conversation import get_conv_template
from .modeling_neo_vit import NEOVisionModel
from .modeling_qwen3 import Qwen3ForCausalLM
logger = logging.get_logger(__name__)
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
def build_abs_positions_from_grid_hw(grid_hw: torch.Tensor, device=None):
"""
Compute patch coordinates (x, y)
Args:
grid_hw: (B, 2) tensor representing (H, W) per image
"""
device = grid_hw.device
B = grid_hw.shape[0]
# Get the number of patches per image
H = grid_hw[:, 0]
W = grid_hw[:, 1]
N = H * W
N_total = N.sum()
# Create the batch index for each patch (B x patch count)
patch_to_sample = torch.repeat_interleave(torch.arange(B, device=device), N) # (N_total,)
# Generate intra-image patch index (row-major order)
patch_id_within_image = torch.arange(N_total, device=device)
patch_id_within_image = patch_id_within_image - torch.cumsum(
torch.cat([torch.tensor([0], device=device), N[:-1]]), dim=0
)[patch_to_sample]
# Get H/W for each patch according to its image
W_per_patch = W[patch_to_sample]
abs_x = patch_id_within_image % W_per_patch
abs_y = patch_id_within_image // W_per_patch
return abs_x, abs_y
class NEOChatModel(PreTrainedModel):
config_class = NEOChatConfig
main_input_name = 'pixel_values'
base_model_prefix = 'language_model'
_supports_flash_attn_2 = True
supports_gradient_checkpointing = True
_no_split_modules = [
"NEOVisionModel",
"Qwen3DecoderLayer",
]
# support transformers 4.51.+
_tp_plan = ''
def __init__(self, config: NEOChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
super().__init__(config)
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.template = config.template
self.downsample_ratio = config.downsample_ratio
config.llm_config._attn_implementation = 'eager'
if vision_model is not None:
self.vision_model = vision_model
else:
self.vision_model = NEOVisionModel(config.vision_config)
if language_model is not None:
self.language_model = language_model
else:
self.language_model = Qwen3ForCausalLM(config.llm_config)
self.img_context_token_id = None
self.img_start_token_id = None
self.conv_template = get_conv_template(self.template)
self.system_message = self.conv_template.system_message
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
raise NotImplementedError('forward')
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
image_flags = image_flags.squeeze(-1)
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
vit_embeds = self.extract_feature(pixel_values)
vit_embeds = vit_embeds[image_flags == 1]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
# if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
# print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = min(selected.sum(), vit_embeds.size(0))
input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token]
input_embeds = input_embeds.reshape(B, N, C)
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def extract_feature(self, pixel_values, grid_hw=None):
return self.vision_model(pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True,
grid_hw=grid_hw).last_hidden_state
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
raise NotImplementedError('batch_chat')
if history is not None or return_history:
print('Now multi-turn chat is not supported in batch_chat.')
raise NotImplementedError
if image_counts is not None:
num_patches_list = image_counts
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
queries = []
for idx, num_patches in enumerate(num_patches_list):
question = questions[idx]
if pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
template = get_conv_template(self.template)
template.system_message = self.system_message
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
queries.append(query)
tokenizer.padding_side = 'left'
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
responses = [response.split(template.sep.strip())[0].strip() for response in responses]
return responses
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, grid_hw=None,
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False):
if history is None and pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
self.img_start_token_id = tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
template = get_conv_template(self.template)
template.system_message = self.system_message
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
history = [] if history is None else history
for (old_question, old_answer) in history:
template.append_message(template.roles[0], old_question)
template.append_message(template.roles[1], old_answer)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
if verbose and pixel_values is not None:
print(f'dynamic image size: {grid_hw * self.patch_size}')
for i in range(grid_hw.shape[0]):
num_patch_token = int(grid_hw[i, 0] * grid_hw[i, 1] * self.downsample_ratio**2)
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * num_patch_token + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
model_inputs = tokenizer(query, return_tensors='pt')
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
grid_hw=grid_hw,
attention_mask=attention_mask,
**generation_config
)
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
response = response.split(template.sep.strip())[0].strip()
history.append((question, response))
if return_history:
return response, history
else:
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
if verbose:
print(query_to_print, response)
return response
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
grid_hw: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert input_ids.shape[0] == 1
assert self.img_context_token_id is not None
indexes = self.get_thw_indexes(input_ids[0], grid_hw)
if pixel_values is not None:
if visual_features is not None:
vit_embeds = visual_features
else:
vit_embeds = self.extract_feature(pixel_values, grid_hw=grid_hw)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
input_embeds = input_embeds.reshape(B, N, C)
else:
input_embeds = self.language_model.get_input_embeddings()(input_ids)
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
indexes=indexes,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
use_cache=True,
**generate_kwargs,
)
return outputs
@property
def lm_head(self):
return self.language_model.get_output_embeddings()
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
return self.language_model.set_input_embeddings(value)
def set_output_embeddings(self, value):
return self.language_model.set_output_embeddings(value)
def get_thw_indexes(self, input_ids, grid_hw):
img_start_shift = torch.cat([torch.zeros(1, dtype=torch.long).to(input_ids.device),
(input_ids == self.img_start_token_id).long()], dim=0)[:-1]
not_img_token = (input_ids != self.img_context_token_id).long()
t_indexes = ((img_start_shift + not_img_token).cumsum(0) - 1)
h_indexes = torch.zeros_like(t_indexes).to(t_indexes.device)
w_indexes = torch.zeros_like(t_indexes).to(t_indexes.device)
selected = (input_ids == self.img_context_token_id)
if selected.long().sum() > 0:
abs_pos_w, abs_pos_h = build_abs_positions_from_grid_hw(
grid_hw // int(1 / self.downsample_ratio), device=t_indexes.device)
h_indexes[selected] = abs_pos_h.to(t_indexes.device, t_indexes.dtype)
w_indexes[selected] = abs_pos_w.to(t_indexes.device, t_indexes.dtype)
return torch.stack([t_indexes, h_indexes, w_indexes], dim=0)